JPH11189436A - Transparent electrode substrate, its preparation and production of photoelectromotive force element - Google Patents

Transparent electrode substrate, its preparation and production of photoelectromotive force element

Info

Publication number
JPH11189436A
JPH11189436A JP9360334A JP36033497A JPH11189436A JP H11189436 A JPH11189436 A JP H11189436A JP 9360334 A JP9360334 A JP 9360334A JP 36033497 A JP36033497 A JP 36033497A JP H11189436 A JPH11189436 A JP H11189436A
Authority
JP
Japan
Prior art keywords
film
transparent
electrode substrate
conductive film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9360334A
Other languages
Japanese (ja)
Other versions
JP3695923B2 (en
Inventor
Masaaki Kameda
正明 亀田
Haruhisa Hashimoto
治寿 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP36033497A priority Critical patent/JP3695923B2/en
Publication of JPH11189436A publication Critical patent/JPH11189436A/en
Application granted granted Critical
Publication of JP3695923B2 publication Critical patent/JP3695923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To prepare a transparent electrode substrate having a good textural structure on the surface thereof even when the thickness of a transparent electroconductive film is reduced or under relatively low-temperature conditions. SOLUTION: (a) A crystalline film 2 of a microcrystalline silicon alloy is formed on a light transmitting substrate 1 made of a glass according to a plasma chemical vapor deposition(CVD) method. (b) A transparent electroconductive film 3 consisting essentially of any of tin oxide, zinc oxide and indium oxide is laminated and formed on the crystalline film 2 according to a thermal CVD method to prepare a transparent electrode substrate 4 having a textural structure on the surface thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透光性基体に透明
導電性膜を形成して構成される透明電極基板及びその作
製方法、並びに、そのような透明電極基板を用いる光起
電力素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent electrode substrate formed by forming a transparent conductive film on a transparent substrate, a method of manufacturing the same, and a photovoltaic device using such a transparent electrode substrate. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】基板側から光を入射させて電気エネルギ
を取り出す構成の薄膜光起電力素子にあっては、ガラス
板等の透光性基体上に酸化錫,酸化亜鉛,酸化インジウ
ム等の透明導電性膜を光入射側電極として積層してなる
透明電極基板が利用される。この透明導電性膜は、通常
は熱CVD法に基づく原料ガスの熱分解により、透光性
基体上に薄膜状に形成される。
2. Description of the Related Art In a thin-film photovoltaic device having a structure in which light is incident from a substrate side to extract electric energy, a transparent substrate such as tin oxide, zinc oxide or indium oxide is formed on a transparent substrate such as a glass plate. A transparent electrode substrate formed by laminating a conductive film as a light incident side electrode is used. This transparent conductive film is usually formed into a thin film on a translucent substrate by thermal decomposition of a source gas based on a thermal CVD method.

【0003】このとき、ある特定条件下において透明導
電性膜を形成した場合、その膜表面に結晶粒拡大による
テクスチャ構造と呼ばれる凹凸形状を形成することがで
きる。このテクスチャ構造は、光電変換特性の面で重要
な役目を果たす。つまり、透光性基体側から入射してき
た光が凹凸形状を有する透明導電性膜と光電変換層との
界面で散乱された後に光電変換層に入射するので、光電
変換層に概ね斜めに光が入射し、光の実質的な光路が延
びて光の吸収が増大し、この結果、光起電力素子の光電
変換特性が向上して出力電流が増加する。
At this time, when a transparent conductive film is formed under certain specific conditions, an uneven shape called a texture structure by crystal grain enlargement can be formed on the surface of the film. This texture structure plays an important role in terms of photoelectric conversion characteristics. In other words, light that has entered from the light-transmitting substrate side is scattered at the interface between the transparent conductive film having the uneven shape and the photoelectric conversion layer, and then enters the photoelectric conversion layer. When the light enters, the substantial optical path of the light is extended to increase the light absorption. As a result, the photoelectric conversion characteristics of the photovoltaic element are improved, and the output current is increased.

【0004】図7は、このようなテクスチャ構造を有す
る透明電極基板を用いた従来の非晶質シリコン光起電力
素子の構成図である。図7において、31はガラス製の
透光性基体であり、透光性基体31上には、SnO2
Fの透明導電性膜33(厚さ:10000Å)、光電変
換層を構成するp型非晶質シリコン層34,i型非晶質
シリコン層35及びn型非晶質シリコン層36、Agの
裏面電極膜37がこの順に積層形成されている。
FIG. 7 is a configuration diagram of a conventional amorphous silicon photovoltaic device using a transparent electrode substrate having such a texture structure. In FIG. 7, reference numeral 31 denotes a light-transmitting substrate made of glass, and SnO 2 :
F transparent conductive film 33 (thickness: 10000 °), p-type amorphous silicon layer 34, i-type amorphous silicon layer 35 and n-type amorphous silicon layer 36 constituting the photoelectric conversion layer, and the back surface of Ag The electrode films 37 are stacked in this order.

【0005】次に、このような構成の従来の非晶質シリ
コン光起電力素子の製造手順について説明する。熱CV
D法により、500〜600℃の基板温度において、S
nCl4 ガス、HF等のF系ドーパントガス、H2 O,
2 等のガスを原材料ガスとし、それらのガスの熱分解
及び化学分解により、ガラス製の透光性基体31上に、
SnO2 :F膜(透明導電性膜33)を厚さ10000
Å程度成膜する。このとき形成条件を調整することによ
り、SnO2 :F膜(透明導電性膜33)の表面にテク
スチャ構造が得られる。次に、SiH4 ガスを主な原材
料ガスとして、プラズマCVD法により、透明導電性膜
33の上に、p型,i型,n型の順に各非晶質シリコン
層34,35,36を積層形成し、その後、その上にス
パッタ法によりAg膜(裏面電極膜37)を形成する。
Next, a procedure for manufacturing a conventional amorphous silicon photovoltaic device having such a configuration will be described. Thermal CV
According to the D method, at a substrate temperature of 500 to 600 ° C., S
nCl 4 gas, F type dopant gas such as HF, H 2 O,
A gas such as O 2 is used as a raw material gas, and a thermal decomposition and a chemical decomposition of the gas are performed on the light transmitting substrate 31 made of glass.
SnO 2 : F film (transparent conductive film 33) having a thickness of 10,000
Deposit about 成膜. At this time, by adjusting the forming conditions, a texture structure can be obtained on the surface of the SnO 2 : F film (transparent conductive film 33). Next, the amorphous silicon layers 34, 35 and 36 are laminated on the transparent conductive film 33 in the order of p-type, i-type and n-type by plasma CVD using SiH 4 gas as a main raw material gas. Then, an Ag film (back surface electrode film 37) is formed thereon by a sputtering method.

【0006】テクスチャ構造を有する透明電極基板を用
いる光起電力素子は、透明導電性膜の表面が平坦である
透明電極基板を用いた光起電力素子に比べて、光の有効
利用が高く、このテクスチャ構造の形成処理は、実用化
が進められている薄膜太陽電池における光電変換効率の
向上には必須の技術となっている。しかしながら、この
ようなテクスチャ構造を得るためには、上述したように
特定の条件下で透明導電性膜を形成しなければならず、
特にその膜厚の最適化が最重要の条件である。
A photovoltaic element using a transparent electrode substrate having a texture structure has a higher effective use of light than a photovoltaic element using a transparent electrode substrate having a transparent conductive film having a flat surface. The process of forming a texture structure is an indispensable technique for improving the photoelectric conversion efficiency of a thin-film solar cell that is being put to practical use. However, in order to obtain such a texture structure, a transparent conductive film must be formed under specific conditions as described above,
In particular, optimization of the film thickness is the most important condition.

【0007】[0007]

【発明が解決しようとする課題】本来、透明導電性膜の
機能としては、光を可能な限り多く効率的に光電変換層
へ導入するという光学的特性と、発生された電流を可能
な限り損失なく外部へ取り出すという電気的特性とが重
要である。このような光学的特性を鑑みると、透明導電
性膜内での光の吸収等による光損失をできる限り減らす
ためには、その膜厚はできるだけ薄いことが望ましい。
一方、このような電気的特性を鑑みると、透明導電性膜
の膜厚はできるだけ厚いことが望ましい。また、良好な
テクスチャ構造を得るためには、ある程度の膜厚が必要
である。従って、テクスチャ構造を除いた部分にてある
程度の光学的特性と十分な電気的特性とが得られる最適
な膜厚よりも厚い膜厚を有する透明導電性膜を、従来の
透明電極基板は必要としていた。
Essentially, the function of the transparent conductive film is to have the optical characteristics of efficiently introducing light into the photoelectric conversion layer as much as possible and the loss of generated current as much as possible. It is important to have an electrical characteristic of taking out to the outside without any change. In consideration of such optical characteristics, it is desirable that the film thickness be as small as possible in order to reduce light loss due to light absorption or the like in the transparent conductive film as much as possible.
On the other hand, in view of such electrical characteristics, it is desirable that the thickness of the transparent conductive film be as large as possible. In order to obtain a good texture structure, a certain film thickness is required. Therefore, the conventional transparent electrode substrate requires a transparent conductive film having a thickness larger than the optimum thickness that can obtain a certain degree of optical characteristics and sufficient electrical characteristics in a portion excluding the texture structure. Was.

【0008】本発明は斯かる事情に鑑みてなされたもの
であり、薄い膜厚の透明導電性膜であってもその表面に
良好なテクスチャ構造を得ることができる透明電極基板
及びその作製方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and provides a transparent electrode substrate capable of obtaining a good texture structure on the surface of a transparent conductive film having a small thickness, and a method of manufacturing the same. The purpose is to provide.

【0009】本発明の他の目的は、比較的低温にて良好
なテクスチャ構造を有する透明導電性膜を形成できる透
明電極基板及びその作製方法を提供することにある。
Another object of the present invention is to provide a transparent electrode substrate capable of forming a transparent conductive film having a good texture structure at a relatively low temperature, and a method of manufacturing the same.

【0010】本発明の更に他の目的は、良好なテクスチ
ャ構造を持つ透明導電性膜を形成できて、光電変換特性
の向上を図れる光起電力素子の製造方法を提供すること
にある。
It is still another object of the present invention to provide a method for manufacturing a photovoltaic element capable of forming a transparent conductive film having a good texture structure and improving photoelectric conversion characteristics.

【0011】[0011]

【課題を解決するための手段】請求項1に係る透明電極
基板の作製方法は、透光性基体に透明導電性膜を形成し
てなる透明電極基板を作製する方法において、前記透光
性基体上に結晶性膜を形成する第1ステップと、該結晶
性膜上に透明導電性膜を形成する第2ステップとを有す
ることを特徴とする。
According to a first aspect of the present invention, there is provided a method of manufacturing a transparent electrode substrate, comprising forming a transparent conductive film on a transparent substrate. The method includes a first step of forming a crystalline film thereon and a second step of forming a transparent conductive film on the crystalline film.

【0012】請求項2に係る透明電極基板の作製方法
は、請求項1において、前記第1ステップは、前記透光
性基体上に非晶質膜を形成するステップと、形成した非
晶質膜にエネルギビーム照射または熱処理を施して結晶
化することにより前記結晶性膜とするステップとを含む
ことを特徴とする。
According to a second aspect of the present invention, in the method of manufacturing a transparent electrode substrate according to the first aspect, the first step is a step of forming an amorphous film on the translucent substrate; Subjecting the crystalline film to an energy beam irradiation or a heat treatment to crystallize the crystalline film.

【0013】請求項3に係る透明電極基板は、透光性基
体に透明導電性膜を形成してなる透明電極基板におい
て、前記透光性基体と透明導電性膜との間に、結晶性膜
を備えることを特徴とする。
A transparent electrode substrate according to a third aspect of the present invention is a transparent electrode substrate comprising a transparent substrate and a transparent conductive film formed thereon, wherein a crystalline film is provided between the transparent substrate and the transparent conductive film. It is characterized by having.

【0014】請求項4に係る透明電極基板は、請求項3
において、前記結晶性膜に不純物が含まれていることを
特徴とする。
According to a fourth aspect of the present invention, there is provided the transparent electrode substrate according to the third aspect.
, Wherein the crystalline film contains impurities.

【0015】請求項5に係る透明電極基板は、請求項3
乃至4において、前記結晶性膜の膜厚が50Å〜200
Åであることを特徴とする。
According to a fifth aspect of the present invention, there is provided the transparent electrode substrate according to the third aspect.
The thickness of the crystalline film is 50 to 200
Å.

【0016】請求項6に係る光起電力素子の製造方法
は、光起電力素子を製造する方法において、透光性基体
上に結晶性膜を形成するステップと、該結晶性膜上に透
明導電性膜を形成するステップと、該透明導電性膜上に
非晶質半導体層を形成するステップと、該非晶質半導体
層上に裏面電極を形成するステップとを有することを特
徴とする。
According to a sixth aspect of the present invention, in the method for manufacturing a photovoltaic element, a step of forming a crystalline film on the translucent substrate, and a step of forming a transparent conductive film on the crystalline film. Forming a conductive film, forming an amorphous semiconductor layer on the transparent conductive film, and forming a back electrode on the amorphous semiconductor layer.

【0017】図1は、本発明の透明電極基板の作製方法
の概念を示す図である。例えば、ガラス製の透光性基体
1上に、微結晶,多結晶または単結晶等の結晶性を有す
る結晶性膜2を形成する。例えば、結晶性膜2として微
結晶シリコン膜をプラズマCVD法により形成する(図
1(a))。なお、この代わりに、透光性基体1上に例
えば非晶質シリコンからなる非晶質膜を形成し、その非
晶質膜にエネルギビーム照射または熱処理を施して結晶
化することにより、微結晶,多結晶または単結晶となっ
た結晶性膜2を得るようにしても良い。結晶性膜2の材
料としては結晶性を有するものであれば如何なるような
材料でも良いが、例えばシリコン,窒化シリコン,炭化
シリコン,酸化シリコンまたはそれらの混合物からな
る、微結晶,多結晶または単結晶のシリコン合金が好ま
しい。また、これらの材料にP,B等の不純物が添加さ
れていても良い。
FIG. 1 is a view showing the concept of a method for manufacturing a transparent electrode substrate according to the present invention. For example, a crystalline film 2 having crystallinity such as microcrystal, polycrystal, or single crystal is formed on a glass translucent substrate 1. For example, a microcrystalline silicon film is formed as the crystalline film 2 by a plasma CVD method (FIG. 1A). Instead of this, an amorphous film made of, for example, amorphous silicon is formed on the translucent substrate 1, and the amorphous film is irradiated with an energy beam or subjected to a heat treatment to be crystallized. Alternatively, a polycrystalline or single-crystalline crystalline film 2 may be obtained. Any material may be used as the material of the crystalline film 2 as long as it has crystallinity. For example, microcrystalline, polycrystalline, or single crystal made of silicon, silicon nitride, silicon carbide, silicon oxide, or a mixture thereof is used. Is preferred. Further, impurities such as P and B may be added to these materials.

【0018】次に、その結晶性膜2上に、例えば酸化ス
ズ,酸化亜鉛,酸化インジウムの何れかを主成分とする
透明導電性膜3を、例えば熱CVD法により積層形成し
て、表面にテクスチャ構造を有する透明電極基板4を作
製する(図1(b))。このようにすると、透光性基体
上に直接透明導電性膜を形成する従来例と比べて透明導
電性膜の膜厚を薄くしても、その表面に良好なテクスチ
ャ構造が得られる。
Next, a transparent conductive film 3 containing, for example, any one of tin oxide, zinc oxide and indium oxide as a main component is formed on the crystalline film 2 by, for example, a thermal CVD method. A transparent electrode substrate 4 having a texture structure is manufactured (FIG. 1B). In this case, even when the thickness of the transparent conductive film is reduced as compared with the conventional example in which the transparent conductive film is formed directly on the light-transmitting substrate, a good texture structure can be obtained on the surface.

【0019】結晶性膜を下地層とし、その上に透明導電
性膜を積層形成する場合、透明導電性膜の結晶成長が促
進され、比較的薄い膜厚でも良好なテクスチャ構造を有
する透明電極基板を作製することができる。また、透明
導電性膜の結晶成長が促進されるので、従来に比べて低
温条件(500℃以下)でも良好なテクスチャ構造が得
られる。
In the case where a crystalline film is used as a base layer and a transparent conductive film is formed thereon, crystal growth of the transparent conductive film is promoted and a transparent electrode substrate having a good texture structure even with a relatively thin film thickness. Can be produced. Further, since the crystal growth of the transparent conductive film is promoted, a better texture structure can be obtained even at a lower temperature condition (500 ° C. or lower) than in the past.

【0020】このような透明電極基板を作製するために
は、結晶性膜において最適な膜厚範囲(50Å〜200
Å)が存在する。結晶性膜が厚くなり過ぎた場合には、
この結晶性膜での光の吸収量が多くなって光の透過量が
減少して透明電極基板としての良好な役目を果たせな
い。一方、結晶性膜が薄くなり過ぎた場合には、薄い透
明導電性膜での良好なテクスチャ構造の形成を実現でき
ない。
In order to fabricate such a transparent electrode substrate, an optimal thickness range (50 ° to 200 °) of the crystalline film is required.
Å) exists. If the crystalline film becomes too thick,
The amount of light absorbed by the crystalline film is increased, and the amount of transmitted light is reduced, so that the crystalline film cannot function as a transparent electrode substrate. On the other hand, if the crystalline film is too thin, it is not possible to realize a good texture structure with a thin transparent conductive film.

【0021】[0021]

【発明の実施の形態】以下、本発明をその実施の形態を
示す図面を参照して具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments.

【0022】図2は、本発明の透明電極基板を用いた非
晶質シリコン光起電力素子の構成図である。図2におい
て、11はガラス製の透光性基体である。透光性基体1
1上には、微結晶シリコン薄膜12(厚さ:約100
Å)、表面にテクスチャ構造を有するSnO2 :Fの透
明導電性膜13(厚さ:約5000Å)、光電変換層を
構成するp型非晶質シリコン層14,i型非晶質シリコ
ン層15及びn型非晶質シリコン層16、Agの裏面電
極膜17がこの順に積層形成されている。
FIG. 2 is a configuration diagram of an amorphous silicon photovoltaic device using the transparent electrode substrate of the present invention. In FIG. 2, reference numeral 11 denotes a transparent substrate made of glass. Translucent substrate 1
1, a microcrystalline silicon thin film 12 (thickness: about 100
Å), a transparent conductive film 13 of SnO 2 : F having a texture structure on the surface (thickness: about 5000 Å), a p-type amorphous silicon layer 14 and an i-type amorphous silicon layer 15 constituting a photoelectric conversion layer The n-type amorphous silicon layer 16 and the back electrode film 17 of Ag are laminated in this order.

【0023】次に、このような構成の本発明の非晶質シ
リコン光起電力素子の製造手順を、その工程を示す図3
を参照して説明する。まず、SiH4 ガス及びH2 ガス
をガス流量比SiH4 :H2 =1:200で混合した混
合ガスを原材料ガスとし、プラズマCVD法により、基
板温度250℃,RFパワー50mW/cm2 の条件
で、ガラス製の透光性基体11上に厚さ約100Åの微
結晶シリコン薄膜12を成膜する(図3(a))。
Next, the procedure for manufacturing the amorphous silicon photovoltaic device of the present invention having such a structure will be described with reference to FIG.
This will be described with reference to FIG. First, a mixed gas obtained by mixing a SiH 4 gas and a H 2 gas at a gas flow ratio of SiH 4 : H 2 = 1: 200 was used as a raw material gas, and the substrate temperature was 250 ° C. and the RF power was 50 mW / cm 2 by plasma CVD. Then, a microcrystalline silicon thin film 12 having a thickness of about 100 ° is formed on the light transmitting substrate 11 made of glass (FIG. 3A).

【0024】次に、熱CVD法により、400℃の基板
温度において、SnCl4 ガス、HF等のF系ドーバン
トガス、H2 O,O2 等のガスを原材料ガスとし、それ
らのガスの熱分解及び化学分解により、微結晶シリコン
薄膜12上に、厚さ約5000ÅのSnO2 :F膜(透
明導電性膜13)を成膜する(図3(b))。
Next, at a substrate temperature of 400 ° C., an F-based dopant gas such as SnCl 4 gas, HF, or a gas such as H 2 O or O 2 is used as a raw material gas by a thermal CVD method. A SnO 2 : F film (transparent conductive film 13) having a thickness of about 5000 ° is formed on the microcrystalline silicon thin film 12 by chemical decomposition (FIG. 3B).

【0025】次いで、SiH4 ガスを主な原材料ガスと
して、プラズマCVD法により、透明導電性膜13の上
に、p型,i型,n型の順に各非晶質シリコン層14,
15,16を積層形成する(図3(c))。最後に、ス
パッタ法により、n型非晶質シリコン層16上にAg膜
(裏面電極膜17)を形成する(図3(d))。
Next, using the SiH 4 gas as a main raw material gas, the respective amorphous silicon layers 14, p-type, i-type and n-type are formed on the transparent conductive film 13 in order of plasma CVD.
15 and 16 are formed by lamination (FIG. 3C). Finally, an Ag film (back electrode film 17) is formed on the n-type amorphous silicon layer 16 by a sputtering method (FIG. 3D).

【0026】以下、本発明の透明電極基板における微結
晶シリコン薄膜12及び透明導電性膜13の膜厚の最適
範囲について考察する。
Hereinafter, the optimum ranges of the thicknesses of the microcrystalline silicon thin film 12 and the transparent conductive film 13 in the transparent electrode substrate of the present invention will be considered.

【0027】図4は、透明導電性膜13の膜厚を一定
(6000Å)とし微結晶シリコン薄膜12の膜厚(横
軸)を変化させた場合の透明電極基板のヘイズ率及び全
透過率(縦軸)の変化を示すグラフである。図4では、
透明電極基板のヘイズ率(%)の変化を△で示し、透明
電極基板の全透過率(%)の変化を○で示す。なお、光
散乱効果の程度を表すヘイズ率(%)は下記(1)式で
定義され、全透過率(%)は可視域(400〜700n
m)での平均透過率で定義される。
FIG. 4 shows the haze ratio and total transmittance of the transparent electrode substrate when the thickness of the transparent conductive film 13 is constant (6000 °) and the thickness (horizontal axis) of the microcrystalline silicon thin film 12 is changed. It is a graph which shows the change of (vertical axis). In FIG.
The change in the haze ratio (%) of the transparent electrode substrate is indicated by △, and the change in the total transmittance (%) of the transparent electrode substrate is indicated by ○. The haze ratio (%) representing the degree of the light scattering effect is defined by the following equation (1), and the total transmittance (%) is in the visible region (400 to 700 n).
m).

【0028】 ヘイズ率={(光の散乱透過率)/(光の全透過率)}×100…(1) 但し、光の散乱透過率:(全透過率)−(直線透過率) 光の全透過率:積分球を用いて測定した全ての透過光に
対する透過率
Haze rate = {(light scattering transmittance) / (total light transmittance)} × 100 (1) where light scattering transmittance: (total transmittance) − (linear transmittance) Total transmittance: transmittance for all transmitted light measured using an integrating sphere

【0029】微結晶シリコン薄膜12の膜厚が200Å
を超えると、全透過率が減少し過ぎて透明電極基板とし
ての機能を果たせない。一方、微結晶シリコン薄膜12
の膜厚が50Åより薄くなると、ヘイズ率が減少して十
分な光散乱効果を得られない。よって、微結晶シリコン
薄膜12の膜厚の最適範囲は、50Å〜200Åであ
る。
The thickness of the microcrystalline silicon thin film 12 is 200 °
If it exceeds, the total transmittance is too low to function as a transparent electrode substrate. On the other hand, the microcrystalline silicon thin film 12
When the film thickness is less than 50 °, the haze ratio decreases and a sufficient light scattering effect cannot be obtained. Therefore, the optimum range of the thickness of the microcrystalline silicon thin film 12 is 50 ° to 200 °.

【0030】図5は、微結晶シリコン薄膜12の膜厚を
一定(100Å)とし透明導電性膜13の膜厚(横軸)
を変化させた場合の透明電極基板のヘイズ率及び全透過
率(縦軸)の変化を示すグラフである。図5でも、透明
電極基板のヘイズ率(%)の変化を△で示し、透明電極
基板の全透過率(%)の変化を○で示す。
FIG. 5 shows the thickness (horizontal axis) of the transparent conductive film 13 with the thickness of the microcrystalline silicon thin film 12 being constant (100 °).
6 is a graph showing a change in the haze ratio and the total transmittance (vertical axis) of the transparent electrode substrate in the case where is changed. Also in FIG. 5, a change in the haze ratio (%) of the transparent electrode substrate is indicated by a triangle, and a change in the total transmittance (%) of the transparent electrode substrate is indicated by a circle.

【0031】透明導電性膜13の膜厚が8000Åを超
えると、全透過率が減少し過ぎて透明電極基板としての
機能を果たせない。一方、透明導電性膜13の膜厚が4
000Åより薄くなると、ヘイズ率が減少して十分な光
散乱効果を得られない。よって、透明導電性膜13の膜
厚の最適範囲は、4000Å〜8000Åである。
If the thickness of the transparent conductive film 13 exceeds 8000 °, the total transmittance is so reduced that it cannot function as a transparent electrode substrate. On the other hand, when the thickness of the transparent conductive film 13 is 4
If the thickness is less than 000 °, the haze ratio decreases, and a sufficient light scattering effect cannot be obtained. Therefore, the optimal range of the thickness of the transparent conductive film 13 is 4000 to 8000 °.

【0032】次に、本発明の透明電極基板(以下、本発
明例という)と従来の透明電極基板(以下、従来例とい
う)との特性を比較した結果について説明する。なお、
本発明例,従来例とも、アルカリ拡散防止膜(SiO2
膜)を必要としない無アルカリガラスを透光性基体とし
て使用し、本発明例は、このような透光性基体上に微結
晶シリコン薄膜及びSnO2 :F膜(成膜温度400
℃)を形成した構成をなし、従来例は、このような透光
性基体上にSnO2 :F膜(成膜温度550℃)を直接
形成した構成をなす。
Next, the result of comparing the characteristics of the transparent electrode substrate of the present invention (hereinafter, referred to as the present invention) and the conventional transparent electrode substrate (hereinafter, referred to as the conventional example) will be described. In addition,
In both the present invention example and the conventional example, the alkali diffusion preventing film (SiO 2
A non-alkali glass which does not require a film) is used as the light-transmitting substrate. In the present invention, the microcrystalline silicon thin film and the SnO 2 : F film (film forming temperature 400
C.), and the conventional example has a configuration in which an SnO 2 : F film (film formation temperature 550 ° C.) is directly formed on such a translucent substrate.

【0033】このような本発明例,従来例における全透
過率を測定評価したところ、本発明例は85%、従来例
は80%であり、微結晶シリコン薄膜を挿入することに
よっても光透過性は劣化せず、却って向上できることを
証明できた。
When the total transmittance of the present invention example and the conventional example was measured and evaluated, it was 85% in the example of the present invention and 80% in the conventional example, and the light transmittance was also obtained by inserting a microcrystalline silicon thin film. Has not deteriorated, but it can be proved that it can be improved.

【0034】また、本発明例,従来例のヘイズ率を測定
した。本発明例,従来例と同様の無アルカリガラスの透
光性基体上に、成膜温度400℃にてSnO2 :F膜を
直接形成した構成をなす透明電極基板(以下、比較例と
いう)を作製し、この比較例のヘイズ率も測定した。そ
のヘイズ率の測定結果は、本発明例,従来例,比較例で
それぞれ、17.0%,16.0%,5.0%であっ
た。本発明例では従来例と比較して同等以上の光散乱効
果を有しており、本発明例では、低温条件(400℃)
であっても、高温条件(550℃)での従来例より同等
以上の良好なテクスチャ構造が得られていることを証明
できた。なお、比較例では、ヘイズ率が極端に低くなっ
ており、微結晶シリコン薄膜が挿入されていないので、
低温条件(400℃)が原因でテクスチャ構造が形成で
きなかったと考えられる。
Further, the haze ratios of the present invention example and the conventional example were measured. A transparent electrode substrate (hereinafter referred to as a comparative example) having a configuration in which a SnO 2 : F film is directly formed at a film forming temperature of 400 ° C. on a translucent base made of an alkali-free glass similar to the present invention example and the conventional example is used. The haze ratio of this comparative example was also measured. The measurement results of the haze ratio were 17.0%, 16.0%, and 5.0% in the present invention example, the conventional example, and the comparative example, respectively. The example of the present invention has a light scattering effect equal to or more than that of the conventional example.
However, it was proved that a good texture structure equivalent to or higher than that of the conventional example under the high temperature condition (550 ° C.) was obtained. In the comparative example, the haze ratio was extremely low, and the microcrystalline silicon thin film was not inserted.
It is considered that the texture structure could not be formed due to the low temperature condition (400 ° C.).

【0035】次に、図2に示す構成をなす本発明の光起
電力素子と図7に示す構成をなす従来の光起電力素子と
について起電力特性を測定した。この測定結果を下記表
1に示す。なお、両光起電力素子における測定条件は、
AM1.5,sun,100mW/cm2 ,25℃とし
た。
Next, the electromotive force characteristics of the photovoltaic device of the present invention having the structure shown in FIG. 2 and the conventional photovoltaic device having the structure shown in FIG. 7 were measured. The measurement results are shown in Table 1 below. The measurement conditions for both photovoltaic elements are as follows:
AM 1.5, sun, 100 mW / cm 2 , 25 ° C.

【0036】[0036]

【表1】 [Table 1]

【0037】表1の結果に示すように、本発明の光起電
力素子では従来の光起電力素子に比べて、電流値におい
て優れていることが分かる。これは、本発明の光起電力
素子における透明導電性膜が比較的薄い膜厚であるにも
かかわらず、良好なテクスチャ構造を形成でき、従来の
光起電力素子より同等以上の光閉じ込め効果を発揮でき
たためである。
As shown in the results of Table 1, it can be seen that the photovoltaic device of the present invention is superior in current value as compared with the conventional photovoltaic device. This is because, despite the relatively thin film thickness of the transparent conductive film in the photovoltaic element of the present invention, a good texture structure can be formed, and a light confinement effect equal to or higher than that of the conventional photovoltaic element can be obtained. It was because he was able to demonstrate.

【0038】以下、本発明の透明電極基板の作製方法の
他の実施の形態について説明する。図6は、この作製工
程を示す図である。まず、ガラス製の透光性基体11上
に、厚さ50〜200Åの非晶質シリコン薄膜21を形
成する(図6(a))。次に、この非晶質シリコン薄膜
21にエキシマレーザ等のエネルギビームを照射して微
結晶化させ、微結晶シリコン薄膜12とする(図6
(b))。次に、熱CVD法により、400℃の基板温
度において、SnCl4 ガス、HF等のF系ドーバント
ガス、H2 O,O2 等のガスを原材料ガスとし、それら
のガスの熱分解及び化学分解により、微結晶シリコン薄
膜12上に、厚さ4000〜8000ÅのSnO2 :F
膜(透明導電性膜13)を成膜する(図6(c))。
Hereinafter, another embodiment of the method for producing a transparent electrode substrate of the present invention will be described. FIG. 6 is a diagram showing this manufacturing process. First, an amorphous silicon thin film 21 having a thickness of 50 to 200 ° is formed on a transparent substrate 11 made of glass (FIG. 6A). Next, the amorphous silicon thin film 21 is irradiated with an energy beam such as an excimer laser to be microcrystallized to form a microcrystalline silicon thin film 12 (FIG. 6).
(B)). Next, at a substrate temperature of 400 ° C., a gas such as SnCl 4 gas, an F-based dopant gas such as HF, or a gas such as H 2 O or O 2 is used as a raw material gas by a thermal CVD method. On the microcrystalline silicon thin film 12, SnO 2 : F having a thickness of 4000-8000 °
A film (transparent conductive film 13) is formed (FIG. 6C).

【0039】このような実施の形態においても、透明導
電性膜13の表面に良好なテクスチャ構造が形成された
透明電極基板を作製することができる。なお、上述の例
ではエネルギビームの照射によって非晶質シリコン薄膜
21を微結晶化させたが、加熱処理によって微結晶化を
図るようにしても良い。
Also in such an embodiment, it is possible to manufacture a transparent electrode substrate in which a good texture structure is formed on the surface of the transparent conductive film 13. In the above-described example, the amorphous silicon thin film 21 is microcrystallized by irradiation with an energy beam, but may be microcrystallized by a heat treatment.

【0040】なお、上述した例では、透明導電性膜を形
成するための下地層として微結晶シリコン合金膜を使用
したが、多結晶シリコン合金膜を用いた場合にも、表面
に良好なテクスチャ構造を有する透明導電性膜を、薄膜
かつ低温の条件下で形成することができ、更に、これら
の微結晶シリコン合金または多結晶シリコン合金にP,
B等の不純物を添加したドーピング膜でも、全く同様の
効果を奏する。
In the above-described example, a microcrystalline silicon alloy film was used as an underlayer for forming a transparent conductive film. However, even when a polycrystalline silicon alloy film was used, a good texture structure was formed on the surface. Can be formed under a thin-film and low-temperature condition, and P, P is added to these microcrystalline silicon alloys or polycrystalline silicon alloys.
The same effect can be obtained even with a doped film to which an impurity such as B is added.

【0041】このような微結晶シリコン合金,多結晶シ
リコン合金としては、水素化シリコン,窒化シリコン,
炭化シリコン,酸化シリコンの単一物またはそれらの混
合物を使用できる。
Examples of such a microcrystalline silicon alloy and a polycrystalline silicon alloy include silicon hydride, silicon nitride,
A single substance of silicon carbide or silicon oxide or a mixture thereof can be used.

【0042】また、上述した例では、透明導電性膜とし
てSnO2 :F膜を使用したが、SnO2 以外に、Zn
O,In2 3 の何れかを主成分とする材料を使用して
も良い。
Further, in the above example, SnO 2 as a transparent conductive film: was used the F layer, in addition to SnO 2, Zn
A material containing O or In 2 O 3 as a main component may be used.

【0043】[0043]

【発明の効果】以上のように、本発明では、透光性基体
上に結晶性膜を形成し、更にその上に透明導電性膜を形
成するようにしたので、透明導電性膜が薄くても、ま
た、低温条件であっても、透明導電性膜の表面に良好な
テクスチャ構造を有する透明電極基板を作製することが
できる。このように低温条件下でもテクスチャ化された
透明導電性膜を形成できるので、透光性基体として使用
できる材料、特に強化ガラスの種類を拡大することが可
能となる。
As described above, according to the present invention, a crystalline film is formed on a translucent substrate, and a transparent conductive film is further formed thereon. In addition, a transparent electrode substrate having a good texture structure on the surface of the transparent conductive film can be produced even under low temperature conditions. As described above, a textured transparent conductive film can be formed even under low-temperature conditions, so that it is possible to expand the types of materials that can be used as a light-transmitting substrate, particularly, the types of tempered glass.

【0044】また、このような透明電極基板の作製方法
を光起電力素子の製造方法に適用することにより、透明
導電性膜のテクスチャ構造による入射光の閉じ込め効果
を大きくして光電変換特性の向上を図れる光起電力素子
の製造が可能となる。
Further, by applying such a method for producing a transparent electrode substrate to a method for producing a photovoltaic element, the effect of confining incident light by the texture structure of the transparent conductive film is increased, and the photoelectric conversion characteristics are improved. It is possible to manufacture a photovoltaic element that can achieve the above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の透明電極基板の作製方法の概念図であ
る。
FIG. 1 is a conceptual diagram of a method for manufacturing a transparent electrode substrate of the present invention.

【図2】本発明に係る光起電力素子の構成図である。FIG. 2 is a configuration diagram of a photovoltaic device according to the present invention.

【図3】本発明の光起電力素子のの製造方法の工程を示
す図である。
FIG. 3 is a diagram showing steps of a method for manufacturing a photovoltaic device according to the present invention.

【図4】微結晶シリコン薄膜の膜厚と透明電極基板のヘ
イズ率及び全透過率との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the thickness of a microcrystalline silicon thin film and the haze ratio and total transmittance of a transparent electrode substrate.

【図5】透明導電性膜の膜厚と透明電極基板のヘイズ率
及び全透過率との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the thickness of a transparent conductive film and the haze ratio and total transmittance of a transparent electrode substrate.

【図6】本発明の透明電極基板の作製方法の工程を示す
図である。
FIG. 6 is a diagram showing steps of a method for manufacturing a transparent electrode substrate of the present invention.

【図7】従来の光起電力素子の構成図である。FIG. 7 is a configuration diagram of a conventional photovoltaic element.

【符号の説明】[Explanation of symbols]

1,11 透光性基体 2 結晶性膜膜 3,13 透明導電性膜 4 透明電極基板 12 微結晶シリコン薄膜 14 p型非晶質シリコン層 15 i型非晶質シリコン層 16 n型非晶質シリコン層 17 裏面電極膜 21 非晶質シリコン薄膜 Reference Signs List 1,11 Transparent substrate 2 Crystal film 3,3 Transparent conductive film 4 Transparent electrode substrate 12 Microcrystalline silicon thin film 14 P-type amorphous silicon layer 15 i-type amorphous silicon layer 16 n-type amorphous Silicon layer 17 Back electrode film 21 Amorphous silicon thin film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 透光性基体に透明導電性膜を形成してな
る透明電極基板を作製する方法において、前記透光性基
体上に結晶性膜を形成する第1ステップと、該結晶性膜
上に透明導電性膜を形成する第2ステップとを有するこ
とを特徴とする透明電極基板の作製方法。
1. A method for manufacturing a transparent electrode substrate comprising a transparent conductive film formed on a transparent substrate, a first step of forming a crystalline film on the transparent substrate, and the crystalline film And a second step of forming a transparent conductive film thereon.
【請求項2】 前記第1ステップは、前記透光性基体上
に非晶質膜を形成するステップと、形成した非晶質膜に
エネルギビーム照射または熱処理を施して結晶化するこ
とにより前記結晶性膜とするステップとを含む請求項1
記載の透明電極基板の作製方法。
2. The method according to claim 1, wherein the first step is a step of forming an amorphous film on the light-transmitting substrate, and the step of irradiating the formed amorphous film with an energy beam or a heat treatment to crystallize the crystal. Forming a conductive film.
The method for producing the transparent electrode substrate described in the above.
【請求項3】 透光性基体に透明導電性膜を形成してな
る透明電極基板において、前記透光性基体と透明導電性
膜との間に、結晶性膜を備えることを特徴とする透明電
極基板。
3. A transparent electrode substrate formed by forming a transparent conductive film on a transparent substrate, wherein a transparent film is provided between the transparent substrate and the transparent conductive film. Electrode substrate.
【請求項4】 前記結晶性膜に不純物が含まれている請
求項3記載の透明電極基板。
4. The transparent electrode substrate according to claim 3, wherein said crystalline film contains impurities.
【請求項5】 前記結晶性膜の膜厚が50Å〜200Å
である請求項3乃至4記載の透明電極基板。
5. The crystalline film has a thickness of 50 ° to 200 °.
The transparent electrode substrate according to claim 3, wherein
【請求項6】 光起電力素子を製造する方法において、
透光性基体上に結晶性膜を形成するステップと、該結晶
性膜上に透明導電性膜を形成するステップと、該透明導
電性膜上に非晶質半導体層を形成するステップと、該非
晶質半導体層上に裏面電極を形成するステップとを有す
ることを特徴とする光起電力素子の製造方法。
6. A method for manufacturing a photovoltaic device, comprising:
Forming a crystalline film on the transparent substrate, forming a transparent conductive film on the crystalline film, forming an amorphous semiconductor layer on the transparent conductive film, Forming a back electrode on the crystalline semiconductor layer.
JP36033497A 1997-12-26 1997-12-26 Transparent electrode substrate, method for producing the same, and method for producing photovoltaic element Expired - Fee Related JP3695923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36033497A JP3695923B2 (en) 1997-12-26 1997-12-26 Transparent electrode substrate, method for producing the same, and method for producing photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36033497A JP3695923B2 (en) 1997-12-26 1997-12-26 Transparent electrode substrate, method for producing the same, and method for producing photovoltaic element

Publications (2)

Publication Number Publication Date
JPH11189436A true JPH11189436A (en) 1999-07-13
JP3695923B2 JP3695923B2 (en) 2005-09-14

Family

ID=18468955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36033497A Expired - Fee Related JP3695923B2 (en) 1997-12-26 1997-12-26 Transparent electrode substrate, method for producing the same, and method for producing photovoltaic element

Country Status (1)

Country Link
JP (1) JP3695923B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011011119A1 (en) * 2009-07-20 2011-01-27 Applied Materials, Inc. Organically modified etch chemistry for zno tco texturing
US7932576B2 (en) 2008-07-04 2011-04-26 Samsung Electronics Co., Ltd. Transparent conductive layer and method of manufacturing the same
US8318589B2 (en) 2009-06-08 2012-11-27 Applied Materials, Inc. Method for forming transparent conductive oxide
US8361835B2 (en) 2009-06-08 2013-01-29 Applied Materials, Inc. Method for forming transparent conductive oxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227945A (en) * 1985-03-30 1986-10-11 Asahi Glass Co Ltd Electroconductive glass
JPH0563220A (en) * 1991-08-30 1993-03-12 Canon Inc Photovoltaic element and manufacture thereof
JPH09249962A (en) * 1996-03-14 1997-09-22 Toshiba Corp Formation of oxide thin film and oxide thin film
JPH09256141A (en) * 1996-03-22 1997-09-30 Matsushita Electric Ind Co Ltd Formation of thin film and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227945A (en) * 1985-03-30 1986-10-11 Asahi Glass Co Ltd Electroconductive glass
JPH0563220A (en) * 1991-08-30 1993-03-12 Canon Inc Photovoltaic element and manufacture thereof
JPH09249962A (en) * 1996-03-14 1997-09-22 Toshiba Corp Formation of oxide thin film and oxide thin film
JPH09256141A (en) * 1996-03-22 1997-09-30 Matsushita Electric Ind Co Ltd Formation of thin film and device therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932576B2 (en) 2008-07-04 2011-04-26 Samsung Electronics Co., Ltd. Transparent conductive layer and method of manufacturing the same
US8318589B2 (en) 2009-06-08 2012-11-27 Applied Materials, Inc. Method for forming transparent conductive oxide
US8361835B2 (en) 2009-06-08 2013-01-29 Applied Materials, Inc. Method for forming transparent conductive oxide
WO2011011119A1 (en) * 2009-07-20 2011-01-27 Applied Materials, Inc. Organically modified etch chemistry for zno tco texturing

Also Published As

Publication number Publication date
JP3695923B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
EP0062471B1 (en) Thin film solar cell
US6870088B2 (en) Solar battery cell and manufacturing method thereof
JP4162447B2 (en) Photovoltaic element and photovoltaic device
EP1724840B1 (en) Photoelectric cell
US20110259395A1 (en) Single Junction CIGS/CIS Solar Module
JP5381912B2 (en) Transparent conductive substrate with surface electrode and method for producing the same, thin film solar cell and method for producing the same
US20070193624A1 (en) Indium zinc oxide based front contact for photovoltaic device and method of making same
JPWO2003036657A1 (en) SUBSTRATE WITH TRANSPARENT CONDUCTIVE OXIDE FILM, PROCESS FOR PRODUCING THE SAME, AND PHOTOELECTRIC CONVERSION ELEMENT
JP3679771B2 (en) Photovoltaic device and method for manufacturing photovoltaic device
KR20150093187A (en) Transparent conductive glass substrate with surface electrode, method for producing same, thin film solar cell, and method for manufacturing thin film solar cell
US20120018733A1 (en) Thin Film Solar Cells And Other Devices, Systems And Methods Of Fabricating Same, And Products Produced By Processes Thereof
US20100229934A1 (en) Solar cell and method for the same
JP2000261011A (en) Silicon-based thin-film photoelectric transducer
JP2000058892A (en) Silicon based thin film photoelectric converter
JP2002009312A (en) Method for manufacturing non-single crystal thin-film solar battery
JP3695923B2 (en) Transparent electrode substrate, method for producing the same, and method for producing photovoltaic element
JP2003282902A (en) Thin film solar cell
JP4565912B2 (en) Multi-junction semiconductor element and solar cell element using the same
JP3510443B2 (en) Method for manufacturing photovoltaic device
JP2001168363A (en) Method of manufacturing solar battery
JP2004153028A (en) Thin-film photoelectric converting device
JP2002076396A (en) Multi-junction thin-film solar cell and manufacturing method thereof
JP2014082387A (en) Method for manufacturing photovoltaic element and photovoltaic element
JP2000252504A (en) Silicon thin film optoelectric transducer device and manufacture thereof
JP2001284619A (en) Phtovoltaic device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050628

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees