JPS61225503A - Controller for feedwater of nuclear reactor - Google Patents

Controller for feedwater of nuclear reactor

Info

Publication number
JPS61225503A
JPS61225503A JP60063908A JP6390885A JPS61225503A JP S61225503 A JPS61225503 A JP S61225503A JP 60063908 A JP60063908 A JP 60063908A JP 6390885 A JP6390885 A JP 6390885A JP S61225503 A JPS61225503 A JP S61225503A
Authority
JP
Japan
Prior art keywords
flow rate
signal
reactor
controller
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60063908A
Other languages
Japanese (ja)
Other versions
JPH0648082B2 (en
Inventor
奥谷 徹郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60063908A priority Critical patent/JPH0648082B2/en
Publication of JPS61225503A publication Critical patent/JPS61225503A/en
Publication of JPH0648082B2 publication Critical patent/JPH0648082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Flow Control (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は原子炉の給水ポンプを制御し、原子炉の水位を
一定に保つ原子炉給水制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a nuclear reactor feed water control device that controls a nuclear reactor feed water pump and maintains a constant water level in the reactor.

[発明の技術的背景] 一般に沸騰水形原子炉においては、原子炉を安定に運転
するために必要な原子炉基準水位が定められており、原
子炉のいかなる運転状態においても、この原子炉基準水
位に対する原子炉水位の偏差は許容された範囲内になけ
ればならない、万一。
[Technical Background of the Invention] In general, for boiling water reactors, a reactor standard water level that is necessary for stable operation of the reactor is determined, and this reactor standard water level is determined in any operating state of the reactor. The deviation of the reactor water level from the water level must be within the permissible range, in case.

原子炉水位がこの許容範囲を逸脱した場合は、原子炉出
力を低下あるいは原子炉を停止しなければならず、原子
炉水位を基準値に保つことは沸騰水形原子炉においては
極めて重要なことである。一方、原子炉水位は、原子炉
出力により、原子炉からタービンへ流出する蒸気流量が
変わることにより常に変動し易く、原子炉水位を基準値
に保つためには、原子炉へ送り込まれる給水流量を制御
しなければならない。この目的のために設けられたのが
原子炉給水制御装置であり1通常、原子炉給水ポンプの
回転速度あるいは、原子炉給水ポンプの出口に設けられ
た流量調整弁の開度を変えることにより、原子炉へ送り
込まれる給水流量を制御する。
If the reactor water level deviates from this allowable range, the reactor power must be reduced or the reactor must be shut down, and maintaining the reactor water level at the standard value is extremely important in boiling water reactors. It is. On the other hand, the reactor water level is subject to constant fluctuations due to the change in the flow rate of steam flowing out from the reactor to the turbine depending on the reactor output. Must be controlled. A reactor feed water control device is provided for this purpose.1 Usually, by changing the rotational speed of the reactor feed water pump or the opening degree of the flow rate adjustment valve provided at the outlet of the reactor feed water pump, Controls the flow rate of water supplied to the reactor.

第4図はその一例を示したもので、1は原子炉92は原
子炉内に水を送り込むための給水ポンプ、3は給水ポン
プ2の出口に設けられ給水流量を調整するための流量調
整弁、4は水位基準信号を与える水位設定器、5は原子
炉水位を検出する水位検出器、6は水位設定器4からの
水位基準信号L1及び水位検出器5からの水位信号L2
を入力し、水位偏差信号り、を演算する第1の演算器、
7は水位偏差信号り、を入力し、流量指令信号[,4を
演算する水位制御器、8は給水ポンプの流量を検出する
流量検出器、9は流量検出器8からのポンプ流量信号り
、及び流量制御器出力信号L7を入力し、ポンプ流量が
低の場合は流量制御器出力信号り、を、ポンプ流量が低
でない場合はポンプ流量信号し、を選択し、選択信号L
8を出力する切替接点、10は水位制御器7からの流量
指令信号し4及び切替接点出力信号し。を入力し、流量
偏差信号LGを演算する第2の演算器。
Fig. 4 shows an example of this, in which 1 is a reactor 92, a water supply pump for feeding water into the reactor, and 3 is a flow rate adjustment valve provided at the outlet of the water supply pump 2 to adjust the water supply flow rate. , 4 is a water level setting device that provides a water level reference signal, 5 is a water level detector that detects the reactor water level, and 6 is a water level reference signal L1 from the water level setting device 4 and a water level signal L2 from the water level detector 5.
a first computing unit that inputs and computes a water level deviation signal;
7 is a water level controller that inputs a water level deviation signal and calculates a flow rate command signal [, 4; 8 is a flow rate detector that detects the flow rate of the water supply pump; 9 is a pump flow rate signal from the flow rate detector 8; and the flow rate controller output signal L7, and if the pump flow rate is low, select the flow rate controller output signal, and if the pump flow rate is not low, select the pump flow rate signal, and select the selection signal L.
8 is a switching contact that outputs, 10 is a flow rate command signal from a water level controller 7, and 4 is a switching contact output signal. a second computing unit that inputs and computes a flow rate deviation signal LG.

11は流量偏差信号L6を入力し1、流量調整弁3を駆
動する流量制御器であり、流量制御器出力信号L7を演
算する。
Reference numeral 11 denotes a flow rate controller which inputs the flow rate deviation signal L6 and drives the flow rate regulating valve 3, and calculates the flow rate controller output signal L7.

第5図は上記の構成の動作を示すブロック線図であり、
G1(S)は水位制御器7を表わす伝達関数、G2(S
)は流量制御器11を表わす伝達関数、G、 (s)は
流量調整弁3を表わす伝達関数、G4 (S)は原子炉
1を表わす伝達関数である。この時、ポンプ流量が低で
ない(すなわち切替接点9がポンプ流量信号り。
FIG. 5 is a block diagram showing the operation of the above configuration,
G1 (S) is a transfer function representing the water level controller 7, G2 (S
) is a transfer function representing the flow rate controller 11, G, (s) is a transfer function representing the flow rate regulating valve 3, and G4 (S) is a transfer function representing the nuclear reactor 1. At this time, the pump flow rate is not low (that is, the switching contact 9 does not indicate the pump flow rate signal).

を選択中)ならば水位基準信号Li (S)から流量制
御偏差信号り、(S)までの伝達特性は次式で表わされ
る。
), then the transfer characteristic from the water level reference signal Li (S) to the flow rate control deviation signal Li (S) is expressed by the following equation.

通常、水位制御器7は比例ゲイン、流量調整弁3はO形
(すなわち11111G3(S)=有限)、原子炉1は
積分特性で表現され、流量制御器11は通常積分要素を
含んでいるので、 となり、L工(S)のステップ状の変化に対しては、ラ
プラス変換の最終値定理を用いることにより、LGの定
常値は り、=O・・・・・・(3) となる。従って流量指令信号し4とポンプ流量信号し、
は一致し、給水ポンプ2の流量は水位制御器7により制
御されることになる。しかしながら、給水ポンプ2が停
止時は、流量調整弁3の開度によらず常に流量信号り、
=Oであり、流量指令信号り、とは一致せず L6≠0               ・・・・・・
(4)となる、すなわち流量制御器11は積分器を含ん
でいるため上記(4)式により流量制御器11は飽和す
ることになり、流量調整弁3の開度は常に全開状態とな
っている。
Normally, the water level controller 7 is expressed as a proportional gain, the flow rate regulating valve 3 is O-type (i.e., 11111G3(S) = finite), the reactor 1 is expressed as an integral characteristic, and the flow rate controller 11 usually includes an integral element. , and for a step-like change in L (S), by using the final value theorem of Laplace transform, the steady value of LG becomes =O (3). Therefore, the flow rate command signal is 4 and the pump flow rate signal is output.
match, and the flow rate of the water supply pump 2 is controlled by the water level controller 7. However, when the water supply pump 2 is stopped, the flow rate signal is always output regardless of the opening degree of the flow rate adjustment valve 3.
= O, and the flow rate command signal does not match L6≠0...
(4), that is, since the flow rate controller 11 includes an integrator, the flow rate controller 11 is saturated according to the above equation (4), and the opening degree of the flow rate regulating valve 3 is always in a fully open state. There is.

一方、一般の原子カプラントでは複数台の給水ポンプが
設置されており、通常の給水制御はこの内の何台か(例
えば4台中2台)を用いて行なわれる。
On the other hand, in a general atomic coupler plant, a plurality of water supply pumps are installed, and normal water supply control is performed using some of these pumps (for example, 2 out of 4 pumps).

残りの給水ポンプはバックアップ用であり通常停止して
いるが、常用系給水ポンプ故障特等、原子炉水位が許容
された範囲を逸脱し急激に低下する可能性が有る場合は
、自動的に起動され、給水を行なうように設計されてい
る。しかしながら前述した様にポンプ停止時に流量制御
器11が飽和していた場合、自動起動された給水ポンプ
の流量は100%あるいはそれに近い値で流量制御器1
1の飽和が解消されるまでの一定時間、無制御状態で流
れることになり、逆に過給水となり、原子炉水位が急激
に上昇し、許容された範囲を逸脱してしまう。
The remaining feedwater pumps are for backup purposes and are normally stopped, but in the event of a malfunction of the normal water supply pump, or if there is a possibility that the reactor water level deviates from the permissible range and drops rapidly, it will be automatically started. , designed to supply water. However, as mentioned above, if the flow rate controller 11 is saturated when the pump is stopped, the flow rate of the automatically started water supply pump is 100% or a value close to it.
For a certain period of time until the saturation of No. 1 is eliminated, the water will flow in an uncontrolled state, and on the contrary, it will become supercharged water, causing the reactor water level to rise rapidly and deviate from the permissible range.

このため、給水ポンプ2が停止時であっても。Therefore, even when the water supply pump 2 is stopped.

流量制御器11を飽和させないために設けられているの
が、切替接点9である。ポンプ流量紙の場合は切替接点
9は流量制御器出力信号L1を選択しているため流量指
令信号L4から流量制御器出力信号L7までの伝達特性
は、 となる。従ってラプラス変換の最終値定理及び(2)式
から定常時には、 L、 = L、                  
・・・・・・(5)となり、給水ポンプ停止時であって
も流量制御器11は飽和することはなく、また流量制御
器出力信号L7は流量指令信号L4と同一の値に維持さ
れることになる。
The switching contact 9 is provided to prevent the flow rate controller 11 from becoming saturated. In the case of pump flow rate paper, the switching contact 9 selects the flow rate controller output signal L1, so the transfer characteristic from the flow rate command signal L4 to the flow rate controller output signal L7 is as follows. Therefore, from the final value theorem of Laplace transform and equation (2), in steady state, L, = L,
(5), the flow rate controller 11 is not saturated even when the water supply pump is stopped, and the flow rate controller output signal L7 is maintained at the same value as the flow rate command signal L4. It turns out.

[背景技術の問題点] しかしながら、これはあくまでも定常時の特性であり、
切替接点9の切替時には流量制御器出力信号L7とポン
プ流量信号し、が一致していない限り第6図に示す通り
、ポンプ流量が低でない場合と低の場合とで流量偏差信
号L6はそれぞれL4− L、およびL4−L、となっ
て、流量偏差信号し、にバンプが生じる。これは切替接
点9により流量制御器出力信号L7とポンプ流量信号り
、を切替えているためであり、両者に偏差があった場合
は、その偏差分が流量制御器11を通して変動分として
出力され、流量制御器出力信号L7にバンプが発生する
[Problems with the background art] However, this is only a characteristic during steady state;
When the switching contact 9 is switched, the flow rate controller output signal L7 and the pump flow rate signal are output, and unless they match, the flow rate deviation signal L6 becomes L4 when the pump flow rate is not low and when it is low, respectively, as shown in FIG. -L, and L4-L, resulting in a flow deviation signal and a bump. This is because the switching contact 9 switches between the flow rate controller output signal L7 and the pump flow rate signal, and if there is a deviation between the two, that deviation is output as a variation through the flow rate controller 11. A bump occurs in the flow controller output signal L7.

一方、流量制御器出力信号L7とポンプ流量信号L5は
、流量調整弁3の開度/流量間の特性が非線形性を持つ
ために1通常一致しない。このため、従来構成では切替
接点9の切替時、必ずバンプが発生し、原子炉への給水
流量が変動するため、結果的に原子炉水位が変動し、原
子炉基準水位との偏差が許容された範囲を逸脱するおそ
れがあった。
On the other hand, the flow rate controller output signal L7 and the pump flow rate signal L5 usually do not match because the characteristic between the opening degree of the flow rate regulating valve 3 and the flow rate has nonlinearity. For this reason, in the conventional configuration, a bump always occurs when the switching contact 9 is switched, and the flow rate of water supplied to the reactor fluctuates, resulting in fluctuations in the reactor water level, and deviations from the reactor reference water level are not allowed. There was a risk of deviating from the specified range.

[発明の目的] 本発明は、ポンプ流量信号と流量制御器出力の切替をバ
ンプレスに行なうことにより、原子炉水位の変動を取り
除き、安定した原子炉給水制御装置を提供することを目
的とする。
[Object of the Invention] An object of the present invention is to eliminate fluctuations in reactor water level and provide a stable reactor water supply control device by performing bumpless switching between a pump flow rate signal and a flow rate controller output. .

[発明の概要] このため本発明は、ポンプ流量信号と流量制御器出力信
号から補正信号を演算し、切替時に補正信号を流量偏差
信号に加えるようにしたことを特徴としている。
[Summary of the Invention] Therefore, the present invention is characterized in that a correction signal is calculated from the pump flow rate signal and the flow rate controller output signal, and the correction signal is added to the flow rate deviation signal at the time of switching.

[発明の実施例] 以下1本発明を第1図に示す実施例に基づいて説明する
。第1図は本発明の一実施例を示す原子炉給水制御装置
の構成図である。図中、第4図と同一符号は同一または
相当部を示し、第4図と異なる点は、 ポンプ流量信号L5+流量制御器出力信号L7−切替接
点出力信号し、×2    ・・・・−・(6)を演算
する第3の演算器12を設けた点、第3の演算器12の
出力信号L9を接点13を介して1次遅れ回路14に入
力した点、および、1次遅れ回路14の出力信号Lxa
を補正信号として接点15を介して第2の演算器10に
入力した点である。
[Embodiments of the Invention] The present invention will be described below based on an embodiment shown in FIG. FIG. 1 is a block diagram of a nuclear reactor feed water control system showing one embodiment of the present invention. In the figure, the same reference numerals as in Fig. 4 indicate the same or equivalent parts, and the difference from Fig. 4 is as follows: pump flow rate signal L5 + flow rate controller output signal L7 - switching contact output signal, ×2... (6), the output signal L9 of the third calculator 12 is input to the first-order lag circuit 14 via the contact 13, and the first-order lag circuit 14 The output signal Lxa
This is the point where the signal is input to the second arithmetic unit 10 via the contact 15 as a correction signal.

第2図は接点13及び15の動きを示したもので、定常
状態では接点13は閉、接点15は開となっており、切
替接点9が動作した時(すなわちポンプ流量が「低」→
「低でない」、または「低でない」→「低」に変化した
時)から一定時間(tl)のみ接点13は開。
Figure 2 shows the movements of the contacts 13 and 15. In the steady state, the contact 13 is closed and the contact 15 is open, and when the switching contact 9 operates (that is, the pump flow rate is "low" →
Contact 13 is open only for a certain period of time (tl) from "not low" or "not low" to "low").

接点15は閉となる。従って、定常状態においては、流
量制御器11に入力される流量偏差信号L6は第4図に
示す構成と変わらず、制御動作も同様となる。
Contact 15 is closed. Therefore, in a steady state, the flow rate deviation signal L6 input to the flow rate controller 11 is unchanged from the configuration shown in FIG. 4, and the control operation is also the same.

一方、切替接点9が動作後一定時間(tl)は1次遅れ
回路14の出力信号り、。が接点15を介して第2の加
算器10に入力されるため、流量偏差信号L6に1次遅
れ回路出力信号L1゜が加えられることになる。
On the other hand, for a certain period of time (tl) after the switching contact 9 operates, the output signal of the first-order delay circuit 14 is the same. is input to the second adder 10 via the contact 15, so the first-order lag circuit output signal L1° is added to the flow rate deviation signal L6.

第3図は1次遅れ回路出力信号しい。及び流量偏差信号
L6の変化を示す特性図である。定常状態でポンプ流量
が「低」の場合は、 L、=L、−L、              ・・・
・・・(7)であり、また(6)式から Ll。=l、 +t、、 −Lt X 2=L、 −L
、      ・・・・・・(8)となっている、従っ
て、ポンプ流量が「低」→「低でない」となって、切替
接点9が動作した直後は。
FIG. 3 shows the first-order lag circuit output signal. and a characteristic diagram showing changes in the flow rate deviation signal L6. When the pump flow rate is "low" in steady state, L, =L, -L, ...
...(7), and from equation (6), Ll. =l, +t, -Lt X 2=L, -L
, ...(8) Therefore, immediately after the pump flow rate changes from "low" to "not low" and the switching contact 9 operates.

接点15が閉し、 L、=L、−L、+L工。=L4   Ls+Ls  
 Lt= L4−L、              ・
・・・・・(9)となり、流量偏差信号LGは変化せず
にバンプは発生しない。
Contact 15 closes, L, =L, -L, +L. =L4 Ls+Ls
Lt=L4-L, ・
...(9), the flow rate deviation signal LG does not change and no bump occurs.

一方、切替接点9が動作後は接点13は開となるため、
一定の時定数(T)をもってゆるかやかにLi。
On the other hand, since the contact 13 is open after the switching contact 9 is operated,
Li slowly with a constant time constant (T).

はOに近づく。従って、tlを十分大きくすれば流量偏
差信号L6は、 LG=L、−L、+L、。=L4−L、       
     ・・・・・・(10)となった後、接点13
が閉、接点15が開となり、第1図に示す構成例と同様
になる。以上はポンプ流量が「低」→「低でない」場合
を説明したが、逆の場合も同様の動作となる。
approaches O. Therefore, if tl is made sufficiently large, the flow rate deviation signal L6 will be as follows: LG=L, -L, +L. =L4-L,
・・・・・・After becoming (10), contact 13
is closed, and contact 15 is opened, resulting in the same configuration as the example shown in FIG. Although the case where the pump flow rate is "low" → "not low" has been described above, the same operation occurs in the reverse case.

即ち、ポンプ流量「低でない」場合は、L、 = L4
− Ls−・−(11)また、1次遅れ回路14の出力
信号し□。は、L、、=L、+L7−L、x2=tt−
L、    ・・・−・(12)次に、ポンプ流量「低
でない」場合→「低」となって切替接点9が動作した直
後は。
That is, when the pump flow rate is "not low", L, = L4
-Ls-.-(11) Also, the output signal of the first-order lag circuit 14 is □. is L, , =L, +L7-L, x2=tt-
L, ...- (12) Next, when the pump flow rate is "not low" → immediately after it becomes "low" and the switching contact 9 operates.

L、=L4−L、+L1゜=L4−L、 +L、 −L
L, =L4-L, +L1゜=L4-L, +L, -L
.

= L4− Ls−・−(13) となって、流量偏差信号L1は変化せずにバンプは発生
しない。その後、L□。は徐々に0に下り、これにより
流量偏差信号り、は、 し、工L4−L、+L1゜=L4−L、       
   ・・・・・・(14)に落ち着き、バンプレスに
’L4  LsJからrL、−L、Jに移行する。
= L4-Ls-.-(13) Therefore, the flow rate deviation signal L1 does not change and no bump occurs. After that, L□. gradually decreases to 0, which causes the flow rate deviation signal to rise.
...... (14) and transitions bumplessly from 'L4 LsJ to rL, -L, J.

ところで、以上に説明した実施例では1次遅れ回路14
の時定数丁を一定値にしたが、第3図から明らかな様に
時定数Tが大であるほど流量偏差信号L6の変化はゆる
やかになり、切替接点9動作時の原子炉水位制御上は好
ましくなる。しかしながら時定数Tを大とすると前記(
8)式、(13)式の演算も遅れることになり、ポンプ
流量L5が変動している場合等は必ずしもLl。がLl
。=L、−L、あるいはLl。
By the way, in the embodiment described above, the first-order lag circuit 14
The time constant T was set to a constant value, but as is clear from Fig. 3, the larger the time constant T, the slower the change in the flow rate deviation signal L6 becomes. It becomes preferable. However, if the time constant T is increased, the above (
The calculations of equations 8) and (13) will also be delayed, and if the pump flow rate L5 is fluctuating, Ll will not necessarily be calculated. is Ll
. =L, -L, or Ll.

=L、−L、をを満足しないことになる。従ってこの様
な場合は切替接点9動作時のバンプを完全に防止できな
い。そこで、この問題を解決するには。
=L, -L, will not be satisfied. Therefore, in such a case, it is not possible to completely prevent bumps when the switching contact 9 operates. So, to solve this problem.

1次遅れ回路14の時定数丁を可変にすれば良い。すな
わち、 の問題を解決することができる。
The time constant of the first-order delay circuit 14 may be made variable. In other words, the following problem can be solved.

この場合、Tを変更するとt、も変更しなければならな
いため、tlの設定変更が煩雑になるとシ)う問題があ
るが、これは1次遅れ回路出力信号L1゜をコンパレー
タにより確認するという手段で解決できる。すなわち、 lti。1くε (εは小さい正の値)   ・・・・
・・(16)となったことを検出するコンパレータを設
け、切替接点9動作後、このコンパレータが動作するま
で接点13を開、接点15を閉とするものである。この
様にすればtlはTにより自動的に決定されるため、上
記の問題点が解決される。
In this case, if T is changed, t must also be changed, so there is a problem that changing the setting of tl becomes complicated, but this is done by checking the first-order lag circuit output signal L1° with a comparator. It can be solved by That is, lti. 1×ε (ε is a small positive value) ・・・・
A comparator is provided to detect when (16) is reached, and after the switching contact 9 operates, the contact 13 is opened and the contact 15 is closed until the comparator operates. In this way, tl is automatically determined by T, so the above problem is solved.

[発明の効果] 以上の様に本発明によれば、ポンプ流量が変化したとき
、一定時間だけ1次遅れ回路出力信号を補正信号として
流量偏差信号に加える様にしたので、流量制御器にフィ
ードバックするポンプ流量信号と流量制御器出力信号と
の切替をバンプレスに行なうことができ、原子炉給水流
量の変動が無く、原子炉水位は安定に制御される。
[Effects of the Invention] As described above, according to the present invention, when the pump flow rate changes, the first-order lag circuit output signal is added to the flow rate deviation signal as a correction signal for a certain period of time, so that feedback is sent to the flow rate controller. Switching between the pump flow rate signal and the flow rate controller output signal can be performed bumplessly, and there is no fluctuation in the reactor feed water flow rate, and the reactor water level is stably controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す原子炉給水制御装置の
構成図、第2図は第1図の動作を示すタイミングチャー
ト、第3図は第1図の特性図、第4図は従来の原子炉給
水制御装置の構成図、第5図は第4図のブロックダイア
グラム図、第6図は第4図の特性図である。 l・・・原子炉、2・・・給水ポンプ、3・・・流量調
整弁、4・・・水位設定器、5・・・水位検出器、6・
・・第1の演算器。 7・・・水位制御器、8・・・流量検出器、9・・・切
替接点。 10・・・第2の演算器、11・・・流量制御器、12
・・・第3の演算器、13・・・接点、14・・・1次
遅れ回路、15・・・接点。 ノー。 代理人 弁理士  紋 1) 誠  )第1図 第2図 第3図 t1 第4図 第5図 第6図
Fig. 1 is a configuration diagram of a reactor feed water control system showing one embodiment of the present invention, Fig. 2 is a timing chart showing the operation of Fig. 1, Fig. 3 is a characteristic diagram of Fig. 1, and Fig. 4 is FIG. 5 is a block diagram of a conventional reactor water supply control system, FIG. 5 is a block diagram of FIG. 4, and FIG. 6 is a characteristic diagram of FIG. 4. l... Nuclear reactor, 2... Water supply pump, 3... Flow rate adjustment valve, 4... Water level setter, 5... Water level detector, 6...
...First arithmetic unit. 7...Water level controller, 8...Flow rate detector, 9...Switching contact. 10... Second computing unit, 11... Flow rate controller, 12
...Third arithmetic unit, 13...Contact, 14...First-order delay circuit, 15...Contact. No. Agent Patent Attorney Crest 1) Makoto) Figure 1 Figure 2 Figure 3 t1 Figure 4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)原子炉の基準水位信号と実水位信号との偏差水位
信号に応じて原子炉給水ポンプに対する指令流量信号を
演算する水位制御器と、前記指令流量信号と原子炉給水
ポンプの実流量信号と偏差流量信号に応じて原子炉給水
ポンプの流量を制御する流量制御器と、この流量制御器
へのフィードバック信号として原子炉給水ポンプ流量が
低の場合は流量制御器出力信号を原子炉給水ポンプ流量
が低でない場合は原子炉給水ポンプ流量信号を選択する
切替回路と、原子炉給水ポンプ流量信号と流量制御器出
力信号に基づき補正信号を演算して前記切替回路の作動
時に補正信号を前記流量制御器に加える補正回路とを備
えていることを特徴とする原子炉給水制御装置。
(1) A water level controller that calculates a command flow rate signal for the reactor feed water pump according to the deviation water level signal between the reference water level signal and the actual water level signal of the reactor, and a signal of the command flow rate signal and the actual flow rate signal of the reactor feed water pump. and a flow rate controller that controls the flow rate of the reactor feed water pump according to the deviation flow rate signal, and a flow controller output signal that is used as a feedback signal to this flow rate controller when the reactor feed water pump flow rate is low. If the flow rate is not low, a switching circuit selects the reactor feed water pump flow rate signal, and a correction signal is calculated based on the reactor feed water pump flow rate signal and the flow rate controller output signal, and when the switching circuit is activated, the correction signal is set to the flow rate signal. A nuclear reactor water supply control device characterized by comprising a correction circuit added to a controller.
(2)特許請求の範囲第1項記載において、前記補正回
路は一次遅れ回路であることを特徴とする原子炉給水制
御装置。
(2) A nuclear reactor feed water control system according to claim 1, wherein the correction circuit is a first-order lag circuit.
JP60063908A 1985-03-29 1985-03-29 Reactor water supply controller Expired - Lifetime JPH0648082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60063908A JPH0648082B2 (en) 1985-03-29 1985-03-29 Reactor water supply controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60063908A JPH0648082B2 (en) 1985-03-29 1985-03-29 Reactor water supply controller

Publications (2)

Publication Number Publication Date
JPS61225503A true JPS61225503A (en) 1986-10-07
JPH0648082B2 JPH0648082B2 (en) 1994-06-22

Family

ID=13242897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60063908A Expired - Lifetime JPH0648082B2 (en) 1985-03-29 1985-03-29 Reactor water supply controller

Country Status (1)

Country Link
JP (1) JPH0648082B2 (en)

Also Published As

Publication number Publication date
JPH0648082B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
JPS61225503A (en) Controller for feedwater of nuclear reactor
JPS6197597A (en) Controller for feedwater to nuclear reactor
JPH0225477B2 (en)
JPS6370001A (en) Nuclear-reactor feedwater controller
JPS6039845B2 (en) Nuclear turbine pressure control device
JPH0450602B2 (en)
JPS6277507A (en) Feedwater controller for nuclear reactor
JPS62157598A (en) Controller for water level of nuclear reactor
JP2870039B2 (en) Water turbine speed control method
JPS61246502A (en) Feedwater controller
JPS63117298A (en) Turbine controller
JPS591905A (en) Feedwater controller
JPS5818506A (en) Method of controlling operation of boiler turbine under variable pressure
JPS62150011A (en) Control device for nuclear turbine power plant
JPS62105091A (en) Turbine controller
JPS62105092A (en) Controller for nuclear reactor
JPS61134700A (en) Load follow-up controller for nuclear reactor
JPH07103808B2 (en) Load back-up method when the system frequency drops sharply
JPH01114797A (en) Speed controller for steam turbine
JPS63121798A (en) Load follow-up controller for nuclear power plant
JPS62162703A (en) Turbine control device
JPH03215198A (en) Load controller for combined cycle plant
JPS5882196A (en) Reactor feedwater control device
JPS6086307A (en) Feedwater controller
JPS6380005A (en) Turbine control device of nuclear power plant