JPH0225477B2 - - Google Patents

Info

Publication number
JPH0225477B2
JPH0225477B2 JP56180388A JP18038881A JPH0225477B2 JP H0225477 B2 JPH0225477 B2 JP H0225477B2 JP 56180388 A JP56180388 A JP 56180388A JP 18038881 A JP18038881 A JP 18038881A JP H0225477 B2 JPH0225477 B2 JP H0225477B2
Authority
JP
Japan
Prior art keywords
flow rate
reactor
water level
signal
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56180388A
Other languages
Japanese (ja)
Other versions
JPS5882195A (en
Inventor
Tetsuo Okuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56180388A priority Critical patent/JPS5882195A/en
Publication of JPS5882195A publication Critical patent/JPS5882195A/en
Publication of JPH0225477B2 publication Critical patent/JPH0225477B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は原子炉の給水ポンプを制御し、原子炉
の水位を一定に保つ原子炉給水制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a nuclear reactor feed water control device that controls a nuclear reactor feed water pump and maintains a constant water level in the reactor.

(b) 従来技術 一般に沸騰水形原子炉においては、原子炉を安
定に運転するために必要な原子炉基準水位が定め
られており、原子炉のいかなる運転状態において
も、その原子炉基準水位に対する原子炉水位の偏
差は許容された範囲内になければならない。万一
原子炉水位が、この許容範囲を逸脱した場合は、
原子炉スクラムにより原子炉を停止しなければな
らず、原子炉水位を基準値に保つことは沸騰水形
原子炉においては極めて重要なことである。一方
原子炉水位は、原子炉出力により、原子炉からタ
ービンへ流出する蒸気流量が変わることにより常
に変動しようとするため、原子炉水位を基準値に
保つためには、原子炉へ送り込まれる給水流量を
制御しなければならない。この目的のために設け
られている装置が原子炉給水制御装置であり、通
常、原子炉給水ポンプの回転速度あるいは、原子
炉給水ポンプの出口に設けられた流量調整弁の開
度を変えることにより、原子炉へ送り込まれる給
水流量を制御する。
(b) Prior art In general, for boiling water reactors, a reactor standard water level is determined that is necessary for stable operation of the reactor, and no matter what operating state the reactor is in, the reactor standard water level is not exceeded. Deviations in reactor water level must be within permissible limits. In the event that the reactor water level deviates from this allowable range,
The reactor must be shut down by reactor scram, and maintaining the reactor water level at a reference value is extremely important in boiling water reactors. On the other hand, the reactor water level constantly fluctuates due to changes in the flow rate of steam flowing out from the reactor to the turbine depending on the reactor output, so in order to maintain the reactor water level at the standard value, the flow rate of feed water sent to the reactor is must be controlled. A device provided for this purpose is a reactor feed water control device, which usually controls the rotation speed of the reactor feed water pump or the opening degree of the flow rate regulating valve provided at the outlet of the reactor feed water pump. , controls the flow rate of feed water sent to the reactor.

第1図はその一例を示したもので、1は原子
炉、2は原子炉内に水を送り込むための給水ポン
プ、3は給水ポンプ2の出口に設けられ給水流量
を調整するための流量調整弁、4は水位基準信号
を与える水位設定器、5は原子炉水位を検出する
水位検出器、6は水位設定器4からの水位基準信
号L1及び水位検出器5からの水位信号L2を入力
し、流量指令信号L3を演算する水位制御器、7
はポンプの流量を検出する流量検出器、8は流量
検出器7からのポンプ流量信号L4及び水位制御
器6からの流量指令信号L3を入力し、流量調整
弁3の開度を制御する流量制御器である。
Figure 1 shows an example. 1 is a nuclear reactor, 2 is a water supply pump for sending water into the reactor, and 3 is a flow rate adjustment device installed at the outlet of the water supply pump 2 to adjust the water supply flow rate. 4 is a water level setter that provides a water level reference signal; 5 is a water level detector that detects the reactor water level; 6 is a water level reference signal L1 from the water level setter 4 and a water level signal L2 from the water level detector 5; water level controller that inputs and calculates the flow rate command signal L3 , 7
8 is a flow rate detector that detects the flow rate of the pump, and 8 inputs the pump flow rate signal L 4 from the flow rate detector 7 and the flow rate command signal L 3 from the water level controller 6 to control the opening degree of the flow rate adjustment valve 3. It is a flow controller.

第2図は上記の構成の動作を示すブロツク線図
であり、G1(S)は水位制御器6を表わす伝達関
数、G2(S)は流量制御器8を表わす伝達関数、
G3(S)は流量調整弁3を表わす伝達関数、G4
(S)は原子炉1を表わす伝達関数である。水位
基準信号L1(S)及び水位信号L2(S)の偏差信
号(水位偏差信号)L5(S)は、水位制御器の伝
達関数G1(S)に入力され、一方流量指令信号L3
(S)及びポンプ流量信号L4(S)の偏差信号
(流量偏差信号)L6(S)は、流量制御器の伝達
関数G2(S)に入力される。流量制御器の伝達関
数G3(S)の出力(開度指令信号)L7(S)は、
流量調整弁伝達関数G3(S)に入力され、G3(S)
の出力(ポンプ流量信号L4(S))は原子炉伝達
関数G4(S)に入力される。原子炉伝達関数G4
(S)の出力は、水位信号L2(S)となつている。
このとき、水位基準信号L1(S)から流量偏差信
号L6(S)までの伝達特性は次式で表わせる。
FIG. 2 is a block diagram showing the operation of the above configuration, where G 1 (S) is a transfer function representing the water level controller 6, G 2 (S) is a transfer function representing the flow rate controller 8,
G 3 (S) is a transfer function representing the flow rate adjustment valve 3, G 4
(S) is a transfer function representing the nuclear reactor 1. The deviation signal (water level deviation signal) L 5 (S) of the water level reference signal L 1 (S) and the water level signal L 2 (S) is input to the transfer function G 1 (S) of the water level controller, while the flow rate command signal L 3
(S) and the deviation signal (flow rate deviation signal) L 6 (S) of the pump flow rate signal L 4 (S) is input to the transfer function G 2 (S) of the flow rate controller. The output (opening command signal) L 7 (S) of the transfer function G 3 (S) of the flow controller is:
Input to the flow rate adjustment valve transfer function G 3 (S), G 3 (S)
The output (pump flow rate signal L 4 (S)) is input to the reactor transfer function G 4 (S). Reactor transfer function G 4
The output of (S) is the water level signal L 2 (S).
At this time, the transfer characteristic from the water level reference signal L 1 (S) to the flow rate deviation signal L 6 (S) can be expressed by the following equation.

L6(S)=G1(S)/1+G2G3(S)+G1G2G3
G4(S)L1(S)……(1) 通常、水位制御器6は比例ゲイン、流量調整弁 3はO形(すなわち lim S→0 G(S)=有限)、原子炉1は積分特性で表現され、
流量制御器8は積分要素を含んでいるので G1(S)=K ……(2−a) lim S→0G2(S)=∞ ……(2−b) lim S→0G3(S)=有限 ……(2−c) G4(S)=1/TRS (TR:原子炉の時定
数) ……(2−d) となり、L1(S)のステツプ状の変化に対して
は、ラプラス変換の最終値定理を用いることによ
り、L6の定常値は L6=O ……(3) となる。従つて流量指令L3とポンプ流量信号L4
は一致し、給水ポンプ2の流量は水位制御器6に
より制御されることになる。
L 6 (S) = G 1 (S) / 1 + G 2 G 3 (S) + G 1 G 2 G 3
G 4 (S) L 1 (S)...(1) Normally, the water level controller 6 has a proportional gain, the flow rate adjustment valve 3 has an O type (i.e. lim S→0 G(S) = finite), and the reactor 1 has a proportional gain. It is expressed as an integral characteristic,
Since the flow rate controller 8 includes an integral element, G 1 (S)=K...(2-a) lim S→0G 2 (S)=∞...(2-b) lim S→0G 3 (S ) = finite ... (2-c) G 4 (S) = 1/T R S (T R : time constant of the reactor) ... (2-d), and the step-like change in L 1 (S) By using the final value theorem of Laplace transform, the steady value of L 6 becomes L 6 =O (3). Therefore, the flow rate command L 3 and the pump flow signal L 4
match, and the flow rate of the water supply pump 2 is controlled by the water level controller 6.

しかしながら給水ポンプ2が停止時は、ポンプ
流量信号L4が零であるため、G3(S)=Oと同様
の状態となり、(1)式は L6(S)=G1(S)L1(S) ……(4) と書き直される。従つてこの時の弁開度指令信号
L7は L7(S)=G1G2(S)L1(S) ……(5) となり、ラプラス変換の最終値定理及び(2−
b)式からL1のスラツプ状変化に対し、L7の定
常値は無限大に発散することが分かる。すなわち
給水ポンプ2が停止時は流量制御器8からの弁開
度指令信号L7は飽和し、流量調整弁3の開度は
常に全開状態となつている。
However, when the water supply pump 2 is stopped, the pump flow rate signal L 4 is zero, so the state is similar to G 3 (S) = O, and equation (1) is L 6 (S) = G 1 (S) L 1 (S) ...(4) is rewritten. Therefore, the valve opening command signal at this time
L 7 becomes L 7 (S) = G 1 G 2 (S) L 1 (S) ...(5), and the final value theorem of Laplace transform and (2-
From equation b), it can be seen that the steady value of L7 diverges to infinity in response to a slap-like change in L1 . That is, when the water supply pump 2 is stopped, the valve opening command signal L7 from the flow rate controller 8 is saturated, and the opening degree of the flow rate regulating valve 3 is always in a fully open state.

以上は説明を簡単にするために、給水ポンプ2
は1台としたが、一般の原子力プラントでは複数
台の給水ポンプが設置されており、通常の給水制
御はこの内の何台か(例えば4台中2台)を用い
て行なわれる。残りの給水ポンプはバツクアツプ
用であり通常時停止しているが、常時稼動してい
る給水ポンプの故障時等、原子炉水位が許容され
た範囲内を逸脱し急激に低下する可能性がある場
合に自動的に起動され、給水を行う様設計されて
いる。原子炉水位に与える変動を最小限にするた
めには自動起動に要する時間が短かくなければな
らないことは当然であるが、さらに自動起動され
た給水ポンプに対する流量制御もすみやかに開始
されなければならない。
To simplify the explanation, the above is based on the water supply pump 2.
However, in a general nuclear power plant, a plurality of water supply pumps are installed, and normal water supply control is performed using some of these pumps (for example, 2 out of 4 pumps). The remaining feed water pumps are used for backup and are normally stopped; however, in the event of a failure of a constantly running water pump, etc., there is a possibility that the reactor water level may deviate from the permissible range and drop suddenly. It is designed to automatically start up and supply water. It goes without saying that the time required for automatic startup must be short in order to minimize fluctuations in the reactor water level, but flow control for automatically activated feedwater pumps must also begin promptly. .

しかしながら前述した様に、従来の原子炉給水
制御装置では停止している給水ポンプに対する流
量調整弁は全開状態となつており、起動直後のポ
ンプ流量は100%流量となつている。また流量制
御器8自身が飽和しているため、流量制御が可能
となるためには流量制御器8の飽和が解消されな
ければならないが、ポンプ流量信号L4のフイー
ドバツクがかかつた直後に飽和が解消されるわけ
ではなく、流量制御器8内の積分器時定数で除々
に解消される。従つて従来の原子炉給水制御装置
では給水ポンプ2が自動起動されてから、積分器
の時定数で決定される一定時間内、自動起動され
た給水ポンプには100%あるいはそれに近い流量
が無制御状態で流れることになり、この結果原子
炉水位が逆に急激に上昇し、原子炉基準水位との
偏差が許容された範囲を逸脱してしまう可能性が
あつた。
However, as described above, in the conventional reactor water supply control system, the flow rate adjustment valve for the stopped water pump is fully open, and the pump flow rate immediately after startup is 100% flow rate. In addition, since the flow rate controller 8 itself is saturated, the saturation of the flow rate controller 8 must be eliminated in order to enable flow rate control, but the saturation occurs immediately after feedback of the pump flow rate signal L4 is applied. is not eliminated, but is gradually eliminated by the integrator time constant in the flow rate controller 8. Therefore, in the conventional reactor feed water control system, after the feed water pump 2 is automatically started, the flow rate of the automatically started feed water pump is 100% or close to 100% without control for a certain period of time determined by the time constant of the integrator. As a result, the reactor water level would rise rapidly, and there was a possibility that the deviation from the reactor standard water level would exceed the permissible range.

(c) 発明の目的 本発明の目的は流量制御器の飽和を無くし、流
量制御器の飽和により生じていた給水ポンプ起動
時の原子炉水位の変動を取り除き、安定な原子炉
給水制御装置を提供することにある。
(c) Purpose of the Invention The purpose of the present invention is to provide a stable reactor water supply control system by eliminating saturation of the flow rate controller and eliminating fluctuations in the reactor water level at the time of starting the feed water pump, which were caused by saturation of the flow rate controller. It's about doing.

(d) 発明の構成 以下、本発明を第3図および第4図に示す一実
施例に基づいて説明する。第3図は本発明の一実
施例を示す原子炉給水制御装置の構成図である。
図中、第1図と同一符号は同一又は相当部を示
し、第1図と異なる点は流量制御器8の出力を接
点9を介して流量制御器8の入力にフイードバツ
クしている点である。
(d) Structure of the Invention The present invention will be described below based on an embodiment shown in FIGS. 3 and 4. FIG. 3 is a configuration diagram of a nuclear reactor feed water control system showing one embodiment of the present invention.
In the figure, the same reference numerals as in FIG. 1 indicate the same or equivalent parts, and the difference from FIG. 1 is that the output of the flow rate controller 8 is fed back to the input of the flow rate controller 8 via the contact 9. .

第4図は上記構成の動作を示すブロツク線図で
ある。図中、第2図と同一符号は第2図と同一又
は相当部分を示し、第2図のブロツク線図と異な
る点は弁開度指令信号L7が接点9を介して流量
指令信号L3にフイードバツクされている点であ
る。接点9は給水ポンプ2が停止時閉となる。従
つて給水ポンプ2が動作中の場合は、第2図に示
すブロツク線図とまつたく同一になり、制御系の
動作も一致する。
FIG. 4 is a block diagram showing the operation of the above structure. In the diagram, the same reference numerals as in FIG. 2 indicate the same or equivalent parts as in FIG. 2, and the difference from the block diagram in FIG . The point is that feedback is being provided to the The contact 9 is closed when the water supply pump 2 is stopped. Therefore, when the water supply pump 2 is in operation, the block diagram is exactly the same as shown in FIG. 2, and the operation of the control system is also the same.

一方、給水ポンプ2が停止中は流量指令信号
L3(S)から弁開度指令信号L7(S)までの伝達
特性は、流量信号L4(S)=Oであるから L7(S)=G2(S)/1+G2(S)L3(S)……(6
) となる。従つてラプラス変換の最終値定理及び
(2−b)式から定常時には L7=L3 ……(7) が成り立つことになる。従つて流量指令信号L3
と開度指令信号L7は一致するため、流量制御器
8は飽和することが無く、かつ流量制御弁3は水
位制御器6により直接制御される。
On the other hand, when the water supply pump 2 is stopped, the flow rate command signal is
Since the flow rate signal L 4 (S)=O, the transfer characteristic from L 3 (S) to the valve opening command signal L 7 (S) is L 7 (S)=G 2 (S)/1+G 2 (S). )L 3 (S)……(6
) becomes. Therefore, from the final value theorem of Laplace transform and equation (2-b), L 7 =L 3 ...(7) holds in steady state. Therefore, the flow rate command signal L 3
Since the opening command signal L 7 and the opening command signal L 7 match, the flow rate controller 8 is not saturated, and the flow rate control valve 3 is directly controlled by the water level controller 6 .

以上の説明では接点9は給水ポンプ2が停止時
閉となるものとしたが、給水ポンプ2の動作状態
によつて接点を動作させずに、ポンプ流量信号
L4を比較回路に入力し、ポンプ流量L4が一定値
以下となつた場合、接点9を閉とするようにして
も良い。また以上は説明を簡単にするために給水
ポンプ流量の制御は流量調整弁2により行う方式
としたが、ポンプの回転速度により流量制御を行
う方式であつても、本発明はまつたく同様に適用
できるものである。
In the above explanation, it is assumed that the contact 9 is closed when the water supply pump 2 is stopped.
L 4 may be input to the comparison circuit, and when the pump flow rate L 4 becomes less than a certain value, the contact 9 may be closed. Furthermore, in order to simplify the explanation, the flow rate of the water supply pump is controlled by the flow rate adjustment valve 2 in the above description, but the present invention is equally applicable even if the flow rate is controlled by the rotational speed of the pump. It is possible.

(e) 発明の効果 以上説明した様に、本発明によれば給水ポンプ
2が停止時であつても、流量制御器8の飽和を防
止でき、かつ流量調整弁3の開度は常に水位制御
器6によつて制御されている。従つて給水ポンプ
起動直後から流量制御が有効であり、流量調整弁
3の開度も起動前からプラントの状態に応じて制
御されているために流量制御開始時点においても
適切な開度となつている。よつて常時稼動してい
る給水ポンプの故障等によりバツクアツプ用給水
ポンプが自動起動された場合であつても、原子炉
への過給水は起らず原子炉水位を許容範囲内に安
定に制御することが可能である。
(e) Effects of the Invention As explained above, according to the present invention, saturation of the flow rate controller 8 can be prevented even when the water supply pump 2 is stopped, and the opening degree of the flow rate regulating valve 3 can always control the water level. 6. Therefore, the flow rate control is effective immediately after starting the water supply pump, and since the opening degree of the flow rate regulating valve 3 is also controlled according to the state of the plant before starting up, the opening degree is appropriate even when the flow rate control is started. There is. Therefore, even if the backup water pump is automatically started due to a malfunction of the constantly operating water pump, superfeeding of water to the reactor will not occur and the reactor water level will be stably controlled within the allowable range. Is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の原子炉給水制御装置の構成を示
すブロツク図、第2図は従来の原子炉給水制御装
置の動作を示すブロツク図、第3図は本発明の一
実施例の構成を示すブロツク図、第4図は本発明
の一実施例の動作を示すブロツク図である。 1……原子炉、2……給水ポンプ、3……流量
調整弁、4……水位設定器、5……水位検出器、
6……水位制御器、7……流量検出器、8……流
量制御器、9……接点。
Figure 1 is a block diagram showing the configuration of a conventional reactor feed water control system, Figure 2 is a block diagram showing the operation of a conventional reactor water supply control system, and Figure 3 is a diagram showing the configuration of an embodiment of the present invention. Block Diagram FIG. 4 is a block diagram showing the operation of one embodiment of the present invention. 1... Nuclear reactor, 2... Water supply pump, 3... Flow rate adjustment valve, 4... Water level setter, 5... Water level detector,
6...Water level controller, 7...Flow rate detector, 8...Flow rate controller, 9...Contact.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉の水位基準信号および原子炉実水位信
号を入力し原子炉給水ポンプに対する流量指令信
号を演算する水位制御器と、前記流量指令信号お
よび前記原子炉給水ポンプの実流量信号を入力
し、前記原子炉給水ポンプの流量を制御する積分
要素を含む流量制御器と、前記原子炉給水ポンプ
が停止しているとき前記積分要素の出力信号を前
記流量指令信号にフイードバツクするフイードバ
ツクループとを具備したことを特徴とする原子炉
給水制御装置。
1. A water level controller that inputs a reactor water level reference signal and a reactor actual water level signal and calculates a flow rate command signal for a reactor feed water pump, and inputs said flow rate command signal and said reactor feed water pump's actual flow rate signal, a flow rate controller including an integral element that controls the flow rate of the reactor feed water pump; and a feedback loop that feeds back an output signal of the integral element to the flow rate command signal when the reactor feed water pump is stopped. A nuclear reactor water supply control device characterized by comprising:
JP56180388A 1981-11-12 1981-11-12 Reactor feedwater control device Granted JPS5882195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56180388A JPS5882195A (en) 1981-11-12 1981-11-12 Reactor feedwater control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56180388A JPS5882195A (en) 1981-11-12 1981-11-12 Reactor feedwater control device

Publications (2)

Publication Number Publication Date
JPS5882195A JPS5882195A (en) 1983-05-17
JPH0225477B2 true JPH0225477B2 (en) 1990-06-04

Family

ID=16082355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56180388A Granted JPS5882195A (en) 1981-11-12 1981-11-12 Reactor feedwater control device

Country Status (1)

Country Link
JP (1) JPS5882195A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293272U (en) * 1989-01-05 1990-07-24
JPH0293271U (en) * 1989-01-05 1990-07-24

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293272U (en) * 1989-01-05 1990-07-24
JPH0293271U (en) * 1989-01-05 1990-07-24

Also Published As

Publication number Publication date
JPS5882195A (en) 1983-05-17

Similar Documents

Publication Publication Date Title
JPS6253797B2 (en)
JPH0225477B2 (en)
JPH0422479B2 (en)
JPH0450602B2 (en)
JP2799068B2 (en) Reactor power control method and apparatus
JPH0368360B2 (en)
JPH01178900A (en) Feed-water flow-rate controller for nuclear reactor
JPS61225503A (en) Controller for feedwater of nuclear reactor
JPS5916679B2 (en) Reactor water supply control system
JPS6277507A (en) Feedwater controller for nuclear reactor
JPS61246502A (en) Feedwater controller
JPH01269093A (en) Feed water controller for nuclear reactor
JPS6314002A (en) Feedwater controller for steam generator
JPS60174404A (en) Controller for feedwater to nuclear reactor
JPS6029916B2 (en) Boiling water reactor water supply control device
JPS6153559B2 (en)
JPS62105091A (en) Turbine controller
JPS593297A (en) Reactor feedwater control device
JPH0639889B2 (en) Steam turbine speed controller
JPS5886495A (en) Reactor feedwater control device
JPH0241720B2 (en)
JPS62131903A (en) Speed control device for steam turbine
JPH0410040B2 (en)
JPS62105092A (en) Controller for nuclear reactor
JPS59128495A (en) Automatic load follow-up control device