JPH0368360B2 - - Google Patents

Info

Publication number
JPH0368360B2
JPH0368360B2 JP56180390A JP18039081A JPH0368360B2 JP H0368360 B2 JPH0368360 B2 JP H0368360B2 JP 56180390 A JP56180390 A JP 56180390A JP 18039081 A JP18039081 A JP 18039081A JP H0368360 B2 JPH0368360 B2 JP H0368360B2
Authority
JP
Japan
Prior art keywords
water level
signal
reactor
flow rate
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56180390A
Other languages
Japanese (ja)
Other versions
JPS5882196A (en
Inventor
Tetsuo Okuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56180390A priority Critical patent/JPS5882196A/en
Publication of JPS5882196A publication Critical patent/JPS5882196A/en
Publication of JPH0368360B2 publication Critical patent/JPH0368360B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】 (a) 発明の分野 本発明は原子炉の給水ポンプを制御し、原子炉
の水位を一定に保つ原子炉給水制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of the Invention The present invention relates to a nuclear reactor feed water control device that controls a reactor feed water pump and maintains a constant water level in the reactor.

(b) 従来技術 一般に沸騰水形原子炉においては、原子炉を安
定に運転するために必要な原子炉基準水位が定め
られており、原子炉のいかなる運転状態において
も、この原子炉基準水位に対する原子炉水位の偏
差は許容された範囲内になければならない。万一
原子炉水位が、この許容範囲を逸脱した場合は、
原子炉スクラムにより、原子炉を停止しなければ
ならず、原子炉水位を基準値に保つことは沸騰水
形原子炉においては極めて重要なことである。一
方、原子炉水位は原子炉出力により、原子炉から
タービンへ流出する蒸気流量が変わることにより
常に変動しようとするため、原子炉水位を基準値
に保つためには、原子炉へ下り込まれる給水流量
を制御しなければならない。この目的のために設
けられている装置が原子炉給水制御装置であり、
通常、原子炉給水ポンプの回転速度あるいは、原
子炉給水ポンプの出口に設けられた流量調整弁の
開度を変えることにより、原子炉へ送り込まれる
給水流量を制御する。
(b) Prior art In general, for boiling water reactors, a reactor reference water level is determined that is necessary for stable operation of the reactor, and no matter what operating state the reactor is in, the reactor reference water level is Deviations in reactor water level must be within permissible limits. In the event that the reactor water level deviates from this allowable range,
Due to reactor scram, the reactor must be shut down, and maintaining the reactor water level at a reference value is extremely important in boiling water reactors. On the other hand, the reactor water level tends to constantly fluctuate due to changes in the flow rate of steam flowing out from the reactor to the turbine depending on the reactor output, so in order to maintain the reactor water level at the standard value, it is necessary to Flow rate must be controlled. The device provided for this purpose is the reactor water supply control device.
Normally, the flow rate of feed water sent to the reactor is controlled by changing the rotational speed of the reactor feed water pump or the opening degree of a flow rate regulating valve provided at the outlet of the reactor feed water pump.

第1図はその一例を示したもので、1は原子
炉、2は原子炉内に水を送り込むための給水ポン
プ、3は給水ポンプ2の出口に設けられ給水流量
を調整するための流量調整弁、4は原子炉基準水
位を与える水位設定器、5は原子炉水位を検出す
る水位検出器、6は水位設定器4からの水位設定
信号L1及び水位検出器5からの水位信号L2を入
力し給水流量指令信号L4を演算する水位制御器、
7は給水流量指令信号L4に基づき、流量調整弁
3の開度を制御する流量制御器である。
Figure 1 shows an example. 1 is a nuclear reactor, 2 is a water supply pump for sending water into the reactor, and 3 is a flow rate adjustment device installed at the outlet of the water supply pump 2 to adjust the water supply flow rate. 4 is a water level setting device that provides a reactor reference water level; 5 is a water level detector that detects the reactor water level; 6 is a water level setting signal L 1 from the water level setting device 4 and a water level signal L 2 from the water level detector 5; A water level controller that inputs and calculates the water supply flow rate command signal L4 ,
7 is a flow rate controller that controls the opening degree of the flow rate adjustment valve 3 based on the water supply flow rate command signal L4 .

第2図は上記の構成の動作を示すブロツク線図
であり、G1(S)は水位制御器6を表わす伝達関
数、G2(S)は給水流量制御器7及び流量調整弁
3を表わす伝達関数、G3(S)は原子炉1を表わ
す伝達関数である。水位設定信号L1(S)の偏差
信号(水位偏差信号)L3(S)は水位制御器伝達
関数G1(S)に入力され、給水流量指令信号L4
(S)は流量制御器及び流量調整弁の伝達関数G2
(S)に入力される。流量制御器及び流量調整弁
の伝達関数G2(S)の出力は給水流量L5(S)と
なり、蒸気流量L6(S)と減算された後、原子炉
伝達関数G3(S)に入力される。原子炉伝達関数
G3(S)の出力は、水位信号L2(S)となつてい
る。ここで、蒸気流量L6(S)が第2図中に表さ
れている理由は、蒸気流量が原子炉給水制御系に
対して、外乱信号として作用しているためであ
る。このとき水位偏差信号L3(S)は次式で表わ
せる。
FIG. 2 is a block diagram showing the operation of the above configuration, where G 1 (S) represents the transfer function representing the water level controller 6, and G 2 (S) represents the water supply flow rate controller 7 and the flow rate regulating valve 3. The transfer function G 3 (S) is a transfer function representing the reactor 1. The deviation signal (water level deviation signal) L 3 (S) of the water level setting signal L 1 (S) is input to the water level controller transfer function G 1 (S), and the water supply flow rate command signal L 4
(S) is the transfer function G 2 of the flow controller and flow adjustment valve
(S) is input. The output of the transfer function G 2 (S) of the flow rate controller and flow regulating valve becomes the feed water flow rate L 5 (S), which is subtracted from the steam flow rate L 6 (S), and then becomes the reactor transfer function G 3 (S). is input. reactor transfer function
The output of G 3 (S) is the water level signal L 2 (S). The reason why the steam flow rate L 6 (S) is shown in FIG. 2 is that the steam flow rate acts as a disturbance signal on the reactor feed water control system. At this time, the water level deviation signal L 3 (S) can be expressed by the following equation.

L3(S)=1/1+G1G2G3(S)L1(S)+1/
1+G1G2(S)L6(S)……(1) 通常、水位制御器6は比例ゲイン、流量制御器
7及び流量調整弁3を合わせたものはO形 (すなわち lim S→0G(S)=α)、原子炉1は 積分要素で表現されるので、 G1(S)=K ……(2−A) lim S→0G2(S)=α ……(2−B) G3(S)=1/TRS(TR:原子炉の時定数)
……(2−C) となり(1)式は以下の様に変形される。
L 3 (S) = 1/1 + G 1 G 2 G 3 (S) L 1 (S) + 1/
1+G 1 G 2 (S) L 6 (S)...(1) Normally, the water level controller 6 has a proportional gain, and the combined flow rate controller 7 and flow rate adjustment valve 3 has an O type (i.e. lim S→0G( S)=α), reactor 1 is expressed by an integral element, so G 1 (S)=K ...(2-A) lim S→0G 2 (S)=α ...(2-B) G 3 (S)=1/T R S (T R : reactor time constant)
...(2-C) Therefore, equation (1) is transformed as follows.

L3(S)=TRS/TRS+KG2(S)L1(S)+
1/1+KG2(S)L6(S)……(3) 従つてL1(S)及びL6(S)のステツプ状変化
に対してはラプラス返還の最終値定理を用いるこ
とにより、L3の定常値は、 L3=1/1+KαL6 ……(4) となることが分かる。従つてKを充分大きくする
ことによつてL6すなわち外乱信号となる蒸気流
量に影響されず、L3≒0とでき、水位設定信号
L1に対する水位信号L2の偏差を許容範囲内に収
めることが可能となる。
L 3 (S) = T R S / T R S + KG 2 (S) L 1 (S) +
1/1+KG 2 (S) L 6 (S)...(3) Therefore, for step-like changes in L 1 (S) and L 6 (S), by using the final value theorem of Laplace return, L It can be seen that the steady value of 3 is L 3 = 1/1 + KαL 6 ... (4). Therefore, by making K sufficiently large, L 3 ≒ 0 can be achieved without being affected by L 6 , that is, the steam flow rate that becomes a disturbance signal, and the water level setting signal
It becomes possible to keep the deviation of the water level signal L 2 from L 1 within an allowable range.

しかしながら実際上は制御系の安定性等の点か
らKの値を大きくできないため、水位偏差信号
L3を零にすることができず、水位設定信号L1
水位信号L2の間には制御上無視できない偏差が
生じてしまう。さらにその偏差は(4)式から明らか
な様に蒸気流量信号L6に比例して大きくなるた
め、原子炉出力が大きいほど、制御系に対するわ
ずかの外乱でも基準水位に対する水位偏差が、原
子炉の安全運転上必要な許容範囲を逸脱する可能
性が大きくなる。
However, in practice, it is not possible to increase the value of K due to the stability of the control system, so the water level deviation signal
L3 cannot be made zero, and a deviation that cannot be ignored in terms of control occurs between the water level setting signal L1 and the water level signal L2 . Furthermore, as is clear from equation (4), the deviation increases in proportion to the steam flow rate signal L 6 , so the larger the reactor output, the more the water level deviation from the reference water level will increase even with a slight disturbance to the control system. The possibility of deviating from the allowable range required for safe driving increases.

通常このような偏差信号を完全に零にするため
には、PID等の積分要素を含んだ制御器を使用す
れば良いが、原子炉給水制御装置では原子炉1自
体が積分特性であるため、水位制御器6にPID等
積分要素を含んだ伝達関数を採用すると制御系は
必ず不安定となり、PID等積分要素を含んだ制御
器を用いることはできない。
Normally, in order to make such a deviation signal completely zero, it is sufficient to use a controller that includes an integral element such as a PID, but in the reactor feed water control system, since the reactor 1 itself has integral characteristics, If a transfer function including a PID equal integral element is adopted as the water level controller 6, the control system will inevitably become unstable, and a controller including a PID equal integral element cannot be used.

また、第1図及び第2図においては説明を簡単
にするために、原子炉給水ポンプ2を1台とした
ものであるが、実際のプラントでは、モータ駆動
給水ポンプ、タービン駆動給水ポンプ等、特性の
異なるポンプが複数台配置されており、原子炉の
運転状態に応じてポンプの運転台数を切換えるた
め(4)式におけるαがポンプ運転台数切換えにより
変わり、結果的に水位に変動を与える。
In addition, in FIGS. 1 and 2, only one reactor feed water pump 2 is used to simplify the explanation, but in an actual plant, there are motor-driven water pumps, turbine-driven water pumps, etc. Multiple pumps with different characteristics are arranged, and the number of pumps in operation is switched depending on the operating status of the reactor, so α in equation (4) changes as the number of pumps in operation changes, resulting in fluctuations in the water level.

以上の説明は水位制御器6へのフイードバツク
信号が水位信号2のみの場合であるが(この場合
を一般に単要素制御と言う)、他に水位制御器6
へとフイードバツク信号として、水位信号L2
他に蒸気流量信号及び給水流量信号を用いる制御
方式(この場合を三要素制御と言う)があり、通
常の水位制御器6は単要素制御、三要素制御両方
の機能を有し、どちらかの制御方式が選択可能と
なつている。三要素制御時は、主蒸気流量信号を
フイードバツク信号として用いているために、水
位偏差信号L3を零にすることは可能であるが、
実際上蒸気流量信号及び給水流量信号はそれぞれ
の検出器の精度が低流領域では不正確であるため
制御に使用することができず、三要素制御は原子
炉出力が大きい領域でないと使用できない。従が
つてたとえ水位制御器が三要素制御機能を有して
いても原子炉の低出力領域では単要素制御を選択
しなければならず、前述した不具合点が解消され
るわけではない。さらに水位制御器6が単要素制
御から三要素制御、あるいは三要素制御から単要
素制御へ切換えられた場合必ず水位が変動し、運
転操作上好ましくない。
The above explanation is for the case where the feedback signal to the water level controller 6 is only the water level signal 2 (this case is generally referred to as single-element control).
As a feedback signal, there is a control system that uses a steam flow rate signal and a water supply flow rate signal in addition to the water level signal L 2 (this case is called three-element control). It has both control functions, and either control method can be selected. During three-element control, since the main steam flow rate signal is used as a feedback signal, it is possible to reduce the water level deviation signal L3 to zero, but
In practice, the steam flow rate signal and the feed water flow rate signal cannot be used for control because the accuracy of each detector is inaccurate in the low flow region, and three-element control can only be used in a region where the reactor output is large. Therefore, even if the water level controller has a three-element control function, single-element control must be selected in the low power region of the reactor, and the above-mentioned problems cannot be solved. Furthermore, when the water level controller 6 is switched from single-element control to three-element control, or from three-element control to single-element control, the water level always fluctuates, which is unfavorable for operation.

(c) 発明の目的 本発明の目的は、原子炉のどの様な運転状態で
あつても安定な制御系を構成し、従来技術では取
り除くことができなかつた原子炉の水位と設定水
位との水位偏差として生じる制御精度の偏差を零
にできる原子炉給水制御装置を提供することにあ
る。
(c) Purpose of the Invention The purpose of the present invention is to construct a control system that is stable under any operating state of the reactor, and to eliminate the difference between the water level of the reactor and the set water level, which could not be eliminated with the prior art. An object of the present invention is to provide a reactor water supply control device that can eliminate deviations in control accuracy caused by water level deviations.

(d) 発明の構成 以下、本発明の一実施例として積分要素を含ん
だ水位制御器にPIDコントローラを採用した原子
炉給水制御装置を第3図および第4図を参照し説
明する。第3図は本発明の一実施例を示す原子炉
給水制御装置の構成図である。図中、第1図と同
一符号は同一またはその相当部分を示す。第1図
の構成と異なる点は水位信号L1を比例ゲイン
(比較要素)を含む制御特性を有する安定化器8
を通し出力される補正信号を水位制御器6から出
力される水位偏差制御信号L7に合成する安定化
ループを設けた点、及び水位制御器6にRIDコン
トローラを採用している点である。
(d) Structure of the Invention Hereinafter, as an embodiment of the present invention, a nuclear reactor feed water control system employing a PID controller as a water level controller including an integral element will be described with reference to FIGS. 3 and 4. FIG. 3 is a configuration diagram of a nuclear reactor feed water control system showing one embodiment of the present invention. In the figure, the same reference numerals as in FIG. 1 indicate the same or equivalent parts. The difference from the configuration in Fig. 1 is that the water level signal L1 is controlled by a stabilizer 8 which has control characteristics including a proportional gain (comparison element).
The two points are that a stabilizing loop is provided to combine the correction signal outputted through the water level controller 6 with the water level deviation control signal L7 outputted from the water level controller 6, and that a RID controller is adopted as the water level controller 6.

第4図は上記構成の動作を示すブロツク線図で
ある。図中、第1図と同一記号は第2図と同一ま
たは相当部分を示し、第3図のブロツク線図と異
なる点は安定化器8の伝達関数G4(S)が当該場
所に挿入されている点、及び水位制御器の伝達関
数G1(S)が以下に示されるPIDコントローラと
なつている点である。
FIG. 4 is a block diagram showing the operation of the above structure. In the diagram, the same symbols as in Figure 1 indicate the same or equivalent parts as in Figure 2, and the difference from the block diagram in Figure 3 is that the transfer function G 4 (S) of the stabilizer 8 is inserted at the relevant location. and that the transfer function G 1 (S) of the water level controller is a PID controller as shown below.

G1(S)=KP+KI/S+KPS ……(5) このとき水位偏差信号L3(S)は次式で表わさ
れる。
G 1 (S)=K P +K I /S+K P S (5) At this time, the water level deviation signal L 3 (S) is expressed by the following equation.

L3(S)=(1+G2G3G4)L1+G3+L6/1+G1G2G3(S
)+G2G3G4(S)……(6) ここで水位制御器6の伝達関数は(5)式、原子炉
1の伝達関数は(2−C)式で表わされ、かつ簡
単化のため、安定化器8の伝達関数を G4(S)=KF なる比例ゲインとすると、(6)式は以下の様に変形
できる。
L 3 (S) = (1 + G 2 G 3 G 4 ) L 1 + G 3 + L 6 /1 + G 1 G 2 G 3 (S
)+G 2 G 3 G 4 (S)...(6) Here, the transfer function of the water level controller 6 is expressed by the equation (5), and the transfer function of the reactor 1 is expressed by the equation (2-C), and is simple. For the purpose of calculation, if the transfer function of the stabilizer 8 is a proportional gain of G 4 (S)=K F , equation (6) can be transformed as follows.

L3(S)=S(TRS+KFG2)L1(S)+SL6(S)/SRS2
+(KI+KPS+KDS2G2+KFG2
……(7) 従つて、(7)式の伝達関数の分母にSの一次項が
表れてくるため設定水位信号L1(S)、蒸気流
水信号L6(S)のステツプ状変化に対してはラ
プラス変換の最終値定理及び(2−B)式を用い
ることにより、 L3=0 ……(8) となる。従つて蒸気流量に影響されること無く、
水位偏差信号L3を完全に零にし、安定した制御
系を可能にする。
L 3 (S) = S (T R S + K F G 2 ) L 1 (S) + SL 6 (S) / S R S 2
+(K I +K P S+K D S 2 G 2 +K F G 2
...(7) Therefore, since the linear term of S appears in the denominator of the transfer function in equation (7), it is difficult to By using the final value theorem of Laplace transform and equation (2-B), L 3 =0 (8). Therefore, it is not affected by the steam flow rate,
The water level deviation signal L3 is made completely zero, enabling a stable control system.

以上は説明を簡単にするため、水位制御器6へ
のフイードバツク信号は水位信号L2のみである
としたが、水位信号L2、蒸気流量信号L6及び給
水流量信号を用いた三要素制御方式であつてもか
まわない。また流量制御器7は流量調整弁3を制
御するものとしたが、(8)式を導くための仮定が
(2−B)式のみであることから明らかな様に、
単に(2−B)式を満足するものであれば良い。
従つて、本発明に例えば、流量制御器7が給水ポ
ンプ2の回転速度を制御する方式であつてもまつ
たく同様に適用できるものである。さらに安定化
器8の伝達関数G4(S)は比例ゲイン要素を含
むものであればよく、比例要素のみ制御特性を有
するものに限定されない。
In order to simplify the explanation above, the feedback signal to the water level controller 6 is only the water level signal L2 , but a three-element control method using the water level signal L2 , steam flow rate signal L6 , and feed water flow rate signal is used. It doesn't matter if it is. In addition, although the flow rate controller 7 was assumed to control the flow rate adjustment valve 3, as is clear from the fact that the only assumption for deriving equation (8) is equation (2-B),
It is sufficient if it simply satisfies equation (2-B).
Therefore, the present invention is equally applicable to a system in which the flow rate controller 7 controls the rotational speed of the water supply pump 2, for example. Further, the transfer function G4(S) of the stabilizer 8 only needs to include a proportional gain element, and is not limited to one having control characteristics only with the proportional element.

(e) 発明の効果 以上説明した様に本発明によれば、水位制御器
6へのフイードバツク信号として水位信号L2
みしか使用しない単要素制御時であつても、原理
的に蒸気流量に無関係に水位偏差を零にできる。
従つて、どの様な原子炉の運転状態であつても水
位を基準水位に一致させることが可能であり、従
来方式に比べ制御系に対する外乱等により水位偏
差が原子炉の安全運転上必要な許容範囲を逸脱す
る可能性が小さくなる。また本来、水位偏差が生
じないため、ポンプ運転台数切換時、三要素制御
から単要素制御切換時、あるいは単要素制御から
三要素制御切換時等、水位偏差があることにより
生じていた水位の変動を取り除くことができる。
さらに単要素制御時から水位偏差が生じないた
め、従来水位偏差を零にするために用いられてい
た蒸気流量信号及び給水流量信号のフイードバツ
クを他の目的、例えば給水例制御の速応度向上、
安定性向上等の目的で使用でき、かつ水位制御器
6にPIDコントローラ等の積分要素を採用したこ
と及び安定化器8の伝達関数も幅広く選択できる
ことから、制御性能は従来に比べ大幅に向上す
る。
(e) Effects of the Invention As explained above, according to the present invention, even during single-element control in which only the water level signal L2 is used as a feedback signal to the water level controller 6, it is theoretically independent of the steam flow rate. The water level deviation can be reduced to zero.
Therefore, it is possible to make the water level match the reference water level no matter what operating state the reactor is in, and compared to conventional methods, water level deviations due to disturbances to the control system are less than the tolerance required for safe operation of the reactor. The possibility of going out of range is reduced. In addition, since water level deviation does not normally occur, water level fluctuations that would otherwise occur due to water level deviation occur when changing the number of pumps in operation, when switching from three-element control to single-element control, or when switching from single-element control to three-element control. can be removed.
Furthermore, since no water level deviation occurs during single-element control, the feedback of the steam flow rate signal and feedwater flow rate signal, which were conventionally used to reduce the water level deviation to zero, can be used for other purposes, such as improving the speed response of water supply example control,
It can be used for purposes such as improving stability, and since an integral element such as a PID controller is adopted in the water level controller 6, and the transfer function of the stabilizer 8 can be selected from a wide range, control performance is significantly improved compared to conventional methods. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の原子炉給水制御装置の構成を示
すブロツク図、第2図は従来の原子炉給水制御蒸
気の動作を示すブロツク図、第3図は本発明の一
実施例を示すブロツク図、第4図は本発明の一実
施例の動作を示すブロツク図である。 1……原子炉、2……原子炉給水ポンプ、3…
…流量調整弁、4……水位設定器、5……水位検
出器、6……水位制御器、7……流量制御器、8
……安定化器。
Fig. 1 is a block diagram showing the configuration of a conventional reactor feed water control system, Fig. 2 is a block diagram showing the operation of conventional reactor feed water control steam, and Fig. 3 is a block diagram showing an embodiment of the present invention. , FIG. 4 is a block diagram showing the operation of one embodiment of the present invention. 1... Nuclear reactor, 2... Nuclear reactor feed water pump, 3...
...Flow rate adjustment valve, 4...Water level setter, 5...Water level detector, 6...Water level controller, 7...Flow rate controller, 8
...Stabilizer.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉の水位を設定するための水位設定信号
を出力する水位設定器と、原子炉の水位を検出し
水位信号を出力する水位検出器と、前記水位設定
信号および前記水位信号とを入力し、これらの2
信号の水位偏差信号に応じ積分要素を含む制御特
性に従う水位偏差制御信号を出力する水位制御器
と、前記水位信号を入力し前記水位偏差信号が当
該制御の結果として零になるように制御系を安定
化させるため比例要素を含む制御特性に従う補正
信号を出力する安定化器と、前記水位偏差制御信
号および前記補正信号から合成される給水流量指
令信号により前記原子炉の給水ポンプの流量制御
を行なう流量制御器とからなる原子炉給水制御装
置。
1. A water level setting device that outputs a water level setting signal for setting the water level of the reactor, a water level detector that detects the water level of the reactor and outputs a water level signal, and inputs the water level setting signal and the water level signal. , these 2
A water level controller that outputs a water level deviation control signal according to a control characteristic including an integral element in response to a water level deviation signal of the signal, and a control system that inputs the water level signal and controls the water level deviation signal so that it becomes zero as a result of the control. A stabilizer outputs a correction signal according to control characteristics including a proportional element for stabilization, and a feed water flow rate command signal synthesized from the water level deviation control signal and the correction signal controls the flow rate of the feed water pump of the reactor. A reactor water supply control device consisting of a flow rate controller.
JP56180390A 1981-11-12 1981-11-12 Reactor feedwater control device Granted JPS5882196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56180390A JPS5882196A (en) 1981-11-12 1981-11-12 Reactor feedwater control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56180390A JPS5882196A (en) 1981-11-12 1981-11-12 Reactor feedwater control device

Publications (2)

Publication Number Publication Date
JPS5882196A JPS5882196A (en) 1983-05-17
JPH0368360B2 true JPH0368360B2 (en) 1991-10-28

Family

ID=16082392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56180390A Granted JPS5882196A (en) 1981-11-12 1981-11-12 Reactor feedwater control device

Country Status (1)

Country Link
JP (1) JPS5882196A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534193A (en) * 1976-06-30 1978-01-14 Toshiba Corp Reactor feed-water controlling device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534193A (en) * 1976-06-30 1978-01-14 Toshiba Corp Reactor feed-water controlling device

Also Published As

Publication number Publication date
JPS5882196A (en) 1983-05-17

Similar Documents

Publication Publication Date Title
US4748814A (en) Electric power generating plant
JPH0368360B2 (en)
JPH0225477B2 (en)
JPS6140591A (en) Controller for recirculation flow rate of nuclear reactor
JPH0450602B2 (en)
JPH0422479B2 (en)
JPH01178900A (en) Feed-water flow-rate controller for nuclear reactor
JPH0339599B2 (en)
JPS593297A (en) Reactor feedwater control device
JPH01269093A (en) Feed water controller for nuclear reactor
JPH0339279B2 (en)
JPS6370001A (en) Nuclear-reactor feedwater controller
JPH04278499A (en) Output controlling device of nuclear power plant
JPH05142390A (en) Water supply control device
JPH0326998A (en) Reactor feed water controller for boiling water reactor
JPH01269094A (en) Water level controller for nuclear reactor
JP3005083B2 (en) Recirculation flow control method in once-through boiler
JPH0371679B2 (en)
JPS6239400B2 (en)
JPS6029916B2 (en) Boiling water reactor water supply control device
JPH1184078A (en) Abnormal time cooperative control system
JPH0371678B2 (en)
JPS5886495A (en) Reactor feedwater control device
JPS60205101A (en) Controller for temperature of steam in outlet for evaporatorof fast breeder reactor
JPS6461694A (en) Output control device for boiling water reactor