JPH05142390A - Water supply control device - Google Patents

Water supply control device

Info

Publication number
JPH05142390A
JPH05142390A JP3303056A JP30305691A JPH05142390A JP H05142390 A JPH05142390 A JP H05142390A JP 3303056 A JP3303056 A JP 3303056A JP 30305691 A JP30305691 A JP 30305691A JP H05142390 A JPH05142390 A JP H05142390A
Authority
JP
Japan
Prior art keywords
water supply
water level
water
signal
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3303056A
Other languages
Japanese (ja)
Inventor
Toshiji Yamamori
利治 山盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3303056A priority Critical patent/JPH05142390A/en
Publication of JPH05142390A publication Critical patent/JPH05142390A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PURPOSE:To provide a water supply control device which compensates influence affected by reverse response, and is less changed in water level even in single element control at the time of low output. CONSTITUTION:Water level deviation signals 14 and vapor pressure signals 12 are inputted into a water supply control device 5, change in vapor pressure is arrested by a change rate computing element and a monitor circuit. When it is judged that fluctuation in water level is in appearance, a water supply compensating circuit 7 outputting water supply compensating signals 15, and a PI operating circuit 9 restraining the output of the PI operating circuit based on the aforesaid compensating circuit 15, are provided. By this constitution, fluctuation in water level in appearance caused by fluctuation in vapor pressure is detected, the water level of a vapor generator can thereby be stably controlled in order to restrain unnecessary change in water supply flow rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として新型転換炉
(ATR)タイプの原子力発電所のように、蒸気発生器
を有する発電プラントにおいて、蒸気発生器の水位を所
望の値に制御する給水制御装置に関し、特に給水流量・
蒸気流量が非常に少なくその値を正確に計測することが
困難である低出力領域における蒸気発生器の水位制御方
式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water supply control for controlling a water level of a steam generator to a desired value in a power plant having a steam generator, such as a nuclear power plant of an advanced converter (ATR) type. Regarding the equipment, especially the water supply flow rate
The present invention relates to a water level control method for a steam generator in a low output region where the steam flow rate is very small and it is difficult to measure the value accurately.

【0002】[0002]

【従来の技術】蒸気発生器を有する発電プラント、特に
原子力発電所においては、給水制御装置は蒸気発生器の
水位を一定に制御し、圧力制御装置は蒸気圧力を一定に
制御している。前述の給水制御は通常、水位,給水流
量,蒸気流量の3要素信号により行なわれるが、原子炉
出力が低い時には流量測定の精度が悪いことから、水位
信号のみによる単要素制御により行なわれる。一般に
は、3要素信号あるいは単要素信号によるPI制御が行
なわれるが、『新型転換炉ふげん発電所給水制御系ファ
ジィ制御システムの開発』(動燃技法 No.76 19
90.12)に示される様に、ファジィ制御を適用した
例もある。
2. Description of the Related Art In a power plant having a steam generator, particularly in a nuclear power plant, a water supply controller controls a water level of the steam generator to be constant, and a pressure controller controls a steam pressure to be constant. The above-mentioned water supply control is usually performed by a three-element signal of the water level, the water supply flow rate, and the steam flow rate. However, when the reactor output is low, the accuracy of the flow rate measurement is poor, so it is performed by the single-element control using only the water level signal. Generally, PI control is performed by a three-element signal or a single-element signal, but "Development of a fuzzy control system for a new conversion reactor Fugen power plant feedwater control system" (kinetic combustion technique No. 76 19
There is also an example in which fuzzy control is applied as shown in 90.12).

【0003】[0003]

【発明が解決しようとする課題】上記従来技術において
は、単要素信号によるPI制御の場合は、蒸気発生器の
水位が変化してから給水流量を調節しようとして給水調
節弁が応答するため、水位が整定するまでに多少の変動
を生じたり、整定までの時間が長くかかったりする傾向
がある。
In the above prior art, in the case of PI control by a single element signal, since the water supply control valve responds in an attempt to adjust the water supply flow rate after the water level of the steam generator changes, the water level changes. There is a tendency for some fluctuations to occur before the settling occurs, and for the settling time to be long.

【0004】さらに、原子炉とは独立した蒸気発生器を
有する新型転換炉における特徴として、原子炉出力の変
動などにより蒸気圧力が変動すると、蒸気発生器内のボ
イド率が変化し、見かけの水位が大きく変動する現象が
ある。この応答は、例えば本来は給水流量を増やさなけ
ればならないのに見かけの水位は一時的に上昇するとい
うように逆方向の挙動を示すため、給水制御装置は給水
流量を減らすよう給水調節弁を動かし、増々水位変動を
大きくしてしまうといった、いわゆる逆応答の問題があ
る。
Further, a feature of the new-type converter having a steam generator independent of the nuclear reactor is that when the steam pressure fluctuates due to fluctuations in the reactor output, the void ratio in the steam generator changes, and the apparent water level changes. There is a phenomenon that changes greatly. This response behaves in the opposite direction, for example, the apparent water level temporarily rises when the water supply flow rate should originally be increased, so the water supply control device moves the water supply control valve to reduce the water supply flow rate. However, there is a problem of so-called reverse response, such as increasing water level fluctuations.

【0005】特に原子炉の起動・停止時は、原子炉出力
を変更しなければならないし、各種弁の開・閉操作など
蒸気圧力に変動を与える要因が多く、前記逆応答の影響
は無視できない。
In particular, when the reactor is started and stopped, the reactor output must be changed, and there are many factors that change the steam pressure, such as opening and closing operations of various valves, and the effect of the reverse response cannot be ignored. ..

【0006】蒸気発生器の水位を一定に維持するという
ことは、原子炉の冷却材であるところの水を必要量以上
確保するという安全面において、又蒸気流量と給水流量
とのバランスを保ち、原子炉・蒸気発生器における質量
バランス・エネルギーバランスを保ち、系を安定な状態
に維持するという点においても、非常に重要な機能であ
り、給水制御系は、原子力発電所における最重要制御系
となっている。
Maintaining the water level of the steam generator at a constant level means maintaining a balance between the steam flow rate and the feed water flow rate in terms of safety in that the amount of water that is the coolant of the reactor is secured in excess of the required amount. It is also a very important function in terms of maintaining mass balance and energy balance in the reactor / steam generator, and maintaining the system in a stable state.The water supply control system is the most important control system in a nuclear power plant. Is becoming

【0007】本発明の目的は、上記逆応答の影響を補償
し、低出力時の単要素制御においても水位変動の少ない
給水制御装置を提供することにある。
An object of the present invention is to provide a water supply control device that compensates for the influence of the above-mentioned reverse response and has little water level fluctuation even in single element control at low output.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、従来の単要素PI制御装置において、蒸気発生器の
水位信号と水位設定値との偏差信号と、前記蒸気発生器
の蒸気圧力信号とを入力し、蒸気圧力の急変による見か
けの水位変化と判定した場合には、PI演算を一時的に
中断する信号を出力する回路を付加したものである。
In order to achieve the above object, in a conventional single element PI controller, a deviation signal between a water level signal of a steam generator and a water level set value, and a steam pressure signal of the steam generator. When the input is input and it is determined that there is an apparent water level change due to a sudden change in steam pressure, a circuit for outputting a signal for temporarily interrupting the PI calculation is added.

【0009】[0009]

【作用】蒸気圧力が急に下がった場合、蒸気発生器内の
ボイド率が一時的に増大し、見かけ上水位が上昇する。
この現象を、蒸気圧力信号の変化率が負に大であり、か
つ水位偏差信号が負に大であるということにより検知
し、PI演算を適当な期間中断することにより変動を大
きくすることを防ぐ。やがて圧力制御系の働きにより一
時的に下がった蒸気圧力が元の値に戻ると、蒸気流量・
給水流量のバランスに応じて水位が変化する様になり、
この水位偏差信号により給水制御装置は給水流量を調節
する。
When the steam pressure suddenly drops, the void rate in the steam generator temporarily increases, and the apparent water level rises.
This phenomenon is detected when the rate of change of the steam pressure signal is negatively large and the water level deviation signal is negatively large, and it is possible to prevent the fluctuation from increasing by interrupting the PI calculation for an appropriate period. .. When the steam pressure that was temporarily reduced by the function of the pressure control system returned to its original value, the steam flow rate
The water level will change according to the balance of the water supply flow rate,
The water supply control device adjusts the water supply flow rate based on the water level deviation signal.

【0010】逆に、蒸気圧力が上昇した場合は、蒸気圧
力信号の変化率が正に大であり、かつ水位偏差信号が正
に大であるということを検知することにより、前記と同
様な動作を行ない、水位変動を抑制することができる。
On the contrary, when the steam pressure rises, it is detected that the rate of change of the steam pressure signal is positively large and the water level deviation signal is positively large, and the same operation as described above is performed. It is possible to suppress the fluctuation of the water level.

【0011】[0011]

【実施例】以下、本発明の一実施例を図面により説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0012】図1は、給水補償回路7を有する給水制御
のブロック構成を示すものであり、単要素信号によるP
I制御の場合を表わしている。即ち、蒸気発生器1には
水位検出器3が設置され、ここで検出した水位信号11
が給水制御装置5に入力される。給水制御装置5では、
水位設定値13と前記水位信号11との差を減算器6に
より演算し、この水位偏差信号14をPI演算回路9に
入力する。PI演算回路9では、前記水位偏差信号14
をPI演算することにより、給水調節弁開度指令信号1
6を算出する。以上の働きにより給水調節弁2が蒸気発
生器1の水位を一定に保つよう制御される。さらに、蒸
気発生器1に設けられた蒸気圧力検出器4により検出し
た蒸気圧力信号12と、前記水位偏差信号14とによ
り、ボイド率の変化による水位信号11の見かけの変動
を検知し、給水補償信号15を前記PI演算回路9に出
力する給水補償回路7を付加することにより、蒸気発生
器1の水位を安定に制御する構成となっている。
FIG. 1 shows a block configuration of water supply control having a water supply compensating circuit 7.
The case of I control is shown. That is, the water level detector 3 is installed in the steam generator 1, and the water level signal 11 detected here is detected.
Is input to the water supply control device 5. In the water supply control device 5,
The difference between the water level set value 13 and the water level signal 11 is calculated by the subtractor 6, and this water level deviation signal 14 is input to the PI calculation circuit 9. In the PI calculation circuit 9, the water level deviation signal 14
By calculating PI with, the water supply control valve opening command signal 1
Calculate 6. With the above operation, the water supply control valve 2 is controlled to keep the water level of the steam generator 1 constant. Further, by using the steam pressure signal 12 detected by the steam pressure detector 4 provided in the steam generator 1 and the water level deviation signal 14, the apparent fluctuation of the water level signal 11 due to the change of the void rate is detected, and the water supply compensation is performed. By adding the water supply compensating circuit 7 for outputting the signal 15 to the PI calculation circuit 9, the water level of the steam generator 1 is stably controlled.

【0013】次に、図2,図3を用い、給水補償回路7
とPI演算回路9の動作について説明する。
Next, referring to FIGS. 2 and 3, the water supply compensation circuit 7
The operation of the PI calculation circuit 9 will be described.

【0014】まず、新型転換炉のように蒸気発生器を有
する原子力プラントにおける蒸気発生器水位の挙動モデ
ルを図4に示す。図4では、原子炉出力を階段状に上昇
させた場合を例として図示している。原子炉出力を階段
状に上昇させると、これに合せ蒸気流量も増加させる様
圧力制御系が動作する為蒸気圧力が一時的に低下する。
蒸気圧力が低下すると、蒸気発生器内のボイド率が上昇
するため、水位は見かけ上上昇する。すると給水制御装
置の働きにより給水流量が絞られるが、本来は図4の給
水/蒸気流量のグラフに示す様に、蒸気流量の増加に合
せ給水流量も増加させるべきであるため、質量バランス
がくずれ水位は低下に向う。ここで何の補償も行なわず
単純にPI演算だけにより給水流量を制御している場合
は、図4の給水/蒸気流量のグラフに斜線で示す給水流
量部分が、本来あるべき方向(給水流量増加)と逆の動
作を行っているため、水位の低下も大きくなり整定する
までに時間を要する。
First, FIG. 4 shows a behavior model of a steam generator water level in a nuclear power plant having a steam generator such as a new converter. In FIG. 4, the case where the reactor power is increased stepwise is shown as an example. When the reactor output is increased stepwise, the pressure control system operates so as to increase the steam flow rate accordingly, so the steam pressure temporarily decreases.
When the steam pressure decreases, the void rate in the steam generator increases, so the water level apparently increases. Then, the water supply control device works to reduce the water supply flow rate. However, as shown in the graph of water supply / steam flow rate in Fig. 4, originally, the water supply flow rate should be increased in accordance with the increase in the steam flow rate. The water level goes down. If the feed water flow rate is controlled simply by PI calculation without any compensation, the shaded water feed flow rate portion in the graph of water feed / steam flow rate in FIG. Since the operation is the reverse of the above, the drop in water level becomes large and it takes time to settle.

【0015】この不具合を解決するために設けた給水補
償回路7について、図2を用いその動作を説明する。給
水補償回路7は、大きく分けて水位偏差信号11が0か
ら大きく離れたことを検出する部分(水位偏差負モニタ
71,水位偏差正モニタ72)と、蒸気圧力信号12の
変化率が0から大きくはずれたことを検出する部分(蒸
気圧力変化率演算器73,圧力変化率負モニタ74,圧
力変化率正モニタ75)と、水位偏差信号11が負には
ずれ、かつ圧力変化率が負にはずれた時、又は水位偏差
信号11が正にはずれ、かつ圧力変化率が正にはずれた
時には、給水補償信号15を出力する部分(AND回路
80・81,OR回路82)から構成される。図4のケ
ースを例にとると、蒸気圧力変化率演算器73により算
出される圧力変化率信号は図4に示すように初め負に変
化し、時刻TP において−PRという設定値を超えた圧
力変化率負モニタ74の出力が“1”となり、フリップ
フロップ回路78の出力も“1”となる。一方蒸気発生
器の水位はボイド率の変化により上昇し、水位偏差信号
11は時刻TS において、設定値−LEを超え、水位偏
差負モニタ71の出力が“1”となる。この結果給水補
償信号15が“1”となり、給水流量の減少を防止す
る。
The operation of the water supply compensating circuit 7 provided to solve this problem will be described with reference to FIG. The water supply compensation circuit 7 is roughly divided into a portion (water level deviation negative monitor 71, water level deviation positive monitor 72) that detects that the water level deviation signal 11 is far from 0, and the rate of change of the steam pressure signal 12 is large from 0. The part that detects the deviation (steam pressure change rate calculator 73, pressure change rate negative monitor 74, pressure change rate positive monitor 75) and the water level deviation signal 11 are negative, and the pressure change rate is negative. At the time, or when the water level deviation signal 11 deviates to the positive side and the pressure change rate deviates to the positive side, it is composed of a portion (AND circuits 80 and 81, OR circuit 82) which outputs the water supply compensation signal 15. Taking the case of FIG. 4 as an example, the pressure change rate signal calculated by the steam pressure change rate calculator 73 initially changes negative as shown in FIG. 4, and exceeds the set value of −PR at time T P. The output of the negative pressure change rate monitor 74 becomes "1", and the output of the flip-flop circuit 78 also becomes "1". On the other hand, the water level of the steam generator rises due to the change in the void rate, the water level deviation signal 11 exceeds the set value -LE at time T S , and the output of the water level deviation negative monitor 71 becomes "1". As a result, the water supply compensation signal 15 becomes "1", and the decrease of the water supply flow rate is prevented.

【0016】前記給水補償信号15をリセットするタイ
ミングは、図4のケースにおいては、水位偏差信号11
が設定値−LE以上となる時刻TE であるが、水位の変
動がボイド率の変化によるものでなく、給水/蒸気流量
の質量バランスの崩れによるものであった場合は、水位
偏差信号11が設定値−LE以上に戻るまでに時間を要
する可能性がある為、蒸気圧力変化率信号が0近傍の小
さな値になったことを圧力変化率小モニタ76にて検出
し、タイムディレイピックアップ回路77により一定時
間経過した後、フリップフロップ回路78をリセットす
ることにより、給水流量の減少を制限する期間を限定す
ることができ、制御不能となるのを防止している。
In the case of FIG. 4, the timing for resetting the water supply compensation signal 15 is the water level deviation signal 11
Is the time T E at which the value becomes equal to or greater than the set value −LE, but when the fluctuation of the water level is not due to the change of the void ratio but due to the disruption of the mass balance of the water supply / steam flow rate, the water level deviation signal 11 is Since it may take time to return to the set value -LE or more, it is detected by the small pressure change rate monitor 76 that the steam pressure change rate signal has become a small value near 0, and the time delay pickup circuit 77 is detected. By resetting the flip-flop circuit 78 after a lapse of a certain period of time, the period during which the reduction of the water supply flow rate is limited can be limited, and the control is prevented from becoming uncontrollable.

【0017】図4のケースは、水位が一時的に上昇する
場合を取り上げていたが、蒸気圧力が上昇し水位が一時
的に低下する場合も、水位偏差正モニタ72,蒸気圧力
変化率正モニタ75,フリップフロップ回路79が前記
と同様に動作し、給水補償信号15が出力される。
The case of FIG. 4 deals with the case where the water level temporarily rises, but when the steam pressure rises and the water level temporarily drops, the water level deviation positive monitor 72 and the steam pressure change rate positive monitor are also shown. 75, the flip-flop circuit 79 operates in the same manner as described above, and the water supply compensation signal 15 is output.

【0018】最後に、給水流量の減少(増加)を制限す
る回路を図3に示す。PI演算回路9では、通常時は水
位偏差信号14をPI演算器91に入力し、その出力を
給水調節弁開度指令信号16として出力しているが、給
水補償信号15が“1”の場合には、アナログメモリ回
路92の出力を給水調節弁開度指令信号16として出力
することにより、給水補償信号15が“1”となる直前
のPI演算器91の出力をホールドすることになる。
Finally, FIG. 3 shows a circuit for limiting the decrease (increase) of the feed water flow rate. In the PI calculation circuit 9, the water level deviation signal 14 is normally input to the PI calculator 91, and the output thereof is output as the water supply control valve opening command signal 16, but when the water supply compensation signal 15 is "1". In this case, by outputting the output of the analog memory circuit 92 as the water supply control valve opening command signal 16, the output of the PI calculator 91 immediately before the water supply compensation signal 15 becomes "1" is held.

【0019】図5に、PI演算回路9の別実施例を示
す。図5の回路では、PI演算器91の演算を中断する
ことはせず、PI演算器91の入力信号(水位偏差信号
14)に一時的にバイアスを加えることにより、給水調
節弁開度指令信号16の逆動作を防止する。即ち、給水
増補償信号80aが“1”の時には、信号発生器94か
らの正の補償信号を加算器96により水位偏差信号14
に加えることにより、あるいは、給水減補償信号81a
が“1”の時には、信号発生器95の負の補償信号を加
えることによって、みかけの水位変動がPI演算器91
に入力されるのを防ぐことができる。
FIG. 5 shows another embodiment of the PI calculation circuit 9. In the circuit of FIG. 5, the calculation of the PI calculator 91 is not interrupted, but a bias is temporarily applied to the input signal (water level deviation signal 14) of the PI calculator 91 to obtain the water supply control valve opening command signal. The reverse operation of 16 is prevented. That is, when the water supply increase compensation signal 80a is "1", the adder 96 adds the positive compensation signal from the signal generator 94 to the water level deviation signal 14a.
In addition, or the water supply reduction compensation signal 81a
Is “1”, the negative compensating signal of the signal generator 95 is added to cause the apparent water level fluctuation to the PI calculator 91.
Can be prevented from being typed into.

【0020】本実施例によれば、蒸気圧力の変動による
ボイド率の変化により引き起こされる見かけの水位変動
を検知し、不要な給水流量の変動を抑制することができ
る。
According to the present embodiment, it is possible to detect an apparent fluctuation in the water level caused by a change in the void rate due to a fluctuation in the vapor pressure, and suppress an unnecessary fluctuation in the feed water flow rate.

【0021】[0021]

【発明の効果】本発明によれば、蒸気圧力の変動による
蒸気発生器内のボイド率変化によって引き起こされる見
かけの水位変動を検知し、見かけの水位変動によって本
来とは逆方向に給水流量を制御しようとする動きを抑制
することができるため、単要素PI制御においても安定
に水位を保持することができる。
According to the present invention, the apparent water level fluctuation caused by the change in the void rate in the steam generator due to the fluctuation of the steam pressure is detected, and the supply water flow rate is controlled in the opposite direction from the apparent water level fluctuation. Since the desired movement can be suppressed, the water level can be stably maintained even in the single element PI control.

【図面の簡単な説明】[Brief description of drawings]

【図1】給水制御装置のブロック図である。FIG. 1 is a block diagram of a water supply control device.

【図2】給水補償回路のブロック図である。FIG. 2 is a block diagram of a water supply compensation circuit.

【図3】PI演算回路のブロック図である。FIG. 3 is a block diagram of a PI calculation circuit.

【図4】蒸気発器水位の挙動説明図である。FIG. 4 is a diagram illustrating the behavior of the steam generator water level.

【図5】PI演算回路の別実施例を示す図である。FIG. 5 is a diagram showing another embodiment of the PI calculation circuit.

【符号の説明】 1…蒸気発生器、2…給水調節弁、3…水位検出器、4
…蒸気圧力検出器、5…給水制御装置、6…減算器、7
…給水補償回路、9…PI演算回路、11…水位信号、
12…蒸気圧力信号、13…水位設定値、14…水位偏
差信号、15…給水補償信号、16…給水調節弁開度指
令信号、71…水位偏差負モニタ、72…水位偏差正モ
ニタ、73…蒸気圧力変化率演算器、74…圧力変化率
負モニタ、75…圧力変化率正モニタ、76…圧力変化
率小モニタ、77…タイムディレイピックアップ回路、
78,79…フリップフロップ回路、80,81…AN
D回路、80a…給水増補償信号、81a…給水減補償
信号、82…OR回路、91…PI演算器、92…アナ
ログメモリ回路、93…信号切替器、94,95…信号
発生器、96…加算器。
[Explanation of Codes] 1 ... Steam generator, 2 ... Water supply control valve, 3 ... Water level detector, 4
... Steam pressure detector, 5 ... Water supply control device, 6 ... Subtractor, 7
... water supply compensation circuit, 9 ... PI operation circuit, 11 ... water level signal,
12 ... Steam pressure signal, 13 ... Water level set value, 14 ... Water level deviation signal, 15 ... Water supply compensation signal, 16 ... Water supply control valve opening command signal, 71 ... Water level deviation negative monitor, 72 ... Water level deviation positive monitor, 73 ... Steam pressure change rate calculator, 74 ... Pressure change rate negative monitor, 75 ... Pressure change rate positive monitor, 76 ... Pressure change rate small monitor, 77 ... Time delay pickup circuit,
78, 79 ... Flip-flop circuit, 80, 81 ... AN
D circuit, 80a ... Water supply increase compensation signal, 81a ... Water supply decrease compensation signal, 82 ... OR circuit, 91 ... PI calculator, 92 ... Analog memory circuit, 93 ... Signal switcher, 94, 95 ... Signal generator, 96 ... Adder.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水を加熱し水蒸気とする蒸気発生器、前記
蒸気発生器へ流入する給水流量を制御する給水制御装
置、前記蒸気発生器から流出する蒸気流量を制御する圧
力制御装置を有する発電プラントにおいて、前記蒸気発
生器の蒸気圧力信号に基づいて前記給水制御装置の水位
設定点を一時的に変更することにより、前記蒸気発生器
の水位を所望の値に制御することを特徴とする給水制御
装置。
1. A power generator having a steam generator that heats water into steam, a water supply control device that controls a flow rate of feed water flowing into the steam generator, and a pressure control device that controls a flow rate of steam flowing out of the steam generator. In the plant, the water supply is characterized by controlling the water level of the steam generator to a desired value by temporarily changing the water level set point of the water supply control device based on the steam pressure signal of the steam generator. Control device.
JP3303056A 1991-11-19 1991-11-19 Water supply control device Pending JPH05142390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3303056A JPH05142390A (en) 1991-11-19 1991-11-19 Water supply control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3303056A JPH05142390A (en) 1991-11-19 1991-11-19 Water supply control device

Publications (1)

Publication Number Publication Date
JPH05142390A true JPH05142390A (en) 1993-06-08

Family

ID=17916380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3303056A Pending JPH05142390A (en) 1991-11-19 1991-11-19 Water supply control device

Country Status (1)

Country Link
JP (1) JPH05142390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092476A (en) * 2011-10-26 2013-05-16 Mitsubishi Heavy Ind Ltd Auxiliary feed water valve control device of steam generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092476A (en) * 2011-10-26 2013-05-16 Mitsubishi Heavy Ind Ltd Auxiliary feed water valve control device of steam generator
US9208905B2 (en) 2011-10-26 2015-12-08 Mitsubishi Heavy Industries, Ltd. Auxiliary feedwater valve control apparatus of steam generator

Similar Documents

Publication Publication Date Title
KR920005279B1 (en) Digital control system
KR910002987B1 (en) Automatic steam generator feed water control over full power range
US4562528A (en) Backup control apparatus
JPH05142390A (en) Water supply control device
KR100584835B1 (en) Feedwater control system for steam generator in nuclear power plant and control method thereof
JPH01178900A (en) Feed-water flow-rate controller for nuclear reactor
JPH0229420B2 (en) RENCHUKINIOKERUIGATANAIYUMENREBERUSEIGYOHOHO
JPS62105092A (en) Controller for nuclear reactor
JPS593297A (en) Reactor feedwater control device
JPS6277507A (en) Feedwater controller for nuclear reactor
JPH0776604B2 (en) Drum level control device
JPH11287405A (en) Water level control device for boiler
JPH06168003A (en) Controller
JPS61237104A (en) Process controlling method
JP2731331B2 (en) Feedwater pump recirculation flow control device
JPH1073205A (en) Controller for once-through boiler
JPS62141406A (en) Feedwater controller for nuclear reactor
JPS61226573A (en) Water level controller
JPS62105091A (en) Turbine controller
JPH07102907A (en) Boiler water drum water level control device
JPS61246502A (en) Feedwater controller
JPS58205005A (en) Controller for drum level of waste heat boiler
JPS63121798A (en) Load follow-up controller for nuclear power plant
JPS62240404A (en) Turbine control device
JPS5882196A (en) Reactor feedwater control device