JPH0422479B2 - - Google Patents

Info

Publication number
JPH0422479B2
JPH0422479B2 JP59218569A JP21856984A JPH0422479B2 JP H0422479 B2 JPH0422479 B2 JP H0422479B2 JP 59218569 A JP59218569 A JP 59218569A JP 21856984 A JP21856984 A JP 21856984A JP H0422479 B2 JPH0422479 B2 JP H0422479B2
Authority
JP
Japan
Prior art keywords
flow rate
signal
water level
reactor
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59218569A
Other languages
Japanese (ja)
Other versions
JPS6197597A (en
Inventor
Tetsuo Okuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59218569A priority Critical patent/JPS6197597A/en
Publication of JPS6197597A publication Critical patent/JPS6197597A/en
Publication of JPH0422479B2 publication Critical patent/JPH0422479B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は原子炉の給水ポンプを制御し、原子炉
の水位を一定に保つ原子炉給水制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a nuclear reactor feed water control device that controls a nuclear reactor feed water pump and maintains a constant water level in the reactor.

[発明の技術的背景] 一般に沸騰水形原子炉においては、原子炉を安
定に運転するために必要な原子炉基準水位が定め
られており、原子炉のいかなる運転状態において
も、この原子炉基準水位に対する原子炉水位の偏
差は許容された範囲内になければならない。万
一、原子炉水位がこの許容範囲を逸脱した場合
は、原子炉出力を低下あるいは原子炉を停止しな
ければならず、原子炉水位を基準値に保つことは
沸騰水形原子炉においては極めて重要なことであ
る。一方、原子炉水位は、原子炉出力により、原
子炉からタービンへ流出する蒸気流量が変わるこ
とにより常に変動し易く、原子炉水位を基準値に
保つためには、原子炉へ送り込まれる給水流量を
制御しなければならない。この目的のために設け
られたのが原子炉給水制御装置であり、通常、原
子炉給水ポンプの回転速度あるいは、原子炉給水
ポンプの出口に設けられた流量調整弁の開度を変
えることにより、原子炉へ送り込まれる給水流量
を制御する。
[Technical Background of the Invention] In general, for boiling water reactors, a reactor standard water level that is necessary for stable operation of the reactor is determined, and this reactor standard water level is determined in any operating state of the reactor. The deviation of the reactor water level from the water level must be within the permissible range. In the event that the reactor water level deviates from this allowable range, the reactor output must be reduced or the reactor must be shut down, and it is extremely difficult to maintain the reactor water level at the standard value in boiling water reactors. It's important. On the other hand, the reactor water level is subject to constant fluctuations due to the change in the flow rate of steam flowing out from the reactor to the turbine depending on the reactor output. Must be controlled. A reactor feed water control device is provided for this purpose, and usually, by changing the rotational speed of the reactor feed water pump or the opening degree of the flow rate adjustment valve provided at the outlet of the reactor feed water pump, Controls the flow rate of water supplied to the reactor.

第3図はその一例を示したもので、1は原子
炉、2は原子炉内に水を送り込むための給水ポン
プ、3は給水ポンプ2の出口に設けられ給水流量
を調整するための流量調整弁、4は水位基準信号
を与える水位設定器、5は原子炉水位を検出する
水位検出器、6は水位設定器4からの水位基準信
号L1及び水位検出器5からの水位信号L2を入力
し、水位偏差L3を演算する第1の演算器、7は
水位変差信号L3を入力し、流量指令信号L4を演
算する水位制御器、8は給水ポンプの流量を検出
する流量検出器、9は流量検出器8からのポンプ
流量信号L5を入/切する、ポンプ流量低で開と
なる接点、10は水位制御器7からの流量指令信
号L4及び接点9を通したポンプ流量信号L5′を入
力し、流量偏差信号L6を演算する第2の演算器、
11は流量偏差信号L6を入力し流量調整弁3に
対して開度指令信号L7を演算する流量制御器、
12は開度指令信号L7を入/切するポンプ流量
低まで閉となる接点であり、接点12を通した開
度指令信号L7′は第2の演算器10へフイードバ
ツクされる。
Figure 3 shows an example. 1 is a nuclear reactor, 2 is a water supply pump for sending water into the reactor, and 3 is a flow rate adjustment device installed at the outlet of the water supply pump 2 to adjust the water supply flow rate. 4 is a water level setter that provides a water level reference signal; 5 is a water level detector that detects the reactor water level; 6 is a water level reference signal L1 from the water level setter 4 and a water level signal L2 from the water level detector 5; 7 is a water level controller that inputs the water level difference signal L 3 and calculates the flow rate command signal L 4 ; 8 is a flow rate that detects the flow rate of the water supply pump; Detector, 9 is a contact that turns on/off the pump flow rate signal L 5 from the flow rate detector 8, which opens when the pump flow rate is low; 10 is a contact that passes the flow rate command signal L 4 from the water level controller 7 and contact 9. a second calculator that inputs the pump flow rate signal L5 ' and calculates the flow rate deviation signal L6 ;
11 is a flow rate controller that inputs the flow rate deviation signal L 6 and calculates an opening command signal L 7 for the flow rate adjustment valve 3;
Reference numeral 12 denotes a contact that turns on/off the opening command signal L 7 and remains closed until the pump flow rate is low.

第4図は上記の構成の動作を示すブロツク線図
であり、G1Sは水位制御器7を表わす伝達関数、
G2Sは流量制御器11を表わす伝達関数、G3Sは
流量調整弁3を表す伝達関数、G4Sは原子炉1を
表わす伝達関数である。この時、基準ポンプ流量
が低でない(すなわち接点9が閉、接点12が
開)ならば水位基準信号L1Sから流量制御偏差信
号L6Sまでの伝達特性は次式で表わされる。
FIG. 4 is a block diagram showing the operation of the above configuration, where G 1 S is a transfer function representing the water level controller 7;
G 2 S is a transfer function representing the flow rate controller 11, G 3 S is a transfer function representing the flow rate regulating valve 3, and G 4 S is a transfer function representing the nuclear reactor 1. At this time, if the reference pump flow rate is not low (that is, contact 9 is closed and contact 12 is open), the transfer characteristic from the water level reference signal L 1 S to the flow rate control deviation signal L 6 S is expressed by the following equation.

L6(S)=G1(S)/1+G2G3(S)+G1G2G3G4(S)L1(
S) ……(1) 通常、水位制御器7は比例ゲイン、流量調整弁
3は0形(すなわちlim S→OG3(S)=有限)、原子炉1は積分特性で表
現され、流量制御器11は積分要素を含んでいる
ので G1(S)=K lim S→OG2(S)=∞ lim S→OG2(S)=有限 G4(S)=1/+RS(TR:原子炉の時定数) …(2) となり、L1(S)のステツプ状の変化に対して
は、ラプラス変換の最終値定理を用いることによ
り、L6の定常値は L6=0 ……(3) となる。従つて流量指令信号L4とポンプ流量信
号L5は一致し、給水ポンプ1の流量は水位制御
器7により制御されることになる。しかしなが
ら、給水ポンプ2が停止時は、流量調整弁3の開
度によらず常に流量信号L5=0であり、流量指
令信号L4とは一致せず L6≠0 ……(4) となる。すなわち流量制御器11は積分器を含ん
でいるため上記(4)式により流量制御器11は飽和
することになり、流量調整弁3の開度は常に全開
状態となつている。
L 6 (S)=G 1 (S)/1+G 2 G 3 (S)+G 1 G 2 G 3 G 4 (S) L 1 (
S) ...(1) Normally, the water level controller 7 is expressed as a proportional gain, the flow rate adjustment valve 3 is 0 type (i.e. lim S→OG 3 (S) = finite), and the reactor 1 is expressed as an integral characteristic, and the flow rate control Since the container 11 includes an integral element, G 1 (S)=K lim S→OG 2 (S)=∞ lim S→OG 2 (S)=finite G 4 (S)=1/+ RS (T R : reactor time constant) ...(2), and for step-like changes in L 1 (S), by using the final value theorem of Laplace transform, the steady value of L 6 is L 6 = 0 ... …(3) becomes. Therefore, the flow rate command signal L 4 and the pump flow rate signal L 5 match, and the flow rate of the water supply pump 1 is controlled by the water level controller 7. However, when the water supply pump 2 is stopped, the flow rate signal L 5 is always 0 regardless of the opening degree of the flow rate adjustment valve 3, and it does not match the flow rate command signal L 4 and L 6 ≠ 0... (4) Become. That is, since the flow rate controller 11 includes an integrator, the flow rate controller 11 is saturated according to the above equation (4), and the opening degree of the flow rate regulating valve 3 is always in a fully open state.

一方、一般の原子力カプラントでは複数台の給
水ポンプが設置されており、通常の給水制御はこ
の内の何台か(例えば4台中2台)を用いて行な
われる。残りの給水ポンプはバツクアツプ用であ
り通常停止しているが、常用系給水ポンプ故障時
等、原子炉水位が許容された範囲を逸脱し急激に
低下する可能性が有る場合は、自動的に起動さ
れ、給水を行なう様設計されている。しかしなが
ら前述した様にポンプ停止時に流量制御器11が
飽和していた場合、自動起動された給水ポンプの
流量は100%あるいはそれに近い値で流量制御器
11の飽和が解消されるまでの一定時間、無制御
状態で流れることになり、逆に過給水となり、原
子炉水位が急激に上昇し、許容された範囲を逸脱
してしまう。
On the other hand, in a general nuclear power plant, a plurality of water supply pumps are installed, and normal water supply control is performed using some of these pumps (for example, two out of four pumps). The remaining water supply pumps are for backup purposes and are normally stopped, but if there is a possibility that the reactor water level deviates from the permissible range and drops suddenly, such as in the event of a failure of the normal system water supply pump, they will be started automatically. It is designed to supply water. However, as mentioned above, if the flow rate controller 11 is saturated when the pump is stopped, the flow rate of the automatically started water supply pump will remain at 100% or close to it for a certain period of time until the saturation of the flow rate controller 11 is resolved. The water would flow in an uncontrolled manner, conversely becoming supercharged water, causing the reactor water level to rise rapidly and deviate from the permissible range.

このため、給水ポンプ2が停止時であつても、
流量制御器11を飽和させないために設けられて
いるのが、接点9及び12である。ポンプ流量低
の場合は接点9が開、接点12が閉となつている
ため、流量指令信号L4から開度指令信号L7まで
の伝達特性は L7(S)=G2(S)/1+G2(S)L3(S) ……(4) となる。従つてラプラス変換の最終値定理及び(2)
式から定常時には L7=L4 ……(5) となり、給水ポンプ停止時であつても流量制御器
11は飽和することはなく、また開度指令信号
L7は流量指令信号L4と同一の値に維持されるこ
とになる。
Therefore, even when the water supply pump 2 is stopped,
Contacts 9 and 12 are provided to prevent the flow rate controller 11 from becoming saturated. When the pump flow rate is low, contact 9 is open and contact 12 is closed, so the transfer characteristic from the flow rate command signal L 4 to the opening command signal L 7 is L 7 (S) = G 2 (S) / 1+G 2 (S) L 3 (S) ...(4). Therefore, the final value theorem of Laplace transform and (2)
From the formula, during steady state, L 7 = L 4 ...(5), so even when the water supply pump is stopped, the flow rate controller 11 will not be saturated, and the opening command signal
L7 will be maintained at the same value as the flow rate command signal L4 .

[背景技術の問題点] しかしながら、これはあくまでも定常時の特性
であり、接点9及び接点12の切替時には開度指
令信号L7とポンプ流量信号L5が一致していない
限りバンプが生じる。これは接点9及び接点12
により開度指令信号L7とポンプ流量信号L5を切
替えているためであり、両者に偏差があつた場合
はその偏差分が流量制御器11を通して出力さ
れ、開度指令信号L7にバンプが発生する。
[Problems with Background Art] However, this is only a characteristic during steady state, and a bump will occur when the contacts 9 and 12 are switched unless the opening command signal L 7 and the pump flow rate signal L 5 match. This is contact 9 and contact 12
This is because the opening command signal L 7 and pump flow rate signal L 5 are switched by , and if there is a deviation between the two, that deviation is output through the flow controller 11 and a bump is created in the opening command signal L 7 . Occur.

一方、開度指令信号L7とポンプ流量信号L5は、
流量調整弁3の開度/流量間の特性が非線形性を
持つために、通常一致しない。このため、従来構
成では接点9及び接点12の切替時、必ずバンプ
が発生し、原子炉への給水流量が変動するため、
結果的に原子炉水位が変動し、原子炉基準水位と
の偏差が許容された範囲を逸脱するおそれがあつ
た。さらにフイードバツク信号であるポンプ流量
信号L5を直接入/切しているために、接点の故
障はそのまま流量制御系の信頼度を低下させるこ
ととなり、信頼度上も好ましくなかつた。
On the other hand, the opening command signal L 7 and the pump flow rate signal L 5 are
Since the characteristics between the opening degree and the flow rate of the flow rate regulating valve 3 are nonlinear, they usually do not match. For this reason, in the conventional configuration, bumps always occur when switching contacts 9 and 12, and the flow rate of water supplied to the reactor fluctuates.
As a result, the reactor water level fluctuated, and there was a risk that the deviation from the reactor standard water level would deviate from the permissible range. Furthermore, since the pump flow rate signal L5 , which is a feedback signal, is directly turned on/off, failure of the contact directly reduces the reliability of the flow rate control system, which is not desirable in terms of reliability.

[発明の目的] 本発明は、ポンプ流量低のおけるポンプ流量信
号と開度指令信号の切替時に発生する原子炉水の
変動を取り除き、安定な原子炉制御装置を提供す
ることを目的とする。
[Object of the Invention] An object of the present invention is to provide a stable nuclear reactor control device by eliminating fluctuations in reactor water that occur when switching between a pump flow rate signal and an opening command signal when the pump flow rate is low.

[発明の概要] このため本発明は、流量制御器の積分要素に
は、ポンプ流量低のとき指令流量と流量制御器出
力との偏差を入力し、ポンプ流量低でないとき指
令流量と実流量との偏差を入力するようにしたこ
とを特徴としている。
[Summary of the Invention] Therefore, the present invention inputs the deviation between the command flow rate and the output of the flow controller when the pump flow rate is low into the integral element of the flow rate controller, and inputs the deviation between the command flow rate and the actual flow rate when the pump flow rate is not low. It is characterized by inputting the deviation of .

[発明の実施例] 以下、本発明を第1図及び第2図に示す一実施
例に基づいて説明する。第1図は本発明の一実施
例を示す原子炉給水制御装置の構成図である。図
中、第3図と同一符号または同一又は相当部を示
し、第3図と異なる点は、接点9を削除し、流量
検出器8からのポンプ流量信号L5を直接第2の
演算機10に入力した点およびポンプ流量低で閉
となる新たな接点13及び演算器14を設け、接
点13を通したポンプ流量信号L5′、接点12を
通した開度指令信号L7′及び流量偏差信号L6を第
3の演算器14に入力し、第3の演算器14の出
力を流量制御器11の積分器15に入力した点で
ある。
[Embodiment of the Invention] The present invention will be described below based on an embodiment shown in FIGS. 1 and 2. FIG. 1 is a block diagram of a nuclear reactor feed water control system showing one embodiment of the present invention. In the figure, the same symbols or the same or equivalent parts as in FIG . 3 are shown, and the points that are different from those in FIG. A new contact 13 and arithmetic unit 14 are provided, which close when the input point and pump flow rate are low. This is the point where the signal L 6 is input to the third arithmetic unit 14 and the output of the third arithmetic unit 14 is input to the integrator 15 of the flow rate controller 11 .

第2図は上記構成の動作を示すブロツク線図で
ある。図中、第4図と同一符号は同一又は相当部
分を示し、流量制御器11の伝達関数G2(S)を G2(S)=G2′(S)+1/TS ……(6) と積分器及びそれ以外に分割してある。接点12
及び接点13はポンプ流量が低でない場合は開と
なつているため、ポンプ流量が低でない場合の動
作は第4図とまつたく同様である。
FIG. 2 is a block diagram showing the operation of the above structure. In the figure, the same symbols as in FIG. 4 indicate the same or equivalent parts, and the transfer function G 2 (S) of the flow rate controller 11 is expressed as G 2 (S)=G 2 '(S) + 1/TS...(6) It is divided into integrator and other parts. Contact 12
Since the contact point 13 is open when the pump flow rate is not low, the operation when the pump flow rate is not low is exactly the same as in FIG. 4.

一方、ポンプ流量が低の場合は、流量指令信号
L4から開度指令信号L7までの伝達特性は L7(S)={G′(S)・TS+1}L4(S)
−G′(S)・TS・L5(S)/1+TS……(7) となる。従つてラプラス変換の最終値定理及び(2)
式から定常的には L7=L4 ……(8) となり、(5)式と同様となる。従つてポンプ流量低
時の定常的な動作も従来構成と同様となる。
On the other hand, if the pump flow rate is low, the flow command signal
The transfer characteristic from L 4 to the opening command signal L 7 is L 7 (S) = {G'(S)・TS+1}L 4 (S)
-G'(S)・TS・L 5 (S)/1+TS...(7) Therefore, the final value theorem of Laplace transform and (2)
From the equation, it becomes stationary that L 7 =L 4 ...(8), which is the same as equation (5). Therefore, the steady operation when the pump flow rate is low is also similar to the conventional configuration.

しかしながら、この実施例においては、接点1
3および12に入/切されるポンプ流量信号
L5′及び開度指令信号L7′は、流量制御器11の積
分器15のみにしか入力されていない。このた
め、接点12および13切替時にポンプ流量信号
L5及び開度指令信号L7間に偏差があつても、開
度指令信号にL7にはバンプが発生せず、積分器
の積分時定数Tにより決まる速度ゆるやかに開度
指令信号L7が変化する。
However, in this embodiment, contact 1
Pump flow signal turned on/off at 3 and 12
L5 ' and opening command signal L7 ' are input only to the integrator 15 of the flow rate controller 11. Therefore, when switching contacts 12 and 13, the pump flow rate signal
Even if there is a deviation between L 5 and the opening command signal L 7 , no bump will occur in the opening command signal L 7 , and the opening command signal L 7 will be returned to the opening command signal L 7 at a gentle speed determined by the integration time constant T of the integrator. changes.

[発明の効果] 以上のように本発明によれば、流量制御器の積
分要素には、ポンプ流量低のとき指令流量と流量
制御器出力との偏差を入力し、ポンプ流量低でな
いとき指令流量と実流量との偏差を入力するよう
にしたので、ポンプ流量低からでない状態に切替
わる際、バンプが発生せず、原子炉給水流量の変
動が無く、原子炉水位は安定に制御される。ま
た、常時はフイードバツク信号回路に接点を持た
ない構成となつているため、信頼性の高い流量制
御が可能となる。
[Effects of the Invention] As described above, according to the present invention, when the pump flow rate is low, the deviation between the command flow rate and the flow rate controller output is input into the integral element of the flow rate controller, and when the pump flow rate is not low, the command flow rate is inputted into the integral element of the flow rate controller. Since the deviation between the pump flow rate and the actual flow rate is input, when the pump flow rate is switched from low to low, no bumps occur, there is no fluctuation in the reactor feed water flow rate, and the reactor water level is stably controlled. Furthermore, since the feedback signal circuit is configured to have no contact at all times, highly reliable flow rate control is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る原子炉給水制
御装置の構成図、第2図は第1図の制御ブロツク
ダイヤグラム図、第3図は従来の原子炉給水制御
装置の構成図、第4図は第3図の制御ブロツクダ
イヤグラム図である。 1……原子炉、2……給水ポンプ、3……流量
調整弁、4……水位設定器、5……水位検出器、
6……第1の演算器、7……水位制御器、8……
流量検出器、10……第2の演算器、11……流
量制御器、12……ポンプ流量低で閉となる接
点、13……ポンプ流量低で閉となる接点、14
……第3の演算器、15……流量制御器11の積
分器。
Fig. 1 is a block diagram of a reactor feed water control system according to an embodiment of the present invention, Fig. 2 is a control block diagram of Fig. 1, and Fig. 3 is a block diagram of a conventional reactor feed water control system. FIG. 4 is a control block diagram of FIG. 3. 1... Nuclear reactor, 2... Water supply pump, 3... Flow rate adjustment valve, 4... Water level setter, 5... Water level detector,
6...First computing unit, 7...Water level controller, 8...
Flow rate detector, 10... Second computing unit, 11... Flow rate controller, 12... Contact that closes when the pump flow rate is low, 13... Contact that closes when the pump flow rate is low, 14
. . . third arithmetic unit, 15 . . . integrator of the flow rate controller 11.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉の基準水位信号と実水位信号との偏差
水位信号に応じて原子炉給水ポンプに対する指令
流量信号を演算する水位制御器と、前記指令流量
信号と原子炉給水ポンプの実流量信号との偏差流
量信号に応じて原子炉給水ポンプの流量を制御す
る積分要素を含む流量制御器とから成る原子炉給
水制御装置において、前記流量制御器の積分要素
を除く演算要素には前記偏差流量信号を入力する
一方、前記積分要素には、前記原子炉給水ポンプ
流量が低でないとき前記偏差流量信号を、また、
低のとき前記指令量流信号と前記流量制御器出力
信号の偏差信号を入力することを特徴とする原子
炉給水制御装置。
1. A water level controller that calculates a command flow rate signal for a reactor feed water pump according to a deviation water level signal between a reference water level signal and an actual water level signal of the reactor, and a water level controller that calculates a command flow signal for a reactor feed water pump according to a water level signal that differs between a reference water level signal and an actual water level signal of the reactor, and A reactor feed water control device comprising a flow rate controller including an integral element that controls the flow rate of a reactor feed water pump according to a deviation flow rate signal, wherein the calculation element other than the integral element of the flow rate controller receives the deviation flow rate signal. while inputting the deviation flow signal to the integral element when the reactor feedwater pump flow rate is not low;
A nuclear reactor feed water control device characterized in that a deviation signal between the command flow signal and the flow controller output signal is input when the command flow signal is low.
JP59218569A 1984-10-19 1984-10-19 Controller for feedwater to nuclear reactor Granted JPS6197597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59218569A JPS6197597A (en) 1984-10-19 1984-10-19 Controller for feedwater to nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59218569A JPS6197597A (en) 1984-10-19 1984-10-19 Controller for feedwater to nuclear reactor

Publications (2)

Publication Number Publication Date
JPS6197597A JPS6197597A (en) 1986-05-16
JPH0422479B2 true JPH0422479B2 (en) 1992-04-17

Family

ID=16721996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59218569A Granted JPS6197597A (en) 1984-10-19 1984-10-19 Controller for feedwater to nuclear reactor

Country Status (1)

Country Link
JP (1) JPS6197597A (en)

Also Published As

Publication number Publication date
JPS6197597A (en) 1986-05-16

Similar Documents

Publication Publication Date Title
JPH0422479B2 (en)
JPH0225477B2 (en)
JPS61225503A (en) Controller for feedwater of nuclear reactor
JPH0450602B2 (en)
JPS6039845B2 (en) Nuclear turbine pressure control device
JPH0368360B2 (en)
JPS6370001A (en) Nuclear-reactor feedwater controller
JPS6140591A (en) Controller for recirculation flow rate of nuclear reactor
JPS62150011A (en) Control device for nuclear turbine power plant
JPS591905A (en) Feedwater controller
JPS6029916B2 (en) Boiling water reactor water supply control device
JPS59128495A (en) Automatic load follow-up control device
JPS61246502A (en) Feedwater controller
JPS6277507A (en) Feedwater controller for nuclear reactor
JPH01269093A (en) Feed water controller for nuclear reactor
JPS6153559B2 (en)
JPH0639889B2 (en) Steam turbine speed controller
JPS593297A (en) Reactor feedwater control device
JPS5916679B2 (en) Reactor water supply control system
JPS5886495A (en) Reactor feedwater control device
JPS61134700A (en) Load follow-up controller for nuclear reactor
JPS6380005A (en) Turbine control device of nuclear power plant
JPS62105092A (en) Controller for nuclear reactor
JPS5845561B2 (en) steam turbine control device
JPH03241206A (en) Water supplying control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees