JPS61134700A - Load follow-up controller for nuclear reactor - Google Patents

Load follow-up controller for nuclear reactor

Info

Publication number
JPS61134700A
JPS61134700A JP59257944A JP25794484A JPS61134700A JP S61134700 A JPS61134700 A JP S61134700A JP 59257944 A JP59257944 A JP 59257944A JP 25794484 A JP25794484 A JP 25794484A JP S61134700 A JPS61134700 A JP S61134700A
Authority
JP
Japan
Prior art keywords
reactor
control device
signal
load
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59257944A
Other languages
Japanese (ja)
Inventor
寛 小野
唐津 弘行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP59257944A priority Critical patent/JPS61134700A/en
Publication of JPS61134700A publication Critical patent/JPS61134700A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、沸騰水型原子力発電所の負荷要求に応じて自
動追従制御を行なう原子炉負荷追従制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a nuclear reactor load follow-up control device that performs automatic follow-up control in response to load demands of a boiling water nuclear power plant.

〔発明の技術的背景〕[Technical background of the invention]

原子炉負荷追従制御装置は発電機負荷、蒸気タービン速
度、主蒸気圧力、主蒸気加減弁およびタービンバイパス
弁の開度制御により原子炉出力をII ’Hするように
している。従来装置によれば負荷要求信号、負荷制御信
号、全蒸気流量要求信号の3信号のうちの最小信号によ
り主蒸気加減弁を操作し、負荷要求信号と全蒸気流量信
号の誤差信号を負荷追従信号として原子炉出力制御装置
に出力し原子炉出力を制御する構成がとられている。こ
の制御装置においては負荷追従運転中は負荷制御信号が
他の2信号より大きな値に設定されているため、負荷要
求信号と全蒸気流量要求信号により加減弁の開度制御と
原子炉出力制御を自動的に行ない得る。
The reactor load follow-up control device controls the generator load, steam turbine speed, main steam pressure, and opening degrees of the main steam control valve and turbine bypass valve to control the reactor output to II'H. According to the conventional device, the main steam control valve is operated by the minimum signal of the three signals: the load request signal, the load control signal, and the total steam flow rate signal, and the error signal between the load request signal and the total steam flow rate signal is used as the load following signal. The configuration is such that the output is output to the reactor power control device to control the reactor power. In this control device, during load following operation, the load control signal is set to a larger value than the other two signals, so the load request signal and the total steam flow rate request signal are used to control the opening of the regulating valve and the reactor output control. It can be done automatically.

第4図は従来の原子炉負荷追従制御装置の概略構成を示
すもので、原子炉圧力容器1より送出された主蒸気は、
主蒸気加減弁2を経て蒸気タービン3を駆動し、この蒸
気タービン3は発電機4を駆動する。一方、蒸気タービ
ン3を駆動した後の主蒸気は復水器5で凝縮液化され、
給水ポンプ6により原子炉圧力容器1に戻される。また
符号7は、原子炉圧力容器1より送出された主蒸気を、
主蒸気加減弁2および蒸気タービン3をバイパスして復
水器5へ送るタービンバイパス弁である。
FIG. 4 shows a schematic configuration of a conventional reactor load follow-up control device, in which the main steam sent out from the reactor pressure vessel 1 is
A steam turbine 3 is driven via a main steam control valve 2, and this steam turbine 3 drives a generator 4. On the other hand, the main steam after driving the steam turbine 3 is condensed and liquefied in the condenser 5,
The water is returned to the reactor pressure vessel 1 by the feed water pump 6. Further, reference numeral 7 indicates the main steam sent out from the reactor pressure vessel 1.
This is a turbine bypass valve that bypasses the main steam control valve 2 and the steam turbine 3 and sends the steam to the condenser 5.

また原子炉圧力容器1内の冷却材は再循環系8により強
制循環されている。
Further, the coolant inside the reactor pressure vessel 1 is forcedly circulated by a recirculation system 8.

原子炉出力制御装置11は速度設定信号aとタービン速
度信号すとの偏差である速度偏差信号に速度設定率の逆
数を乗じ、修正速度偏差信号Cを出力する。ここで速度
設定率とは加減弁流量(以下CV流量という)を100
%から0%まで変化させるのに必要な速度偏差を定格速
度の百分率で示したものである。
The reactor power control device 11 multiplies a speed deviation signal, which is the deviation between the speed setting signal a and the turbine speed signal S, by the reciprocal of the speed setting rate, and outputs a corrected speed deviation signal C. Here, the speed setting rate is the control valve flow rate (hereinafter referred to as CV flow rate) of 100
The speed deviation required to change the speed from 0% to 0% is expressed as a percentage of the rated speed.

原子炉圧力制御装置12は主蒸気加減弁@dと圧力設定
信号eとの偏差である圧力偏差信号を入力し、この圧力
偏差信号に進み遅れ補償を行なった後に、圧力設定率の
逆数を乗じ全蒸気流量要求信号fを出力する。ここで圧
力設定率とはCV流量を0%から100%まで増加させ
るのに必要な圧力偏差を定格圧力の百分率で表わしたも
のである。
The reactor pressure control device 12 inputs a pressure deviation signal that is the deviation between the main steam control valve @d and the pressure setting signal e, performs lead/lag compensation on this pressure deviation signal, and then multiplies it by the reciprocal of the pressure setting rate. A total steam flow rate request signal f is output. Here, the pressure setting rate is the pressure deviation required to increase the CV flow rate from 0% to 100%, expressed as a percentage of the rated pressure.

低値優先回路13は修正速度偏差信号Cに負荷設定信号
Qを加算して得られる原子炉出力要求信号りと加減弁開
度要求信号でと負荷制限信号iと最大全蒸気流量制限信
号jとcvta制限信号にとを入力し、各入力信号のう
ち最小値の信号を選び、CV流量設定信号λをサーボ弁
14へ出力す    する。そこで、サーボ弁14はこ
のCV流量設定信号2に基づいて前記蒸気加減弁2の開
度を調整し、CV流量を制御する。
The low value priority circuit 13 outputs the reactor output request signal obtained by adding the load setting signal Q to the corrected speed deviation signal C, the adjustment valve opening request signal, the load limit signal i, and the maximum total steam flow rate limit signal j. is input to the cvta limit signal, the signal with the minimum value is selected from each input signal, and the CV flow rate setting signal λ is output to the servo valve 14. Therefore, the servo valve 14 adjusts the opening degree of the steam control valve 2 based on this CV flow rate setting signal 2 to control the CV flow rate.

低値優先回路15は加減弁開度要求信号fとC■流量設
定信号2との偏差信号と、最大全蒸気流量制限信号Jと
Cv流量設定信号2との偏差信号を比較し、小さい方の
偏差信号を選んでバイパス弁流量(以下BPV流量とい
う)設定信号mをサーボ弁16へ出力する。そこで、サ
ーボ弁16はこの8PV流量流量設定用に基づいて前記
タービンバイパス弁7の開度を調整し、BPV流量を制
御する。
The low value priority circuit 15 compares the deviation signal between the regulating valve opening request signal f and the C■ flow rate setting signal 2, and the deviation signal between the maximum total steam flow rate restriction signal J and the Cv flow rate setting signal 2, and selects the smaller one. The deviation signal is selected and a bypass valve flow rate (hereinafter referred to as BPV flow rate) setting signal m is output to the servo valve 16. Therefore, the servo valve 16 adjusts the opening degree of the turbine bypass valve 7 based on this 8PV flow rate setting, and controls the BPV flow rate.

原子炉出力要求信号りから流量バイアス信号nを差引い
て得られる信号と加減弁開度要求信号fとを比較して得
られる偏差信号は、負荷追従信号pとして、スイッチ1
7を介して原子炉再循環流量制御装置18に入力する。
The deviation signal obtained by comparing the signal obtained by subtracting the flow rate bias signal n from the reactor output request signal and the adjustment valve opening request signal f is used as the load following signal p to switch 1.
7 to the reactor recirculation flow control device 18 .

そこで、原子炉再循環流量制御装置18はこの負荷追従
信号pに基いて前記再循環系8を制御し、原子炉出力を
制御する。
Therefore, the reactor recirculation flow rate control device 18 controls the recirculation system 8 based on this load follow-up signal p, and controls the reactor output.

ここで流量バイアス信号nは、定常運転状態において原
子炉出力要求信号りよりバイアス分だけ加減弁開度要求
信号fを小さくするように作用し、定常運転状態では原
子炉圧力制御装置12によりC■流量を制御する機能を
もつ。
Here, the flow rate bias signal n acts to make the regulating valve opening request signal f smaller by the bias amount than the reactor output request signal in the steady operating state, and in the steady operating state, the reactor pressure control device 12 It has the function of controlling the flow rate.

前記スイッチ17は、原子炉再循環流量制御装置18を
手動操作する場合には開路し、負荷追従信号pを原子炉
再循環流量制御装置18より切離す。また負荷追従運転
を行なう場合にはスイッチ17を閉じて負荷制限信号i
、最大全蒸気流量制限信号jおよびC■流量制限信号k
を、原子炉出力要求信号りおよび加減弁開度要求信号で
より大きな値に設定して、通常は原子炉出力要求信号り
と加減弁開度要求信号fによりCv流lを制御し原子炉
出力を制御するようにしている。
The switch 17 opens when the reactor recirculation flow rate control device 18 is manually operated, and disconnects the load following signal p from the reactor recirculation flow rate control device 18 . In addition, when performing load following operation, the switch 17 is closed and the load limit signal i
, maximum total steam flow rate restriction signal j and C ■ flow rate restriction signal k
is set to a larger value by the reactor output request signal and the adjustment valve opening request signal, and normally the Cv flow l is controlled by the reactor output request signal and the adjustment valve opening request signal f, and the reactor output is I'm trying to control it.

次に、以上のように構成された原子炉負荷追従制御装置
の動作を説明する。
Next, the operation of the reactor load follow-up control device configured as above will be explained.

たとえば電力系統負荷が増加すると、電力系統的負荷合
計と発電所出力とのバランスがくずれて系統周波数が低
下し、これはタービン速度信号すの低下となって現われ
、修正速度偏差信号Cは正側に増加する。この結果、原
子炉出力要求信号りおよび負荷追従信号pが増え、スイ
ッチ17が閉じているので、原子′炉再循環流量制御装
置18が動作し原子炉出力を増加させる。こうして加減
弁開度要求信号fが増え、主蒸気加減弁2の開度を増し
、タービン出力を増加させる。このとき原子炉出力要求
信号りが低値優先回路13の作用によって直接CV流!
l設定信号2とはならず、いったん原子炉再循環流量制
御装置18を動作させて原子炉出力を増し、即ち主蒸気
圧力信号dを増やし、原子炉圧力制御装置12を介して
加減弁開度要求信号fを増やし、この信号fが低値優先
回路13を通ってCvRI設定信@℃となり、主蒸気加
減弁2の開度を増して蒸気タービン3の出力を増加させ
る。
For example, when the power system load increases, the balance between the total power system load and the power plant output is lost, and the system frequency decreases, which is manifested as a decrease in the turbine speed signal S, and the corrected speed deviation signal C is on the positive side. increases to As a result, the reactor power request signal and the load follow signal p increase, and since the switch 17 is closed, the reactor recirculation flow control device 18 operates to increase the reactor power. In this way, the control valve opening request signal f increases, the opening of the main steam control valve 2 is increased, and the turbine output is increased. At this time, the reactor output request signal is directly controlled by the low value priority circuit 13!
l The setting signal 2 is not set, but the reactor recirculation flow rate control device 18 is operated once to increase the reactor output, that is, the main steam pressure signal d is increased, and the adjustment valve opening is changed via the reactor pressure control device 12. The request signal f is increased, and this signal f passes through the low value priority circuit 13 and becomes the CvRI setting signal@°C, increasing the opening degree of the main steam control valve 2 and increasing the output of the steam turbine 3.

〔背景技術の問題点〕[Problems with background technology]

以上の構成では、電力系統からの負荷増加要求に対して
は原子炉再循環流量制御装置18に含まれる応答遅れ、
原子炉出力応答遅れおよび原子炉圧力制御装M12内に
含まれる応答遅れ等のため、応答性は必ずしも速いもの
とはいえない。
In the above configuration, response delay included in the reactor recirculation flow rate control device 18 in response to a load increase request from the power system;
Responsiveness cannot necessarily be said to be fast because of the reactor output response delay and the response delay included in the reactor pressure control system M12.

一方、我が国において原子カプラントは発電原価が低置
であること等により現状では最大可能出力での一定運転
をしている。しかし将来原子カプラントの設置がすすみ
、原子力の電力系統電源構成比率が増加した場合には深
夜余剰負荷対策、昼間の需給調整、系統周波数維持等、
現在の火力プラント同様の運転の必要性が生じてくるこ
とは明らかであり、こうした展望に備えて原子カプラン
トの負荷追従性の改善が要望されている。
On the other hand, in Japan, nuclear couplers currently operate at a constant maximum possible output due to the low cost of power generation. However, if nuclear power plants are installed in the future and the proportion of nuclear power in the power grid increases, measures will be taken to deal with late-night surplus loads, adjust supply and demand during the day, maintain grid frequency, etc.
It is clear that there will be a need for operations similar to those of current thermal power plants, and in preparation for this prospect, there is a demand for improvements in the load followability of nuclear couplants.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情を考慮してなされたちので、そ
の目的は、原子カプラントの負荷要求に応じて迅速かつ
円滑に負荷追従を行ない得る原子炉負荷追従制御装置を
提供することにある。
The present invention has been made with these circumstances in mind, and an object of the present invention is to provide a nuclear reactor load follow-up control system that can quickly and smoothly perform load follow-up in response to load demands of a nuclear couplant.

〔発明の概要〕[Summary of the invention]

以上の目的達成のため、本発明の原子炉負荷追従制御装
置は、原子炉出力要求値を演算器に入力して周波数分割
し、その高周波成分を前記加減弁    ]開度要求値
に加え、低周波成分と加減弁開度要求値との偏差信号を
再循環流量制御装置に入力することを特徴としている。
In order to achieve the above object, the reactor load follow-up control device of the present invention inputs the reactor output request value to a computing unit, divides it into frequencies, adds the high frequency component to the opening degree request value, and adds the high frequency component to the It is characterized in that a deviation signal between the frequency component and the required value for the adjustment valve opening is input to the recirculation flow rate control device.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図および第2図を参照し
て説明する。なお、第1図および第2図においで第4図
と同一の部分は同一符号で示しである。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. Note that the same parts in FIGS. 1 and 2 as in FIG. 4 are designated by the same reference numerals.

第1図は原子炉負荷追従制御装置の概略構成を示すもの
で、第4図に示す装置との相違点は、修正速度偏差信号
Cの成分を演算器21に入力してここで周波数分割し、
0.5Hz以上の高周波成分子では直接加減弁2の開度
を制御するようにし、0.5Hz未満の低周波成分Sの
み負荷設定信号Qと加算して低値優先回路13に入力す
るようにした点である。
Fig. 1 shows a schematic configuration of a reactor load follow-up control system, and the difference from the system shown in Fig. 4 is that the components of the corrected speed deviation signal C are input to a calculator 21 and frequency-divided there. ,
For high frequency components of 0.5 Hz or more, the opening degree of the regulating valve 2 is directly controlled, and only low frequency components S of less than 0.5 Hz are added to the load setting signal Q and input to the low value priority circuit 13. This is the point.

この演算器21は、第2図に示すように高周波成分をカ
ットする一次遅れフィルタ22と、プラント保護上およ
び運転上制限される制限値より大きい負荷要求が行なわ
れたとき、その負荷要求を制限する制限器23とを具備
した構成のものである。
As shown in FIG. 2, this computing unit 21 includes a first-order lag filter 22 that cuts high frequency components, and a load request that limits the load request when a load request is made that is larger than a limit value for plant protection and operation. This configuration is equipped with a limiter 23 that allows

第3図は演算器21の入出力信号を示す。FIG. 3 shows input and output signals of the arithmetic unit 21.

即ち、電力系統の負荷要求を検出した修正速度偏差信号
C(第3図上段)には種々の周波数成分が含まれている
。この修正速度偏差信号Cは演算器21に入力され高周
波成分子(第3図下段)と低周波成分S(第3図中段)
とに周波数分割される。そして修正速度偏差信号高周波
成分子は、低周波優先回路13の出力信号と加算され、
C■流量設定信号2としてサーボ弁14に入力される。
That is, the corrected speed deviation signal C (upper part of FIG. 3) that detects the load request of the power system includes various frequency components. This corrected speed deviation signal C is input to the arithmetic unit 21, and the high frequency component element (lower part of Figure 3) and the low frequency component S (middle part of Figure 3)
The frequency is divided into Then, the corrected speed deviation signal high frequency component element is added to the output signal of the low frequency priority circuit 13,
C■ Inputted to the servo valve 14 as the flow rate setting signal 2.

また、修正速度偏差信号低周波成分Sは負荷設定信号Q
と加算され、加算して得られた原子炉出力要求信号りか
ら流山バイアス信号nを差引いて得られる信号と、加減
弁開度要求信号fとを比較して得られる偏差信号が負荷
追従信号pとして、スイッチ17を介して原子炉再循環
流量制御装置18に入力される。
In addition, the corrected speed deviation signal low frequency component S is the load setting signal Q
The deviation signal obtained by comparing the signal obtained by subtracting the Nagareyama bias signal n from the reactor output request signal obtained by addition and the adjustment valve opening request signal f is the load following signal p. is input to the reactor recirculation flow rate control device 18 via the switch 17.

したがって、負荷要求のうち変化■の小さい高周波成分
子につ訃てはCV流量を直接制御することで敏速な応答
が可能となり、変化量の大きい低周波成分については原
子炉出力を制御することによって従来装置と同様の円滑
な応答が可能となるものである。
Therefore, for high-frequency components with small changes in the load demand, a quick response can be achieved by directly controlling the CV flow rate, and for low-frequency components with large changes, by controlling the reactor output. This enables smooth response similar to that of conventional devices.

゛なお、本発明は上記実施例に限定されるものではない
。たとえば第2図中の一次遅れフィルタ22の代りに、
特定の周波数成分をカットするノツチフィルタを使用す
ることも可能である。ノツチフィルタを用いると、演算
器21を介して必要な周波数成分のみ取出すことができ
、不必要な微少変動をカットすることができ、また複数
の沸騰水型原子力発電所<BWR発電所)において特性
の異なるノツチフィルタを用いることにより、周波数成
分を分担して負荷追従運転を行なうことも可能となる。
Note that the present invention is not limited to the above embodiments. For example, instead of the first-order lag filter 22 in FIG.
It is also possible to use a notch filter that cuts specific frequency components. By using a notch filter, only the necessary frequency components can be extracted via the calculator 21, unnecessary minute fluctuations can be cut, and the characteristics of multiple boiling water nuclear power plants (BWR power plants) can be extracted. By using notch filters with different frequency components, it is also possible to perform load following operation by sharing the frequency components.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明は、原子炉圧力制御装置と
原子炉出力制御装置とを有し、これらの制御装置出力の
うちいずれか一方の出力により、原子炉圧力容器と蒸気
タービンとの間に介在する主蒸気加減弁の開度を制御す
るとともに、原子炉出力要求値と加減弁開度要求値との
偏差信号を原子炉再循環流量制御装置に入力して負荷追
従制−を行なう原子炉負荷追従!11it装置において
、前記原子炉出力要求値を演算器に入力して周波数分割
し、その高周波成分を前記加減弁開度要求値に加え、低
周波成分と加減弁開度要求値との偏差信号を再循環流量
制御装置に入力することを特徴とするものである。した
がって、演算器で周波数分割された原子炉出力要求値の
高周波成分では直接主蒸気加減弁の開度を制御すること
により原子カプラントの負荷要求に応じて迅速な負荷追
従が行なえる。また、原子炉出力要求値の低周波成分は
加減弁開度要求信号と加算され、その偏差信号が負荷追
従信号として原子炉再循環流量制御装置に入力されるの
で、負荷要求のうち変化量の大きい低周波成分について
は従来装置と同様の円滑な応答が可能となる。
As described in detail above, the present invention has a reactor pressure control device and a reactor power control device, and the output of either of these control devices is used to control the communication between the reactor pressure vessel and the steam turbine. In addition to controlling the opening degree of the main steam control valve interposed between the two, the deviation signal between the reactor output request value and the control valve opening request value is input to the reactor recirculation flow rate control device to perform load follow-up control. Reactor load tracking! In the 11it device, the reactor output request value is input to a calculator, frequency-divided, the high frequency component is added to the adjustment valve opening request value, and a deviation signal between the low frequency component and the adjustment valve opening request value is obtained. It is characterized by being input to a recirculation flow rate control device. Therefore, by directly controlling the opening degree of the main steam control valve for the high frequency component of the reactor output requirement value frequency-divided by the computing unit, rapid load follow-up can be performed in accordance with the load requirement of the nuclear couplant. In addition, the low frequency component of the reactor output request value is added to the adjustment valve opening request signal, and the deviation signal is input to the reactor recirculation flow control device as a load follow-up signal. Regarding large low frequency components, smooth response similar to the conventional device is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の一実施例を示す    
1もので、第1図は原子炉負荷追従−m+装置の概略構
成を示すブロック図、第2図は同装置の一部である演算
器の概略構成を示すブロック図、第3図は上記演算器の
入出力信号の変化を示すグラフ図、第4図は従来の原子
炉負荷追従制御装置を示す70ツク図である。 1・・・原子炉圧力容器、2・・・主蒸気加減弁、3・
・・蒸気タービン、11・・・原子炉出力制御装置、1
2・・・原子炉圧力制御装置、18・・・原子炉再循環
流量制御装置、21・・・演算器、22・・・−次遅れ
フィルタ、23・・・制限器、f・・・加減弁開度要求
信号、h・・・原子炉出力要求信号、r・・・原子炉出
力要求信号の高周波成分、S・・・原子炉出力要求信号
の低周波成分。
Figures 1 to 3 show an embodiment of the present invention.
Figure 1 is a block diagram showing the schematic configuration of the reactor load tracking-m+ device, Figure 2 is a block diagram showing the schematic configuration of the arithmetic unit that is part of the device, and Figure 3 is the block diagram showing the schematic configuration of the arithmetic unit that is part of the device. FIG. 4 is a 70-step diagram showing a conventional reactor load follow-up control system. 1... Reactor pressure vessel, 2... Main steam control valve, 3...
... Steam turbine, 11 ... Nuclear reactor power control device, 1
2...Reactor pressure control device, 18...Reactor recirculation flow rate control device, 21...Arithmetic unit, 22...-order lag filter, 23...Restrictor, f...Adjustment Valve opening request signal, h...Reactor output request signal, r...High frequency component of the reactor output request signal, S...Low frequency component of the reactor output request signal.

Claims (2)

【特許請求の範囲】[Claims] (1)原子炉圧力制御装置と原子炉出力制御装置とを有
し、これらの制御装置出力のうちいずれか一方の出力に
より、原子炉圧力容器と蒸気タービンとの間に介在する
主蒸気加減弁の開度を制御するとともに、原子炉出力要
求値と加減弁開度要求値との偏差信号を原子炉再循環流
量制御装置に入力して負荷追従制御を行なう原子炉負荷
追従制御装置において、前記原子炉出力要求値を演算器
に入力して周波数分割し、その高周波成分を前記加減弁
開度要求値に加え、低周波成分と加減弁開度要求値との
偏差信号を再循環流量制御装置に入力することを特徴と
する原子炉負荷追従制御装置。
(1) It has a reactor pressure control device and a reactor power control device, and depending on the output of either of these control devices, the main steam control valve interposed between the reactor pressure vessel and the steam turbine In the reactor load follow-up control device, which controls the opening degree of the reactor and performs load follow-up control by inputting a deviation signal between the reactor output request value and the adjustment valve opening request value to the reactor recirculation flow rate control device. The reactor output request value is input into a calculator and frequency-divided, the high frequency component is added to the control valve opening request value, and the deviation signal between the low frequency component and the control valve opening request value is recirculated to the flow rate control device. A nuclear reactor load follow-up control device characterized by inputting an input into the reactor load following control device.
(2)前記演算器は、高周波成分をカットする一次遅れ
フィルタと、プラント保護上および運転上制限される制
限値より大きい負荷要求を制限する制限器とを具備した
ことを特徴とする特許請求の範囲第1項記載の原子炉負
荷追従制御装置。
(2) The arithmetic unit is equipped with a first-order lag filter that cuts high-frequency components and a limiter that limits a load request that is larger than a limit value for plant protection and operation. A nuclear reactor load follow-up control device according to scope 1.
JP59257944A 1984-12-06 1984-12-06 Load follow-up controller for nuclear reactor Pending JPS61134700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59257944A JPS61134700A (en) 1984-12-06 1984-12-06 Load follow-up controller for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59257944A JPS61134700A (en) 1984-12-06 1984-12-06 Load follow-up controller for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS61134700A true JPS61134700A (en) 1986-06-21

Family

ID=17313376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59257944A Pending JPS61134700A (en) 1984-12-06 1984-12-06 Load follow-up controller for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS61134700A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6779354B2 (en) 1999-12-14 2004-08-24 Daikin Industries, Ltd. Temperature control device of liquid cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6779354B2 (en) 1999-12-14 2004-08-24 Daikin Industries, Ltd. Temperature control device of liquid cooling device

Similar Documents

Publication Publication Date Title
CN112865134A (en) Power grid frequency primary frequency modulation control system
JPS61134700A (en) Load follow-up controller for nuclear reactor
JP2515797B2 (en) Turbin controller
JPS639638B2 (en)
JPS58100794A (en) Load following-up control device for atomic power plant
JPS63184098A (en) Generating output control method of boiling water type nuclear power plant
JPS6029699A (en) Controller for recycle flow rate
JPS61159198A (en) Load follow-up controller for boiling water type nuclear power plant
JPH01114797A (en) Speed controller for steam turbine
JPH03215198A (en) Load controller for combined cycle plant
JPH0241720B2 (en)
JPS63121798A (en) Load follow-up controller for nuclear power plant
JPH0738125B2 (en) Integrated load control device
JPS62150011A (en) Control device for nuclear turbine power plant
JPS62131903A (en) Speed control device for steam turbine
JPH01269093A (en) Feed water controller for nuclear reactor
JPS62105092A (en) Controller for nuclear reactor
JPS61134699A (en) Load follow-up controller for boiling water type nuclear power plant
JPS62162703A (en) Turbine control device
JPS60256098A (en) Controller for pressure of nuclear reactor
JPS59145309A (en) Afc controller of turbine bypass thermal power plant
JPS639602A (en) Inlet steam pressure control method for geothermal turbine
JPS6380005A (en) Turbine control device of nuclear power plant
JPS6271898A (en) Output controller for nuclear reactor
JPH0371678B2 (en)