JPS6380005A - Turbine control device of nuclear power plant - Google Patents

Turbine control device of nuclear power plant

Info

Publication number
JPS6380005A
JPS6380005A JP61223616A JP22361686A JPS6380005A JP S6380005 A JPS6380005 A JP S6380005A JP 61223616 A JP61223616 A JP 61223616A JP 22361686 A JP22361686 A JP 22361686A JP S6380005 A JPS6380005 A JP S6380005A
Authority
JP
Japan
Prior art keywords
signal
turbine
request signal
load
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61223616A
Other languages
Japanese (ja)
Inventor
Mitsugi Nakahara
貢 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61223616A priority Critical patent/JPS6380005A/en
Publication of JPS6380005A publication Critical patent/JPS6380005A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To restrain the pressure of a nuclear reactor from changing at the time of a load change in an electric power system by controlling a turbine by-pass valve opening degree based on a governor valve opening degree signal and a load demand signal. CONSTITUTION:A load demand signal S9 is formed by adding an output signal S71 of a speed controller 13 to a load set signal S8, and a modified load demand signal S13 of a governor valve 2 from the load demand signal S9. This demand signal S12 is inputted into a low value selective circuit 14 together with a total steam flow demand signal S4 which is the output of a pressure controller 12. Based on the output of a governor valve opening degree demand signal S14, the total steam flow demand signal S4 and a chattering prevention bias signal B2, a by-pass valve 6alpha opening degree demand signal S15 is computed and inputted into a by-pass valve servo 16.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子力発電所のタービン制御装置に係り、特
に、沸騰水型原子炉の原子炉圧力変動及び原子炉水位変
動の抑制に好適なタービン制御装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a turbine control device for a nuclear power plant, and is particularly suitable for suppressing reactor pressure fluctuations and reactor water level fluctuations in a boiling water reactor. The present invention relates to a turbine control device.

〔従来の技術〕[Conventional technology]

原子力発電所のタービン制御装置として、電力系統の事
故時のタービン蒸気加減弁及びタービンバイパス弁の関
度制御に関する例が、特開昭61−58903号公報「
原子炉のタービン制御装置」に開示されている。
As a turbine control device for a nuclear power plant, an example of the relationship control of a turbine steam control valve and a turbine bypass valve in the event of an accident in an electric power system is disclosed in Japanese Patent Application Laid-Open No. 61-58903.
"Nuclear Reactor Turbine Control Device".

すなわち、第4図において原子炉1で発生した蒸気は、
タービン蒸気加減弁2を介してタービン3へ導びかれ、
タービン3を回転させ、これにより発電器7で電気エネ
ルギーを発生する。タービン3を回転させた蒸気は、復
水器4で水となり、給水ポンプ5により再び原子炉1に
戻される。タービンバイパス弁6は、発電器7が接続さ
れている電力系統8の負荷変動による周波数変動を抑制
する際に原子炉1の余剰蒸気を排出する機能をもつ。ま
た、原子炉1あるいは電力系統8の異常による原子炉1
の圧力上昇を抑制する等の機能をもつ。
That is, the steam generated in the reactor 1 in FIG.
is guided to the turbine 3 via the turbine steam control valve 2,
The turbine 3 is rotated, thereby generating electrical energy in the generator 7. The steam that rotates the turbine 3 turns into water in the condenser 4 and is returned to the reactor 1 by the water pump 5. The turbine bypass valve 6 has a function of discharging surplus steam from the nuclear reactor 1 when suppressing frequency fluctuations due to load fluctuations in the electric power system 8 to which the generator 7 is connected. In addition, reactor 1 due to abnormality in reactor 1 or power system 8
It has functions such as suppressing the pressure rise of

圧力検出器11で検出された原子炉圧力信号S1と設定
圧力信号S2との偏差信号である圧力偏差信号S3は、
圧力制御器12の入力信号となる。圧力制御器12は、
圧力調定率、及び、進み遅れ補償に従った演算により、
全蒸気流量要求信号S4を出力する。他方、タービン速
度信号S5と設定速度信号S6との偏差信号である速度
偏差信号S7は、速度制御器13の入力信号となる。
A pressure deviation signal S3, which is a deviation signal between the reactor pressure signal S1 detected by the pressure detector 11 and the set pressure signal S2, is
This becomes an input signal for the pressure controller 12. The pressure controller 12 is
By calculation according to pressure adjustment rate and lead/lag compensation,
A total steam flow rate request signal S4 is output. On the other hand, a speed deviation signal S7, which is a deviation signal between the turbine speed signal S5 and the set speed signal S6, becomes an input signal to the speed controller 13.

速度制御器13は、速度調定率に従った演算により速度
制御器出力信号871を出力する。全蒸気流量要求信号
S4と速度制御器出力信号S71に負荷設定信号S8を
加算した負荷要求信号S9は、低値選択回路14により
比較され、いずれか低い値を示す信号が加減弁開度要求
信号S14として出力される。通常、負荷設定信号S8
は全蒸気流量要求信号S4より負荷設定バイアス相当だ
け高値であることから、低値選択回路14は全蒸気流量
要求信号S4を選択し1M子炉圧力を一定化する圧力優
先制御を行う。また、タービン加減弁開度要求信号51
4と全蒸気流量要求信号S4及びチャタリング防止用バ
イアス信号B2に基づいて、タービンバイパス弁開度要
求信号5151が得られる。
The speed controller 13 outputs a speed controller output signal 871 by calculation according to the speed regulation rate. The total steam flow rate request signal S4 and the load request signal S9 obtained by adding the load setting signal S8 to the speed controller output signal S71 are compared by the low value selection circuit 14, and the signal indicating the lower value is selected as the control valve opening request signal. It is output as S14. Normally, load setting signal S8
is higher than the total steam flow rate request signal S4 by an amount equivalent to the load setting bias, so the low value selection circuit 14 selects the total steam flow rate request signal S4 and performs pressure priority control to keep the 1M slave furnace pressure constant. Further, the turbine control valve opening request signal 51
4, the total steam flow rate request signal S4, and the chattering prevention bias signal B2, a turbine bypass valve opening request signal 5151 is obtained.

負荷要求信号S9と全蒸気流量要求信号S4及び負荷設
定バイアス信号B2に基づいた負荷要求誤差信号S10
は、再循環流量制御系10に入力され、再循環ポンプ9
の回転数を制御する。これにより、炉心流量を変えるこ
とができ、yX子炉出力を制御するすることができる。
Load request error signal S10 based on load request signal S9, total steam flow rate request signal S4, and load setting bias signal B2
is input to the recirculation flow rate control system 10, and the recirculation pump 9
control the rotation speed. Thereby, the core flow rate can be changed and the yX child reactor output can be controlled.

タービン加減弁開度要求信号514は、加減弁開度検出
器17の出力信号である加減弁開度信号817との偏差
による加減弁サーボ駆動信号5141となり、加減弁サ
ーボ15に入力され、タービン蒸気加減弁2の開度を制
御する。また、全蒸気流量要求信号S4と加減弁開度信
号S17及びバイアス信号B3に基づいた補正タービン
バイパス弁開度要求信号S16は、タービンバイパス弁
開度要求信号S15とともに、高値選択回路18の入力
信号となる。通常、タービン加減弁開度要求信号S14
と加減弁開度信号517は等しいことから、また負荷設
定バイアス信号B2よりバイアス信号B3が大となるよ
うに設定することから、高値選択回路18はタービンバ
イパス弁開度要求信号S15を選択し、バイパス弁サー
ボ駆動信号ビンバイパス弁6の開度を制御する。
The turbine control valve opening request signal 514 becomes a control valve servo drive signal 5141 based on the deviation from the control valve opening signal 817, which is the output signal of the control valve opening detector 17, and is input to the control valve servo 15 to generate turbine steam. Controls the opening degree of the adjustment valve 2. Further, the corrected turbine bypass valve opening request signal S16 based on the total steam flow rate request signal S4, the regulating valve opening signal S17, and the bias signal B3 is an input signal of the high value selection circuit 18, together with the turbine bypass valve opening request signal S15. becomes. Normally, the turbine control valve opening request signal S14
Since and the adjustment valve opening signal 517 are equal, and since the bias signal B3 is set to be larger than the load setting bias signal B2, the high value selection circuit 18 selects the turbine bypass valve opening request signal S15, Bypass valve servo drive signal Controls the opening degree of the bin bypass valve 6.

電力系統8に落雷等の事故が発生した場合は、事故箇所
を電力系統8から一時分離し、事故復旧後再び電力系統
8に接続する操作を行う。この時電力系統8の負荷の分
離及び接続により、タービン速度信号S5は一担上昇し
た後、事故復旧操作により2〜3秒後には定常値に復帰
することになる。これに伴い、負荷要求信号S9が負荷
設定信号S8の負荷設定バイアス信号以上に減少すると
、低値選択回路14は負荷要求信号S9を選択し、ター
ビン加減弁開度要求信号514として出力する。ここで
、負荷要求信号S9の変化が急速であると加減弁サーボ
15がその構造上の制約等により充分追従できないため
、タービン加減弁開度要求信号314に対して、加減弁
開度信号817は一致しない、このため、高値選択回路
18の入力信号であるタービンバイパス弁開度要求信号
S15と、補正タービンバイパス弁開度要求信号S16
すなわち、負荷要求信号S9の変動に伴うタービンバイ
パス弁開度要求信号S15と補正タービンバイパス弁開
度要求信号S16の入力に基づい、  て高値選択回路
18は、バイパス弁サーボ駆動信号5152を出力する
。この時、タービンバイパス弁6はタービン蒸気加減弁
2と比較してその応答速度が速いことから、バイパス弁
サーボ駆動信号5152に対して充分追従することがで
きる。
When an accident such as a lightning strike occurs in the power system 8, the accident location is temporarily separated from the power system 8, and the operation is performed to connect it to the power system 8 again after the accident is restored. At this time, due to the load separation and connection of the power system 8, the turbine speed signal S5 increases by a certain amount, and then returns to the steady value after 2 to 3 seconds due to the accident recovery operation. Accordingly, when the load request signal S9 decreases to a value greater than or equal to the load setting bias signal of the load setting signal S8, the low value selection circuit 14 selects the load request signal S9 and outputs it as the turbine adjustment valve opening request signal 514. Here, if the change in the load request signal S9 is rapid, the adjustment valve servo 15 cannot follow it sufficiently due to its structural constraints, etc. Therefore, the adjustment valve opening signal 817 is Therefore, the turbine bypass valve opening request signal S15, which is the input signal of the high value selection circuit 18, and the corrected turbine bypass valve opening request signal S16 do not match.
That is, based on the input of the turbine bypass valve opening request signal S15 and the corrected turbine bypass valve opening request signal S16 accompanying the fluctuation of the load request signal S9, the high value selection circuit 18 outputs the bypass valve servo drive signal 5152. At this time, since the turbine bypass valve 6 has a faster response speed than the turbine steam control valve 2, it can sufficiently follow the bypass valve servo drive signal 5152.

このため、バイパス弁サーボ駆動信号5152は、ター
ビンバイパス弁6の開度とみなすことができる。
Therefore, the bypass valve servo drive signal 5152 can be regarded as the opening degree of the turbine bypass valve 6.

このようなタービン蒸気加減弁2とタービンバイパス弁
6の弁開度制御により、電力系統8の事故の発生による
負荷の減少に伴うタービン速度信号S5の上昇に対して
、タービン蒸気加減弁2の開度を減少してタービン3へ
流入する蒸気流量を減少させる。同時に、タービンバイ
パス弁6の関度を増加させ、原子炉1の余剰蒸気を復水
器4に排出する。また、事故復旧による負荷の増加に伴
うタービン速度信号S5の下降に対しては、減少したタ
ービン蒸気加減弁2の開度を増加させ、タービンバイパ
ス弁6の開度をタービン蒸気加減弁2の開度の増加に応
じて減少させる。このようなタービン蒸気加減弁2とタ
ービンバイパス弁6の協調的な開度制御により、従来タ
ービン蒸気加減弁2とタービンバイパス弁6の弁開度特
性の違いに基づいて発生していた原子炉1の圧力上昇を
抑制することができる。また、原子炉圧力変動に伴う中
性子束の大幅な上昇も抑制することができる。
By controlling the opening degrees of the turbine steam control valve 2 and the turbine bypass valve 6 in this manner, the opening of the turbine steam control valve 2 is controlled in response to an increase in the turbine speed signal S5 due to a decrease in load due to an accident in the power system 8. The flow rate of steam flowing into the turbine 3 is reduced by reducing the temperature. At the same time, the pressure of the turbine bypass valve 6 is increased to discharge excess steam from the reactor 1 to the condenser 4. In addition, in response to a decrease in the turbine speed signal S5 due to an increase in load due to accident recovery, the reduced opening degree of the turbine steam control valve 2 is increased, and the opening degree of the turbine bypass valve 6 is changed to the opening degree of the turbine steam control valve 2. decrease as the degree increases. Due to such cooperative opening control of the turbine steam control valve 2 and the turbine bypass valve 6, nuclear reactor 1 pressure rise can be suppressed. Furthermore, a significant increase in neutron flux due to reactor pressure fluctuations can also be suppressed.

また、電力系統の負荷の急変時におけるタービン蒸気加
減弁とタービンバイパス弁の関度制御に関して特開昭6
0−256098号公報[原子炉圧力制御装置」に述べ
られている。この例では、タービンバイパス弁開度要求
信号の開方向及び閉方向動作の変化率が、タービン蒸気
加減弁の動作速度を超える場合は、タービンバイパス弁
開度要求信号の動作変化率をタービンバイパス弁動作制
限器により、タービン蒸気加減弁の動作変化率程度に制
限している。
In addition, regarding the control of the relationship between the turbine steam control valve and the turbine bypass valve during sudden changes in the load of the power system, JP-A No. 6
It is described in Publication No. 0-256098 [Nuclear Reactor Pressure Control Device]. In this example, if the rate of change in the opening and closing direction operations of the turbine bypass valve opening request signal exceeds the operating speed of the turbine steam control valve, the rate of change in the operation of the turbine bypass valve opening request signal is changed to The operation limiter limits the rate of change in operation of the turbine steam control valve.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

原子炉のタービン制御装置は、電力系統の事故時にター
ビン蒸気加減弁とタービンバイパス弁の弁開度特性の違
いに基づいて発生していた原子炉圧力上昇を抑制するた
めに、タービンバイパス弁の閉方向動作に対して、ター
ビン蒸気加減弁の弁動作特性に一致させた弁開度制御を
行なっている。
The reactor turbine control device closes the turbine bypass valve in order to suppress the reactor pressure rise that occurs due to the difference in valve opening characteristics between the turbine steam control valve and the turbine bypass valve during an accident in the power system. For directional operation, valve opening control is performed to match the valve operating characteristics of the turbine steam control valve.

しかし、タービンバイパス弁の開方向動作に基づく原子
炉圧力の下降に対する考慮がないために、原子炉水位上
昇によるタービントリップの可能性があった。また、タ
ービン蒸気加減弁とタービンバイパス弁の弁開度制御が
完全には協調していないため、原子炉圧力が変動し、さ
らに、中性子束が変動する問題があった。
However, since there was no consideration given to the drop in reactor pressure based on the operation of the turbine bypass valve in the opening direction, there was a possibility of turbine tripping due to a rise in the reactor water level. Furthermore, since the valve opening controls of the turbine steam control valve and the turbine bypass valve are not perfectly coordinated, there is a problem in that the reactor pressure fluctuates and, furthermore, the neutron flux fluctuates.

また、原子炉圧力制御装置のタービンバイパス弁動作制
限器は、その構成が複雑となる間層があった。
Furthermore, the turbine bypass valve operation limiter of the reactor pressure control system has a complicated structure.

本発明の目的は、タービン蒸気加減弁の弁動作特性によ
り、タービンバイパス弁の開方向及び閉方向の弁動作を
制御することにより、原子炉圧力の変動を抑制し、これ
により中性子束変動及び原子炉水位変動を抑制する、タ
ービン制御装置を提供することにある。
An object of the present invention is to suppress fluctuations in reactor pressure by controlling the opening and closing directions of the turbine bypass valve using the valve operating characteristics of the turbine steam control valve, thereby reducing neutron flux fluctuations and atomic An object of the present invention is to provide a turbine control device that suppresses fluctuations in reactor water level.

〔問題点を解決するための手段〕[Means for solving problems]

電力系統の事故のように、急速な負荷変動が発生した場
合に、タービン蒸気加減弁の弁動作特性により、タービ
ンバイパス弁の開方向及び閉方向の弁開度を制御するた
めに、タービン蒸気加減弁の加減弁開度信号、及び、タ
ービン速度制御器の出力信号と負荷設定信号との加算信
号である負荷要求信号とに基づき、タービンバイパス弁
の開度を制御するための修正負荷要求信号を得る手段を
採用した。
When rapid load fluctuations occur, such as an accident in the power system, the valve operation characteristics of the turbine steam control valve are used to control the opening degree of the turbine bypass valve in the opening and closing directions. A modified load request signal for controlling the opening of the turbine bypass valve is generated based on the adjustment valve opening signal of the valve and the load request signal which is an addition signal of the output signal of the turbine speed controller and the load setting signal. I adopted the means to obtain it.

〔作用〕[Effect]

タービン蒸気加減弁の関度信号及びタービン速度制御器
の出力信号と負荷設定信号との加算信号である負荷要求
信号とに基づいて得られた修正負荷要求信号は、タービ
ン加減弁開度要求信号と加減弁開度信号が一致いている
場合は、負荷要求信号と等しい。タービン加減弁開度要
求信号と加減弁開度信号が一致していない場合は、加減
弁開度′信号と等しくなるようにする。これにより、全
蒸気流量要求信号と修正負荷要求信号を入力とする低値
選択回路の出力であるタービン蒸気加減弁開度要求信号
が修正負荷要求信号を選択した場合は、タービンバイパ
ス弁の開度はタービン蒸気加減弁の動作特性により制御
されることになる。
The modified load request signal obtained based on the relationship signal of the turbine steam control valve and the load request signal which is the addition signal of the output signal of the turbine speed controller and the load setting signal is the turbine control valve opening request signal. If the adjustment valve opening signal matches, it is equal to the load request signal. If the turbine regulating valve opening request signal and the regulating valve opening signal do not match, they are made equal to the regulating valve opening' signal. As a result, when the turbine steam control valve opening request signal, which is the output of the low value selection circuit that receives the total steam flow rate request signal and the modified load request signal as input, selects the modified load request signal, the turbine bypass valve opening will be controlled by the operating characteristics of the turbine steam control valve.

(実施例) 以下、本発明の一実施例を第1図、第2図によリ、詳細
に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to FIGS. 1 and 2.

第1図において、第4図の従来例と異なっているのは以
下の部分である。すなわち、速度制御器13の出力信号
である速度制御器出力信号S71は、負荷設定信号S8
と加算され負荷要求信号S9となる。関数発生器156
からの出力信号である加減弁開度信号S13と負荷要求
信号S9との偏差は、加減弁開度偏差信号Sllとなる
。この加減弁開度偏差信号Sllと負荷要求信号との偏
差が、修正負荷要求信号812となる。低値選択回路1
4は、修正負荷要求信号S12及び圧力制御器12の出
力である全蒸気流量要求信号S4を入力とし、タービン
加減弁開度要求信号S14を出力する。タービン加減弁
開度要求信号S14は、関数発生器155を経て加減弁
サーボ15に入力され、タービン蒸気加減弁2の開度を
制御する。また、全蒸気流量要求信号S4とタービン加
減弁開度要求信号S14及びチャタリング防止用バイア
ス信号B2に基づいた、タービンバイパス弁開度要求信
号S15はバイパス弁サーボ16に入力され、タービン
バイパス弁6の開度を制御する 低値選択回路14の出力であるタービン加減弁開度要求
信号S14は、関数発生器155により補正された後、
ピストン位置検出器154の出力信号5131と偏差が
とられる。この偏差信号は、加減弁サーボ増幅器で増幅
され、加減弁サーボ弁152に伝えられる。加減弁サー
ボ弁152は、増幅された偏差信号に基づいて加減弁油
圧シリンダー53のピストンを作動させる。加減弁油圧
シリンダー53のピストンに結合されたタービン蒸気加
減弁2は、ピストンの移動に伴って開閉する。
The differences in FIG. 1 from the conventional example shown in FIG. 4 are as follows. That is, the speed controller output signal S71, which is the output signal of the speed controller 13, is the load setting signal S8.
is added to form the load request signal S9. Function generator 156
The deviation between the adjustment valve opening degree signal S13, which is an output signal from the controller 1, and the load request signal S9 becomes the adjustment valve opening degree deviation signal Sll. The deviation between the adjustment valve opening degree deviation signal Sll and the load request signal becomes the corrected load request signal 812. Low value selection circuit 1
4 inputs the corrected load request signal S12 and the total steam flow rate request signal S4 which is the output of the pressure controller 12, and outputs the turbine adjustment valve opening request signal S14. The turbine regulating valve opening request signal S14 is input to the regulating valve servo 15 via the function generator 155, and controls the opening of the turbine steam regulating valve 2. Further, a turbine bypass valve opening request signal S15 based on the total steam flow rate request signal S4, the turbine control valve opening request signal S14, and the chattering prevention bias signal B2 is input to the bypass valve servo 16, and the turbine bypass valve opening request signal S15 is inputted to the bypass valve servo 16, After the turbine control valve opening request signal S14, which is the output of the low value selection circuit 14 that controls the opening, is corrected by the function generator 155,
The deviation from the output signal 5131 of the piston position detector 154 is taken. This deviation signal is amplified by the control valve servo amplifier and transmitted to the control valve servo valve 152. The control valve servo valve 152 operates the piston of the control valve hydraulic cylinder 53 based on the amplified deviation signal. The turbine steam control valve 2 connected to the piston of the control valve hydraulic cylinder 53 opens and closes as the piston moves.

ピストン位置検出器154の出力信号5131は、関数
発生器156により補正され、加減弁開度信号S13と
なる。加減弁開度検出器とみなすことができるピストン
位置検出器154の出力信号5131が、加減弁サーボ
15の構造等の制約により利用できない場合は、別にタ
ービン蒸気加減弁2の開度検出器を設け、この加減弁開
度検出器の出力信号に適当な補正処理を施すことにより
The output signal 5131 of the piston position detector 154 is corrected by the function generator 156 and becomes the adjustment valve opening signal S13. If the output signal 5131 of the piston position detector 154, which can be considered as a regulating valve opening detector, cannot be used due to restrictions such as the structure of the regulating valve servo 15, a separate opening detector of the turbine steam regulating valve 2 is provided. , by applying appropriate correction processing to the output signal of this adjustment valve opening degree detector.

加減弁信号S13として使用する。It is used as the control valve signal S13.

第1図において、低値選択回路14が圧力制御器12の
出力である全蒸気流量要求信号S4を選択し、タービン
蒸気加減弁開度要求信号814として出力している場合
は、タービンバイパス弁開度要求信号S15は、加減弁
開度信号S13とは無関係であり、タービンバイパス弁
は閉じたままである。これに対し、低値選択回路14が
負荷要求信号S9と加減弁開度信号S13とに基づいた
、修正負荷要求信号S12を選択し、タービン蒸気加減
弁開度要求信号S14として出力している場)は、ター
ビン蒸気加減弁開度要求信号S14と加減弁開度信号S
13とは、はぼ等しくなる。このため、全蒸気流量要求
信号S4とタービン蒸気加減弁開度要求信号814及び
チャタリング防止用バイアス信号B2に基づいたタービ
ンバイパス弁開度要求信号S15は、加減弁開度信号S
13により制御される。
In FIG. 1, when the low value selection circuit 14 selects the total steam flow rate request signal S4, which is the output of the pressure controller 12, and outputs it as the turbine steam control valve opening request signal 814, the turbine bypass valve opens. The degree request signal S15 is independent of the control valve opening signal S13, and the turbine bypass valve remains closed. On the other hand, if the low value selection circuit 14 selects the corrected load request signal S12 based on the load request signal S9 and the adjustment valve opening signal S13 and outputs it as the turbine steam adjustment valve opening request signal S14. ) are the turbine steam control valve opening request signal S14 and the control valve opening signal S
13 is approximately equal. Therefore, the turbine bypass valve opening request signal S15 based on the total steam flow rate request signal S4, the turbine steam regulator opening request signal 814, and the chattering prevention bias signal B2 is the regulator valve opening signal S
13.

電力系統8の事故により、短時間に負荷の分離及び接続
操作が行なわれた場合のタービン蒸気加減弁2及びター
ビンバイパス弁6の応答の一例を第2図に示す。電力系
統8の負荷の増減に伴い、速度制御器出力信号S71が
第2図のように変化した場合、タービン蒸気加減弁2の
動作特性とみなすことができる加減弁開度信号S13に
従って、タービンバイパス弁6の動作が制御されるため
、タービン蒸気加減弁2とタービンバイパス弁6の動作
特性は、はぼ等しくなる。
FIG. 2 shows an example of the responses of the turbine steam control valve 2 and the turbine bypass valve 6 when load separation and connection operations are performed in a short period of time due to an accident in the power system 8. When the speed controller output signal S71 changes as shown in FIG. 2 as the load on the power system 8 increases or decreases, the turbine bypass is activated according to the moderator valve opening signal S13, which can be regarded as the operating characteristic of the turbine steam moderator valve 2. Since the operation of the valve 6 is controlled, the operating characteristics of the turbine steam control valve 2 and the turbine bypass valve 6 are approximately equal.

タービン蒸気加減弁2とタービンバイパス弁6の動作特
性がほぼ等しくなることにより、原子炉1で発生した蒸
気は、タービン蒸気加減弁2とタービンバイパス弁6と
により協調的にその流れが制御されるため、原子炉1の
圧力変動はほとんど発生しない。また、これにより中性
子束及び原子炉水位の変動を抑制することができる。
Since the operating characteristics of the turbine steam control valve 2 and the turbine bypass valve 6 are approximately equal, the flow of the steam generated in the reactor 1 is cooperatively controlled by the turbine steam control valve 2 and the turbine bypass valve 6. Therefore, almost no pressure fluctuation occurs in the reactor 1. Moreover, this makes it possible to suppress fluctuations in neutron flux and reactor water level.

以上は、タービン蒸気加減弁2の容量とタービンバイパ
ス弁6の容量が等しい場合である。タービンバイパス弁
6の容量がタービン加減弁2の容量の、例えば、25%
であるような場合は、タービン蒸気加減弁2の開閉に伴
う蒸気流量を吸収するため、タービン蒸気加減弁開度要
求信号814を四倍した信号と全蒸気流量要求信号S4
とに基づいて、タービンバイパス弁開度要求信号S15
を得ることになる。
The above is a case where the capacity of the turbine steam control valve 2 and the capacity of the turbine bypass valve 6 are equal. The capacity of the turbine bypass valve 6 is, for example, 25% of the capacity of the turbine control valve 2.
In such a case, in order to absorb the steam flow rate accompanying the opening and closing of the turbine steam control valve 2, a signal obtained by multiplying the turbine steam control valve opening degree request signal 814 by four and the total steam flow rate request signal S4 are used.
Based on, the turbine bypass valve opening request signal S15
You will get .

第3図は、本発明の原子力発電所のタービン制御装置の
その他の実施例である。第1図と異なる部分は、圧力制
御器12の出力である全蒸気流量要求信号S4とチャタ
リング防止用バイアス信号B2及び加減弁開度信号S1
3とに基づいた。修正バイパス弁開度要求信号5153
によりタービンバイパス弁6の動作を制御している点で
ある。
FIG. 3 shows another embodiment of the turbine control device for a nuclear power plant according to the present invention. The differences from FIG. 1 are the total steam flow rate request signal S4, which is the output of the pressure controller 12, the chattering prevention bias signal B2, and the control valve opening signal S1.
Based on 3. Modified bypass valve opening request signal 5153
The point is that the operation of the turbine bypass valve 6 is controlled by.

すなわち、タービンバイパス弁6の開方向及び閉方向の
動作は、タービン蒸気加減弁2の動作特性である加減弁
開度信号S13により制御されることになる。これによ
り、急速な負荷変動に伴うタービン蒸気加減弁2及びタ
ービンバイパス弁6の゛動作、原子炉圧力は、第2図の
ような応答を示すことになる。また、原子炉1の圧力が
タービン蒸気加減弁2の動作速度以上に急速に上昇した
場合は、全蒸気流量要求信号S4と加減弁開度信号S1
3とが一致せず、タービン蒸気加減弁2.及び。
That is, the operation of the turbine bypass valve 6 in the opening direction and the closing direction is controlled by the moderation valve opening signal S13, which is the operating characteristic of the turbine steam moderation valve 2. As a result, the operations of the turbine steam control valve 2 and the turbine bypass valve 6 and the reactor pressure due to rapid load fluctuations exhibit responses as shown in FIG. 2. In addition, when the pressure of the reactor 1 rapidly rises above the operating speed of the turbine steam control valve 2, the total steam flow rate request signal S4 and the control valve opening signal S1
3 do not match, and the turbine steam control valve 2. as well as.

タービンバイパス弁6の応答により原子炉圧力の安定化
が図れる。
The reactor pressure can be stabilized by the response of the turbine bypass valve 6.

本発明の原子力発電所のタービン制御装置では。In the turbine control device for a nuclear power plant according to the present invention.

タービン蒸気加減弁の動作速度と比較してタービンバイ
パス弁の動作速度が速い場合に有効となる。
This is effective when the operating speed of the turbine bypass valve is faster than the operating speed of the turbine steam control valve.

タービン蒸気加減弁の動作速度がタービンバイパス弁の
動作速度と比較して速くすることができる場合には、タ
ービンバイパス弁開度信号とタービンバイパス弁開度要
求信号との偏差信号及びタービン蒸気加減弁開度要求信
号に基づいた修正タービン加減弁開度要求信号により、
タービン蒸気加減弁の開度制御を行う、これにより、タ
ービンバイパス弁開度信号によりタービン蒸気加減弁の
開度制御を行うことができ、第3図と同様な効果が得ら
れる。
If the operating speed of the turbine steam regulator can be made faster than the operating speed of the turbine bypass valve, the difference signal between the turbine bypass valve opening signal and the turbine bypass valve opening request signal and the turbine steam regulator Modified turbine adjustment valve opening request signal based on opening request signal
The opening degree of the turbine steam regulating valve is controlled.Thereby, the opening degree of the turbine steam regulating valve can be controlled by the turbine bypass valve opening signal, and the same effect as shown in FIG. 3 can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、タービン蒸気加減弁とタービンバイパ
ス弁の動作特性をほぼ等しくすることができる。これに
より、電力系統の負荷の増減によるタービン蒸気加減弁
及びタービンバイパス弁の協調動作において、原子炉圧
力の変動を、抑えることができる。また、原子炉水位及
び中性子束の変動も抑えることができる。
According to the present invention, the operating characteristics of the turbine steam control valve and the turbine bypass valve can be made substantially equal. Thereby, fluctuations in the reactor pressure can be suppressed in the coordinated operation of the turbine steam control valve and the turbine bypass valve due to changes in the load on the power system. Furthermore, fluctuations in reactor water level and neutron flux can also be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の原子力発電所のタービン制御装置の
一実施例の系統図、第2図は、本発明の応答特性図、第
3図は1本発明の他の実施例の系統図、第4図は、ター
ビン制御装置の従来例の系統図、第5図は、従来例にお
ける応答特性図である。 1・・・原子炉、2・・・タービン蒸気加減弁、3・・
・タービン、4・・・復水器、5・・・給水ポンプ、6
・・・タービンバイパス弁、7・・・発電機、8・・・
電力系統、12・・・圧力制御器、13・・・速度制御
器、14・・・低値選択回路、15・・・加減弁サーボ
、16・・・バイパス井サーボ、S4・・・全蒸気流量
要求信号、S9・・・負荷要求信号、S11・・・加減
弁開度偏差信号、312・・・修正負荷要求信号、81
3・・・加減弁。
FIG. 1 is a system diagram of one embodiment of a turbine control device for a nuclear power plant according to the present invention, FIG. 2 is a response characteristic diagram of the present invention, and FIG. 3 is a system diagram of another embodiment of the present invention. , FIG. 4 is a system diagram of a conventional example of a turbine control device, and FIG. 5 is a response characteristic diagram of the conventional example. 1... Nuclear reactor, 2... Turbine steam control valve, 3...
・Turbine, 4... Condenser, 5... Water supply pump, 6
... Turbine bypass valve, 7... Generator, 8...
Power system, 12... Pressure controller, 13... Speed controller, 14... Low value selection circuit, 15... Control valve servo, 16... Bypass well servo, S4... Total steam Flow rate request signal, S9...Load request signal, S11...Adjustment valve opening deviation signal, 312...Corrected load request signal, 81
3...Adjustment valve.

Claims (1)

【特許請求の範囲】 1、原子炉圧力信号に基づいて原子炉圧力を制御する圧
力制御器と、タービン速度信号に基づいてタービン速度
を制御する速度制御器と、前記圧力制御器と前記速度制
御器及びタービン蒸気加減弁の開度検出器の出力信号に
基づいて前記タービン蒸気加減弁及びタービンバイパス
弁の開度を制御する手段とを備えた原子炉圧力制御装置
において、 前記速度制御器の出力信号と負荷設定信号との加算信号
である負荷要求信号と前記開度検出器の出力信号とに基
づいて前記タービンバイパス弁の開度を制御する手段を
設けたことを特徴とする原子力発電所のタービン制御装
置。 2、前記圧力制御器の出力信号である全蒸気流量要求信
号と前記開度検出器の出力信号とに基づいて、前記ター
ビンバイパス弁の開度を制御する手段を設けたことを特
徴とする特許請求の範囲第1項記載の原子力発電所のタ
ービン制御装置。
[Claims] 1. A pressure controller that controls reactor pressure based on a reactor pressure signal, a speed controller that controls turbine speed based on a turbine speed signal, and the pressure controller and the speed controller. and means for controlling the opening degrees of the turbine steam control valve and the turbine bypass valve based on the output signal of the opening degree detector of the turbine steam control valve and the turbine steam control valve, the output of the speed controller A nuclear power plant, comprising means for controlling the opening of the turbine bypass valve based on a load request signal, which is an addition signal of the signal and a load setting signal, and an output signal of the opening detector. Turbine control device. 2. A patent characterized in that means is provided for controlling the opening degree of the turbine bypass valve based on the total steam flow rate request signal which is the output signal of the pressure controller and the output signal of the opening degree detector. A turbine control device for a nuclear power plant according to claim 1.
JP61223616A 1986-09-24 1986-09-24 Turbine control device of nuclear power plant Pending JPS6380005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61223616A JPS6380005A (en) 1986-09-24 1986-09-24 Turbine control device of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61223616A JPS6380005A (en) 1986-09-24 1986-09-24 Turbine control device of nuclear power plant

Publications (1)

Publication Number Publication Date
JPS6380005A true JPS6380005A (en) 1988-04-11

Family

ID=16800991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61223616A Pending JPS6380005A (en) 1986-09-24 1986-09-24 Turbine control device of nuclear power plant

Country Status (1)

Country Link
JP (1) JPS6380005A (en)

Similar Documents

Publication Publication Date Title
JPH11352284A (en) Reactor system pressure control method through core power control
JPS6380005A (en) Turbine control device of nuclear power plant
JPH0577841B2 (en)
JPS6158903A (en) Turbine controller for nuclear reactor
JP2720032B2 (en) Turbine control device
JPS639602A (en) Inlet steam pressure control method for geothermal turbine
JPH0410040B2 (en)
JPS63204003A (en) Steam generation plant output controller
JPS63117298A (en) Turbine controller
JPS6029916B2 (en) Boiling water reactor water supply control device
JPS639638B2 (en)
JPH0481503A (en) Turbine control device
JPH0245601A (en) Turbine control device
JPH0241720B2 (en)
JPH0441798B2 (en)
JPS62240404A (en) Turbine control device
JPS61215404A (en) Control device for steam turbine
JPS62105092A (en) Controller for nuclear reactor
JPH0639889B2 (en) Steam turbine speed controller
JPS6240602B2 (en)
JPS63285205A (en) Load setting device for turbine control device
JPS60129694A (en) Controller for pressure of nuclear power plant
JPH01269093A (en) Feed water controller for nuclear reactor
JPS61134700A (en) Load follow-up controller for nuclear reactor
JPS6179193A (en) Method of controlling bypass valve for boiling water type light water reactor nuclear power plant