JPH0577841B2 - - Google Patents

Info

Publication number
JPH0577841B2
JPH0577841B2 JP62237053A JP23705387A JPH0577841B2 JP H0577841 B2 JPH0577841 B2 JP H0577841B2 JP 62237053 A JP62237053 A JP 62237053A JP 23705387 A JP23705387 A JP 23705387A JP H0577841 B2 JPH0577841 B2 JP H0577841B2
Authority
JP
Japan
Prior art keywords
valve
bypass valve
value
turbine
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62237053A
Other languages
Japanese (ja)
Other versions
JPS6480706A (en
Inventor
Shintaro Tsuji
Takumi Kawai
Sadao Yanagida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP23705387A priority Critical patent/JPS6480706A/en
Publication of JPS6480706A publication Critical patent/JPS6480706A/en
Publication of JPH0577841B2 publication Critical patent/JPH0577841B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、タービン制御装置に係り、特に原子
力発電用タービン制御装置の負荷追従運転状態に
おける系統変動に対しても加減弁とバイパス弁の
協調制御により、安定した炉圧制御ができるター
ビン制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a turbine control device, and in particular, the present invention relates to a turbine control device for nuclear power generation that is capable of coordinating adjustment valves and bypass valves even in response to system fluctuations in a load following operation state. The present invention relates to a turbine control device that allows stable furnace pressure control.

〔従来の技術〕[Conventional technology]

従来装置は、特開昭61−32102に記載のように、
バイパス弁急開回路は、多重化の観点では、誤動
作防止等の考慮がされているが、系統変動による
タービン速度の変動に対するバイパス弁急開につ
いては、特に配慮されていなかつた。
The conventional device is as described in Japanese Patent Application Laid-Open No. 61-32102.
The bypass valve quick-opening circuit has been designed to prevent malfunctions from the viewpoint of multiplexing, but no particular consideration has been given to the sudden opening of the bypass valve in response to fluctuations in turbine speed due to system fluctuations.

以下、従来装置を、第2図〜第4図により説明
する。
The conventional device will be explained below with reference to FIGS. 2 to 4.

第2図は、沸騰水型軽水炉(BWR)を設備し
たBWR発電所の概略系統図を示す。原子炉1で
発生した蒸気は、主蒸気止め弁2および加減弁3
を通つて高圧タービン4に流入し、高圧タービン
4を回転させる。この蒸気はさらに、中間蒸気止
め弁5およびインターセプト弁6を経て低圧ター
ビン7に流入し、低圧タービン7を回転させる。
前記高圧タービン4および低圧タービン7によつ
て、発電機10が駆動される。このようにして仕
事をした蒸気は、その復水器8において水に戻さ
れる。
Figure 2 shows a schematic diagram of a BWR power plant equipped with a boiling water reactor (BWR). The steam generated in the reactor 1 is transferred to the main steam stop valve 2 and the control valve 3.
The water flows into the high-pressure turbine 4 through the high-pressure turbine 4 and rotates the high-pressure turbine 4. This steam further flows into the low pressure turbine 7 via the intermediate steam stop valve 5 and the intercept valve 6, causing the low pressure turbine 7 to rotate.
A generator 10 is driven by the high pressure turbine 4 and the low pressure turbine 7. The steam that has done work in this way is returned to water in the condenser 8.

通常運転時は、原子炉1で発生した蒸気は上述
の系統で復水器8に至るが、タービントリツプ等
でタービンに蒸気を流入させることができないと
きのために、主蒸気止め弁2の前側からバイパス
し、バイパス弁9を経て復水器8に至る系統が準
備されている。
During normal operation, the steam generated in the reactor 1 reaches the condenser 8 through the above-mentioned system, but in case steam cannot flow into the turbine due to a turbine trip or the like, the main steam stop valve 2 is closed. A system is prepared that bypasses from the front side and reaches the condenser 8 via the bypass valve 9.

タービン制御装置11は、蒸気プラントから主
蒸気圧力検出器12および中間蒸気圧力検出器1
4によつて圧力信号を、速度検出器13によつて
タービン速度信号を、また電流検出器15によつ
て発電機10の出力電流を、それぞれ検出し、加
減弁3、インターセプト弁6およびバイパス弁9
などを制御するものである。
The turbine control device 11 includes a main steam pressure detector 12 and an intermediate steam pressure detector 1 from the steam plant.
4 detects a pressure signal, a speed detector 13 detects a turbine speed signal, and a current detector 15 detects the output current of the generator 10. 9
etc.

第4図に、タービン制御装置の制御系統ブロツ
ク図を示す。速度設定器21で設定された信号
は、加算器22にて速度検出器13からの信号と
比較される。比較後の偏差信号は、速度調定率回
路23において調定率に応じたゲインを乗ぜら
れ、加算器25に送られる。加算器25では、さ
らに負荷設定器24で設定された負荷信号Cが加
えられ、速度指令信号Bとなる。この速度指令信
号Bは、低値選択回路27に加えられる。一方、
圧力設定器30で設定された信号は、圧力検出器
12からの主蒸気圧力、すなわちフイードバツク
信号Dと、加算器31で比較される。比較後の偏
差信号は、圧力調定率回路32で調定率に応じた
ゲインを乗ぜられ、全蒸気流量信号Aとして低値
選択回路27に送られる。低値選択回路27で
は、加算器25からの速度指令信号Bおよび圧力
調定率回路32からの全蒸気流量信号Aに、さら
に負荷制限器26からの制限信号を加えた3つの
信号のうち、最小の信号を負荷信号Wとして加減
弁制御回路28に伝え、加減弁3の開度を調整し
て、タービンの負荷を制御する。また、負荷遮断
時には、加減弁急閉弁200より、機械的に急閉
とする。
FIG. 4 shows a control system block diagram of the turbine control device. The signal set by the speed setter 21 is compared with the signal from the speed detector 13 by an adder 22. The deviation signal after the comparison is multiplied by a gain according to the adjustment rate in the speed adjustment rate circuit 23 and sent to the adder 25. The adder 25 further adds the load signal C set by the load setter 24 to obtain the speed command signal B. This speed command signal B is applied to the low value selection circuit 27. on the other hand,
The signal set by the pressure setting device 30 is compared with the main steam pressure from the pressure detector 12, that is, the feedback signal D, by an adder 31. The deviation signal after the comparison is multiplied by a gain according to the adjustment rate in the pressure adjustment rate circuit 32 and sent to the low value selection circuit 27 as the total steam flow rate signal A. The low value selection circuit 27 selects the lowest value among the three signals obtained by adding the limit signal from the load limiter 26 to the speed command signal B from the adder 25 and the total steam flow rate signal A from the pressure regulation rate circuit 32. The signal is transmitted as a load signal W to the regulating valve control circuit 28, and the opening degree of the regulating valve 3 is adjusted to control the load on the turbine. Further, when the load is cut off, the control valve is suddenly closed mechanically by the quick-closing valve 200.

タービンバイパス弁制御回路34は、減算器3
3の出力によつて制御される。正常運転時に、加
減弁3が全蒸気流量信号A(圧力制御信号)によ
り制御されている場合は、減算器33の2つの入
力は等しく、減算器33の出力は零となるので、
バイパス弁9は全閉している。一方、負荷遮断等
のために、加減弁3が速度指令信号B(速度制御
信号)によつて制御されている場合は、信号Aが
信号Bよりも大であるので、その差が減算器33
より出力され、バイパス弁制御回路34はバイパ
ス弁9を開くように動作する。すなわち、加減弁
3が開方向に動作した場合、つまり信号Bが増加
した場合には、減算器33の出力は減少して、逆
にバイパス弁を閉じる方向に制御する。これによ
り、原子炉1から流出する全蒸気流量が常に一定
になるように制御する。また、バイパス弁開度指
令信号100と、バイパス弁開度101の偏差信
号102を、偏差検出103により検出し、規定
値以上となつた場合、バイパス弁急開弁104に
より、バイパス弁を機械的に急開させるようにし
ている。
The turbine bypass valve control circuit 34 includes a subtracter 3
It is controlled by the output of 3. During normal operation, when the regulator valve 3 is controlled by the total steam flow rate signal A (pressure control signal), the two inputs of the subtractor 33 are equal and the output of the subtractor 33 is zero, so
Bypass valve 9 is fully closed. On the other hand, if the regulator valve 3 is controlled by the speed command signal B (speed control signal) for load shedding or the like, since the signal A is larger than the signal B, the difference is the difference between the subtracter 33
The bypass valve control circuit 34 operates to open the bypass valve 9. That is, when the regulating valve 3 operates in the opening direction, that is, when the signal B increases, the output of the subtractor 33 decreases, and conversely controls the bypass valve in the closing direction. Thereby, the total flow rate of steam flowing out from the nuclear reactor 1 is controlled to be always constant. In addition, a deviation signal 102 between the bypass valve opening command signal 100 and the bypass valve opening 101 is detected by a deviation detection 103, and when the deviation signal 102 exceeds a specified value, a bypass valve quick opening valve 104 mechanically closes the bypass valve. I'm trying to get it to open quickly.

第3図において、時刻T1に何らかの原因で系
統変動が発生し、タービン速度が突変(波形Vで
上昇)した場合、速度検出器13の出力が増大す
るので、加算器25の出力である速度指令信号B
(波形B)が減少する。そして、時刻T2におい
て、速度指令信号Bが全蒸気流量信号A(波形A)
よりも小さくなると、低値選択回路27が信号B
を選択するので、加減弁制御回路28によつて加
減弁3はその開度(波形F)が小さくなるように
制御される。一方、バイパス弁9(波形T)は、
全蒸気流量信号A(波形A)が信号Bよりも大と
なるので、その差が減算器33より出力され、バ
イパス弁制御回路34により開くように動作す
る。また、時刻T3において、バイパス弁指令信
号100とバイパス弁開度101の偏差が偏差検
出103により規定値以上を検出し(波形X)し
た場合、バイパス弁開度指令100にかかわら
ず、バイパス弁急開弁104により、バイパス弁
9(波形T)は全開する。このため、タービン速
度が定常状態に復帰した時刻T4では、加減弁3
の開度は、全蒸気流量信号Aによる制御に復帰す
るため、バイパス弁9はバイパス弁制御回路34
により閉制御(波形S)するが、バイパス弁急開
弁104により機械的に急開しているため、加減
弁3とバイパス弁9による全蒸気流量の一定制御
のバランスがくずれ、原子炉1の圧力変動(波形
AのTX〜TY間)となる。
In FIG. 3, when a system fluctuation occurs for some reason at time T 1 and the turbine speed suddenly changes (increases with waveform V), the output of the speed detector 13 increases, so the output of the adder 25 Speed command signal B
(Waveform B) decreases. Then, at time T 2 , the speed command signal B becomes the total steam flow rate signal A (waveform A).
, the low value selection circuit 27 selects the signal B
is selected, the regulator valve control circuit 28 controls the regulator valve 3 so that its opening degree (waveform F) becomes small. On the other hand, the bypass valve 9 (waveform T) is
Since the total steam flow rate signal A (waveform A) is larger than the signal B, the difference is output from the subtractor 33, and the bypass valve control circuit 34 operates to open it. Furthermore, at time T3 , if the deviation between the bypass valve command signal 100 and the bypass valve opening degree 101 is detected by the deviation detection 103 to be equal to or higher than the specified value (waveform X), regardless of the bypass valve opening degree command 100, the bypass valve The quick-open valve 104 causes the bypass valve 9 (waveform T) to be fully opened. Therefore, at time T 4 when the turbine speed returns to the steady state, the regulator valve 3
Since the opening degree of the bypass valve 9 returns to control based on the total steam flow rate signal A, the bypass valve 9 is controlled by the bypass valve control circuit 34.
However, since the bypass valve is suddenly opened mechanically by the quick-open valve 104, the balance between the constant control of the total steam flow rate by the regulator valve 3 and the bypass valve 9 is lost, and the reactor 1 is closed (waveform S). This results in pressure fluctuation (between T X and T Y of waveform A).

前述のように、従来のタービン制御装置におい
ては、系統変動によるターピン速度の変動(突
変)に対して、速度指令信号Bの変化によつて、
バイパス弁9が急開動作となる可能性があつた。
このため、通常運転時の系統変動において、加減
弁3とバイパス弁9の協調制御がくずれ、原子炉
1から流出する全蒸気流量を一定となるように制
御する動作が阻害されることになつていた。
As mentioned above, in the conventional turbine control device, in response to fluctuations (sudden changes) in the turpin speed due to system fluctuations, due to changes in the speed command signal B,
There was a possibility that the bypass valve 9 would open suddenly.
For this reason, during system fluctuations during normal operation, the cooperative control of the regulator valve 3 and the bypass valve 9 breaks down, and the operation to control the total steam flow rate flowing out from the reactor 1 to be constant is obstructed. Ta.

なお、火力機の場合、負荷追従運転であるガバ
ナフリー運転時の出力設定コントロールおよび圧
力コントロールは、ボイラ制御装置側で制御して
おり、タービン制御装置には、ガバナ制御のみで
ある。原子力発電所のタービン制御装置は、カバ
ナ制御のほかに原子炉の圧力制御を有しているた
め、プラントの安定した運用の観点から、加減弁
とバイパス弁の協調が非常に重要な位置付けにあ
る。
In the case of a thermal power plant, the output setting control and pressure control during governor free operation, which is load following operation, are controlled by the boiler control device, and the turbine control device only has governor control. In addition to cabana control, the turbine control system of a nuclear power plant has reactor pressure control, so coordination between moderation valves and bypass valves is extremely important from the perspective of stable plant operation. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術における加減弁とバイパス弁による原
子炉圧力制御回路では、通常運転時の系統変動に
よるタービン速度変化に対するバイパス弁の制御
について配慮されていなかつたため、負荷遮断以
外の要因で系統が変動した場合、加減弁とバイパ
ス弁の協調動作による炉圧一定制御とすべきであ
るのに、加減弁がサーボ弁であるにもかかわら
ず、バイパス弁が急開動作となり、原子炉から流
出する全蒸気流量一定制御がくずれ、原子炉圧力
変動が生じるという問題があつた。
In the reactor pressure control circuit using the regulator valve and bypass valve in the conventional technology, there was no consideration given to the control of the bypass valve in response to changes in turbine speed due to system fluctuations during normal operation. The reactor pressure should be controlled at a constant level through coordinated operation of the regulator valve and the bypass valve, but even though the regulator valve is a servo valve, the bypass valve opens suddenly, resulting in a constant flow rate of total steam flowing out of the reactor. There were problems with control breakdown and reactor pressure fluctuations.

本発明の目的は、負荷遮断以外の系統変動によ
るタービン速度の変動に対しては、加減弁とバイ
パス弁の制御による協調制御を維持すめため、バ
イパス弁を急開動作しないようにバイパス弁急開
禁止回路を設け、バイパス弁急開を必要とする負
荷遮断時、トリツプ時のみバイパス弁急開とする
回路とし、加減弁とバイパス弁の協調制御をプラ
ント運転状態により判断し、安定した炉圧制御す
るようにしたタービン制御装置を提供することに
ある。
The purpose of the present invention is to maintain cooperative control by controlling the regulator valve and the bypass valve in response to fluctuations in turbine speed due to system fluctuations other than load shedding, and to prevent the bypass valve from suddenly opening. A prohibition circuit is installed, and the bypass valve is suddenly opened only when a load is interrupted or a trip occurs, and the coordinated control of the moderation valve and bypass valve is determined based on the plant operating status, resulting in stable furnace pressure control. An object of the present invention is to provide a turbine control device that does the following.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、原子炉より、発生する主蒸気の主
蒸気圧力設定値と主蒸気圧力検出値の偏差に基づ
く主蒸気流量信号、該主蒸気により駆動されるタ
ービンのタービン速度設定値とタービン速度検出
値の偏差に基づく速度調定率信号と該タービンの
負荷設定値との和に基づく速度指令信号、のいず
れか低値を選択する低値選択手段と、該低値選択
手段の選択出力を入力し主蒸気流量を調整する加
減弁の開度を制御する加減弁制御手段と、前記低
値選択手段の選択出力と前記主蒸気流量信号の偏
差に基づいて主蒸気流量のバイパス弁開度指令値
を出力しバイパス弁の開度を制御するバイパス弁
制御手段と、所定の異常時前記加減弁を急閉させ
る加減弁急閉手段と、前記低値選択手段の選択出
力と前記主蒸気流量信号の偏差に基づいて主蒸気
流量のバイパス弁開度指令値を出力しバイパス弁
の開度を制御するバイパス弁制御手段と、所定の
異常時前記加減弁を急閉させる加減弁急閉手段
と、前記バイパス弁開度指令値と前記バイパス弁
の開度検出値との差が所定の値を超えたときで、
かつ前記加減弁急閉手段の作動時にのみ、前記バ
イパス弁を急開させるバイパス弁急開手段と、有
するタービン制御装置によつて解決される。
The above purpose is to detect the main steam flow rate signal based on the deviation between the main steam pressure setting value of the main steam generated from the nuclear reactor and the detected main steam pressure value, and the turbine speed setting value and turbine speed detection of the turbine driven by the main steam. Low value selection means for selecting the lower value of either the speed regulation rate signal based on the deviation of the value or the speed command signal based on the sum of the load setting value of the turbine, and the selection output of the low value selection means is inputted. a regulating valve control means for controlling the opening degree of a regulating valve that adjusts the main steam flow rate; and a bypass valve opening command value for the main steam flow rate based on the deviation between the selection output of the low value selection means and the main steam flow rate signal. bypass valve control means for outputting and controlling the opening degree of the bypass valve; adjustment valve quick closing means for rapidly closing the adjustment valve in the event of a predetermined abnormality; and a deviation between the selected output of the low value selection means and the main steam flow rate signal. bypass valve control means for outputting a bypass valve opening degree command value of the main steam flow rate based on the flow rate and controlling the opening degree of the bypass valve; moderation valve quick closing means for rapidly closing the moderation valve in the event of a predetermined abnormality; When the difference between the valve opening command value and the opening detection value of the bypass valve exceeds a predetermined value,
The present invention is solved by a turbine control device including bypass valve quick-opening means that suddenly opens the bypass valve only when the regulating valve quick-closing means is activated.

〔作用〕[Effect]

バイパス弁開度指令値とバイパス弁の開度検出
値との差が所定の値を超えたとき、バイパス弁を
急開させるバイパス弁急開手段を、加減弁を急開
させる所定の異常時のみ急開させ、それ以外のと
きは、加減弁とバイパス弁を協調制御する。
When the difference between the bypass valve opening command value and the bypass valve opening detection value exceeds a predetermined value, the bypass valve quick opening means that suddenly opens the bypass valve is activated only in the case of a predetermined abnormality that suddenly opens the control valve. The valve is opened suddenly, and at other times, the control valve and bypass valve are controlled in a coordinated manner.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第5図、第
6図により説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1, 5, and 6.

第1図は本発明の一実施例のブロツク図であ
り、第5図、第6図はその動作を説明するための
波形図である。
FIG. 1 is a block diagram of one embodiment of the present invention, and FIGS. 5 and 6 are waveform diagrams for explaining its operation.

第1図は、タービン制御装置の制御系統ブロツ
ク図を示す。速度設定器21で設定された信号
は、加算器22にて速度検出器13からの信号と
比較される。比較後の偏差信号は、速度調定率回
路23において調定率に応じたゲインを乗ぜら
れ、加算器25に送られる。加算器25では、さ
らに負荷設定器24で設定された負荷信号Cが加
えられ、速度指令信号Bとなる。この速度指令信
号Bは、低値選択回路27に加えられる。一方、
圧力設定器30で設定された信号は、圧力検出器
12からの主蒸気圧力、すなわちフイードバツク
信号Dと加算器31で比較される。比較後の偏差
信号は、圧力調定率回路32で調定率に応じたゲ
インを乗ぜられ、全蒸気流量信号Aとして低値選
択回路27に送られる。低値選択回路27では、
加算器25からの速度指令信号Bおよび圧力調定
率回路32からの全蒸気流量信号Aに、さらに負
荷制限器26からの制限信号を加えた3つの信号
のうち、最小の信号を負荷信号Wとして加減弁制
御回路28に伝え、加減弁3の開度を調整して、
タービンの負荷を制御する。また、負荷遮断時に
は、加減弁急閉弁200より、機械的に急閉とす
る。
FIG. 1 shows a control system block diagram of a turbine control device. The signal set by the speed setter 21 is compared with the signal from the speed detector 13 by an adder 22. The deviation signal after the comparison is multiplied by a gain according to the adjustment rate in the speed adjustment rate circuit 23 and sent to the adder 25. The adder 25 further adds the load signal C set by the load setter 24 to obtain the speed command signal B. This speed command signal B is applied to the low value selection circuit 27. on the other hand,
The signal set by the pressure setting device 30 is compared with the main steam pressure from the pressure detector 12, that is, the feedback signal D, by an adder 31. The deviation signal after the comparison is multiplied by a gain according to the adjustment rate in the pressure adjustment rate circuit 32 and sent to the low value selection circuit 27 as the total steam flow rate signal A. In the low value selection circuit 27,
Out of the three signals obtained by adding the speed command signal B from the adder 25 and the total steam flow rate signal A from the pressure regulation rate circuit 32, and the limit signal from the load limiter 26, the minimum signal is set as the load signal W. It is transmitted to the control valve control circuit 28, and adjusts the opening degree of the control valve 3.
Control the turbine load. Further, when the load is cut off, the control valve is suddenly closed mechanically by the quick-closing valve 200.

タービンバイパス弁制御回路34は、減算器3
3の出力によつて制御される。正常運転時に、加
減弁3が全蒸気流量信号A(圧力制御信号)によ
り制御されている場合は、減算器33の2つの入
力は等しく、減算器33の出力は零となるので、
バイパス弁9は全閉している。一方、負荷遮断時
等のために、加減弁3が速度指令信号B(速度制
御信号)によつて制御されている場合は、信号A
が信号Bよりも大であるので、その差が減算器3
3より出力され、バイパス弁制御回路34はバイ
パス弁9を開くよう動作する。すなわち、加減弁
3が開方向に動作した場合、つまり信号Bが増加
した場合は、減算器33の出力は減少して、逆に
バイパス弁9を閉じる方向に制御する。これによ
り、原子炉1から流出する全蒸気流量が常に一定
となるように制御する。また、バイパス弁開度指
令信号100とバイパス弁開度101の偏差信号
102を偏差検出103により検出し、規定値以
上となつた場合、バイパス弁急開弁104によ
り、バイパス弁を機械的に急開させるようにして
いる。
The turbine bypass valve control circuit 34 includes a subtracter 3
It is controlled by the output of 3. During normal operation, when the regulator valve 3 is controlled by the total steam flow rate signal A (pressure control signal), the two inputs of the subtractor 33 are equal and the output of the subtractor 33 is zero, so
Bypass valve 9 is fully closed. On the other hand, when the regulator valve 3 is controlled by the speed command signal B (speed control signal) due to load cutoff, etc., the signal A
is larger than signal B, so the difference is subtractor 3
3, and the bypass valve control circuit 34 operates to open the bypass valve 9. That is, when the regulating valve 3 operates in the opening direction, that is, when the signal B increases, the output of the subtractor 33 decreases, and conversely, the bypass valve 9 is controlled in the closing direction. Thereby, the total flow rate of steam flowing out from the nuclear reactor 1 is controlled to be always constant. In addition, a deviation signal 102 between the bypass valve opening command signal 100 and the bypass valve opening 101 is detected by a deviation detection 103, and when the deviation signal 102 exceeds a specified value, the bypass valve quick opening valve 104 mechanically suddenly opens the bypass valve. I'm trying to open it.

従来例を表わす第4図との対比から明らかなよ
うに、本実施例は、バイパス弁偏差検出103の
出力に、負荷遮断40%以上検出信号、トリツプ信
号、および負荷遮断40%以下検出信号の論理和、
論理積等により、バイパス弁急開禁止回路を追加
したことにより、通常運転時の系統変動に伴うタ
ービン速度上昇による速度指令信号Bの急減すな
わち加減弁開度指令202による閉制御となるこ
とで、バイパス弁9が開制御となつた場合でも、
バイパス弁急開偏差103の出力を中止し、加減
弁3とバイパス弁9のサーボ弁204,105に
よる協調制御を維持する。つまり、第5図に示す
ように、バイパス弁急開動作を中止することで、
加減弁3とバイパス弁9のサーボ弁204,10
5による連続制御が行われ、原子炉から出力され
る全蒸気流量を実質上ほぼ一定値に制御されるこ
とになる。すなわち、第5図に示したように、時
刻T1において、タービン速度(波形V)上昇が
発生すると、速度指令信号B(波形B)は減少す
る。
As is clear from the comparison with FIG. 4 representing the conventional example, in this embodiment, the output of the bypass valve deviation detection 103 includes a load shedding 40% or more detection signal, a trip signal, and a load shedding 40% or less detection signal. logical sum,
By adding a bypass valve sudden opening prohibition circuit using logical product etc., the speed command signal B suddenly decreases due to the turbine speed increase due to system fluctuation during normal operation, that is, close control is performed by the adjustment valve opening command 202. Even when the bypass valve 9 is controlled to open,
The output of the bypass valve sudden opening deviation 103 is stopped, and cooperative control by the servo valves 204 and 105 of the regulator valve 3 and the bypass valve 9 is maintained. In other words, as shown in Figure 5, by stopping the bypass valve quick opening operation,
Servo valves 204 and 10 for the control valve 3 and bypass valve 9
5 is performed continuously, and the total steam flow rate output from the nuclear reactor is controlled to a substantially constant value. That is, as shown in FIG. 5, when the turbine speed (waveform V) increases at time T1 , the speed command signal B (waveform B) decreases.

時刻T2〜T3にて、加減弁3は、信号Bにより
閉制御に移行し、加減弁指令202は減方向とな
り、加減弁3はサーボ弁204によりその開度
(波形F)が小さくなるよう制御される。また、
バイパス弁9は、全蒸気流量信号A(波形A)が
信号B(波形B)より大きくなるため、バイパス
弁指令100(波形S)が増方向となり、バイパ
ス弁9は開動作(波形T)となるが、負荷遮断、
トリツプでないかぎり、バイパス弁急開動作を中
止しているので、時刻T10,T11にて偏差検出1
03が規定値以上(波形X)となつても、バイパ
ス弁9は加減弁3同様、バイパス弁のサーボ弁1
05により制御される。言い換えれば、時刻T2
〜T3のように、ガバナフリー運転時の系統変動
時に対しても、バイパス弁9が急開することな
く、サーボ弁105により制御が継続される。し
たがつて、ガバナフリー運転状態でも、加減弁3
とバイパス弁9は、原子炉から流出する全蒸気流
量信号(波形A)を常に一定にするよう、加減
弁、バイパス弁のサーボ弁204,105のみ
で、連続的に制御を行うことで炉圧変動を最小に
抑制し、安定した圧力制御を可能にする。
At time T 2 to T 3 , the control valve 3 shifts to close control by the signal B, the control valve command 202 is in the decreasing direction, and the opening degree (waveform F) of the control valve 3 is reduced by the servo valve 204. controlled like this. Also,
In the bypass valve 9, the total steam flow rate signal A (waveform A) becomes larger than the signal B (waveform B), so the bypass valve command 100 (waveform S) increases, and the bypass valve 9 performs an opening operation (waveform T). However, load shedding,
Unless there is a trip, the bypass valve quick opening operation is stopped, so deviation detection 1 occurs at times T 10 and T 11 .
Even if 03 is equal to or higher than the specified value (waveform
Controlled by 05. In other words, time T 2
Even when the system fluctuates during governor-free operation, as shown in T3 , the control is continued by the servo valve 105 without the bypass valve 9 suddenly opening. Therefore, even in the governor free operation state, the regulator valve 3
and the bypass valve 9 are continuously controlled by only the servo valves 204 and 105 of the control valve and the bypass valve so that the total steam flow rate signal (waveform A) flowing out from the reactor is always constant. Minimizes fluctuations and enables stable pressure control.

以上、通常運転時の系統変動によるタービン速
度の上昇に対するが減弁3とバイパス弁9の協調
制御を述べたが、加減弁が急閉あるいは全閉とな
る事象、すなわち負荷遮断、トリツプ時は、バイ
パス弁を急開させる機能を合わせて持ち、原子炉
から流出する全蒸気流量をすべて加減弁3からバ
イパス弁9に移行し、バイパス弁9のみで全蒸気
流量一定制御を行う。
Above, we have described the cooperative control of the regulator valve 3 and the bypass valve 9 in response to the increase in turbine speed due to system fluctuations during normal operation, but in the event that the regulator valve closes suddenly or completely, that is, during load shedding or tripping, It also has the function of rapidly opening the bypass valve, transfers all the total steam flow rate flowing out from the reactor from the control valve 3 to the bypass valve 9, and performs constant control of the total steam flow rate only with the bypass valve 9.

バイパス弁9を急開させる事象として、40%以
上の負荷遮断、40%未満を含む負荷遮断、および
トリツプがある。これらの検出は、40%以上の負
荷遮断は、パワーロードアンバランス検出回路2
01、40%未満を含む負荷遮断は、一旦加減弁3
にて流量、すなわち出力をとつたのち、主遮断器
300が開放(OFF)されたことを検出する回
路400、およびトリツプは、トリツプ状態を検
出するリレー回路500を設けることで行う。
Events that cause the bypass valve 9 to open suddenly include a load shedding of 40% or more, a load shedding that is less than 40%, and a trip. These detections are performed by power load unbalance detection circuit 2 when load shedding of 40% or more occurs.
01. For load shedding that includes less than 40%, temporarily close the control valve 3.
A circuit 400 that detects that the main circuit breaker 300 is opened (OFF) after the flow rate, that is, the output is obtained, and a relay circuit 500 that detects the trip state are provided.

すなわち、負荷遮断検出回路400は、上記の
動作をする低値選択回路27の出力が規定値以上
で主遮断器300がONすると、フリツプフロツ
プ403がセツトされる。この状態で負荷遮断が
発生すると、主遮断器300がOFFするため、
AND回路400の出力が“1”となる。
That is, in the load shedding detection circuit 400, the flip-flop 403 is set when the output of the low value selection circuit 27 which operates as described above is equal to or greater than a specified value and the main circuit breaker 300 is turned on. If load shedding occurs in this state, the main circuit breaker 300 will turn OFF.
The output of the AND circuit 400 becomes "1".

上記により、40%以下の負荷遮断を検出してい
る。
As a result of the above, load shedding of 40% or less is detected.

上記のうち、具体例として40%以上の負荷遮断
(パワーロードアンバランス検出)を例に、第1
図および第6図により説明する。
Among the above, we will take load shedding of 40% or more (power load imbalance detection) as a specific example.
This will be explained with reference to the drawings and FIG.

第1図より、40%以上の負荷遮断が発生する
と、パワーロードアンバランス検出201により
負荷設定24出力が瞬時“0”となり、信号Cが
“0”となることから、低値選択回路27は、速
度指令信号Bを選択し、加減弁制御回路28に伝
えられる。同時に、負荷遮断検出201により加
減弁急閉弁200を動作させ、加減弁3は急速閉
となる。すなわち、第6図に示すように、時刻
T1において負荷遮断が発生すると、タービン速
度(波形V)が上昇するとともに負荷設定Cが
“0”となり、速度指令信号B(波形B)が“0”
以下となる。
From FIG. 1, when a load shedding of 40% or more occurs, the output of the load setting 24 becomes "0" instantaneously due to the power load imbalance detection 201, and the signal C becomes "0", so the low value selection circuit 27 , speed command signal B is selected and transmitted to the control valve control circuit 28. At the same time, the load cutoff detection 201 operates the control valve quick closing valve 200, and the control valve 3 is quickly closed. In other words, as shown in Figure 6, the time
When load shedding occurs at T 1 , the turbine speed (waveform V) increases and the load setting C becomes "0", causing the speed command signal B (waveform B) to become "0".
The following is true.

なお、加減弁急閉弁200が動作するため、加
減弁3は急速に全閉(波形F)となる。また、低
値選択回路27の出力が“0”以下となるため、
全蒸気流量信号A(波形A)は、すべてバイパス
弁制御回路34に伝えられ、バイパス弁9のみで
原子炉から発生する全蒸気流量を一定に制御する
ことになる。したがつて、負荷遮断時には、加減
弁急閉弁200動作となるため、バイパス弁9も
バイパス弁サーボ弁105による制御ではなく、
加減弁3の逆方向に急開動作させる必要があるこ
とから、時刻T1〜T2の間のみ、バイパス弁急開
偏差検出103の出力(波形X)をバイパス急開
弁104に伝え、バイパス急開動作(波形T)と
加減弁3の動作と協調をとる。また、バイパス急
開動作(波形X)は、負荷遮断直後時刻T1〜T2
の規定時間内とし、時刻T2以降は、バイパス弁
サーボ弁105のみによる制御に移行させ、不必
要なバイパス急開をさけ、バイパス弁のみで原子
炉から流出する全蒸気流量を一定制御(波形A)
とする。
Note that since the quick closing valve 200 operates, the regulating valve 3 quickly becomes fully closed (waveform F). In addition, since the output of the low value selection circuit 27 becomes “0” or less,
All of the total steam flow rate signal A (waveform A) is transmitted to the bypass valve control circuit 34, and the total steam flow rate generated from the reactor is controlled to be constant only by the bypass valve 9. Therefore, when the load is cut off, the control valve quick closing valve 200 operates, so the bypass valve 9 is not controlled by the bypass valve servo valve 105.
Since it is necessary to quickly open the regulator valve 3 in the opposite direction, the output ( waveform The rapid opening operation (waveform T) is coordinated with the operation of the regulating valve 3. In addition, the bypass sudden opening operation ( waveform
From time T 2 onwards, control is shifted to only by the bypass valve servo valve 105 to avoid unnecessary sudden opening of the bypass, and the total steam flow rate flowing out from the reactor is controlled at a constant rate (waveform) by only the bypass valve. A)
shall be.

以上より、プラント運転状態を判断し、加減弁
3とバイパス弁9の協調制御を可能とする。
As described above, the plant operating state is determined and cooperative control of the regulator valve 3 and the bypass valve 9 is made possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、バイパス弁開度指令値とバイ
パス弁の開度検出値との差が所定の値を超えたと
き、バイパス弁を急開させるバイパス弁急開手段
を、加減弁を急開させる所定の異常時のみ急開さ
せ、それ以外のときは加減弁とバイパス弁を協調
制御するので、ガバナフリー運転状態で系統変動
によるタービン速度が変動しても、バイパス弁が
急開動作することなく、加減弁とバイパス弁のサ
ーボ弁により協調制御が継続され、安定した原子
炉圧力制御できる効果がある。また、負荷遮断、
トリツプ時には、加減弁急閉となることから、バ
イパス弁も急開動作とし、加減弁とバイパス弁の
協調制御とすることで、原子炉圧力変動を最小に
抑える効果がある。
According to the present invention, when the difference between the bypass valve opening degree command value and the bypass valve opening degree detection value exceeds a predetermined value, the bypass valve quick opening means for suddenly opening the bypass valve is configured to suddenly open the regulating valve. Since the regulator valve and bypass valve are controlled in a coordinated manner, the bypass valve will not open suddenly even if the turbine speed fluctuates due to system fluctuations during governor-free operation. Instead, cooperative control is continued by the servo valves of the control valve and the bypass valve, which has the effect of stably controlling the reactor pressure. Also, load shedding,
At the time of a trip, the regulator valve closes suddenly, so the bypass valve also opens rapidly, and cooperative control of the regulator valve and the bypass valve has the effect of minimizing reactor pressure fluctuations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロツク図、
第2図は本発明を適用するのに好適な原子力発電
所の系統を示す概略構成図、第3図は従来のター
ビン制御装置の動作を説明するための波形図、第
4図は従来のタービン制御装置のブロツク図、第
5図、第6図は実施例によるタービン制御装置の
動作を説明するための波形図である。 1……原子炉、3……加減弁、4……高圧ター
ビン、7……低圧タービン、9……バイパス弁、
12……主蒸気圧力検出器、13……速度検出
器、21……速度設定器、22,25,31,3
3……加算器、23……速度調定率回路、24…
…負荷設定器、26……負荷制限器、27……低
値選択回路、28……加減弁制御回路、30……
圧力設定器、32……圧力調定率回路、34……
バイパス弁制御回路、100……バイパス弁開度
指令、101……バイパス弁開度、102……バ
イパス弁開度偏差、103……バイパス弁開度偏
差検出、104……バイパス弁急開弁、200…
…加減弁急閉弁、201……パワーロードアンバ
ランス検出、202……加減弁開度指令、203
……加減弁開度、105……バイパス弁サーボ
弁、204……加減弁サーボ弁、300……主遮
断器、400……負荷遮断検出、500……トリ
ツプリレー、600……切換えスイツチ(パワー
ロードアンバランス検出で“0”)、700……ワ
ンシヨツト回路。
FIG. 1 is a block diagram showing one embodiment of the present invention;
Fig. 2 is a schematic configuration diagram showing a nuclear power plant system suitable for applying the present invention, Fig. 3 is a waveform diagram for explaining the operation of a conventional turbine control device, and Fig. 4 is a conventional turbine control system. The block diagram of the control device, FIGS. 5 and 6, are waveform diagrams for explaining the operation of the turbine control device according to the embodiment. 1... Nuclear reactor, 3... Control valve, 4... High pressure turbine, 7... Low pressure turbine, 9... Bypass valve,
12... Main steam pressure detector, 13... Speed detector, 21... Speed setter, 22, 25, 31, 3
3...Adder, 23...Speed regulation rate circuit, 24...
...Load setter, 26...Load limiter, 27...Low value selection circuit, 28...Adjustment valve control circuit, 30...
Pressure setting device, 32...Pressure adjustment rate circuit, 34...
Bypass valve control circuit, 100...Bypass valve opening command, 101...Bypass valve opening, 102...Bypass valve opening deviation, 103...Bypass valve opening deviation detection, 104...Bypass valve sudden opening valve, 200...
... Adjustment valve quick closing valve, 201 ... Power load imbalance detection, 202 ... Adjustment valve opening command, 203
...Adjustment valve opening, 105...Bypass valve servo valve, 204...Adjustment valve servo valve, 300...Main breaker, 400...Load cutoff detection, 500...Trip relay, 600...Changing switch (power load) Unbalance detection: "0"), 700...One shot circuit.

Claims (1)

【特許請求の範囲】 1 原子炉より発生する主蒸気の主蒸気圧力設定
値と主蒸気圧力検出値の偏差に基づく主蒸気流量
信号、該主蒸気により駆動されるタービンのター
ビン速度設定値とタービン速度検出値の偏差に基
づく速度調定率信号と該タービンの負荷設定値と
の和に基づく速度指令信号、のいずれか低値を選
択する低値選択手段と、 該低値選択手段の選択出力を入力し主蒸気流量
を調整する加減弁の開度を制御する加減弁制御手
段と、 前記低値選択手段の選択出力と前記主蒸気流量
信号の偏差に基づいて主蒸気流量のバイパス弁開
度指令値を出力しバイパス弁の開度を制御するバ
イパス弁制御手段と、 所定の異常時前記加減弁を急閉させる加減弁急
閉手段と、 前記バイパス弁開度指令値と前記バイパス弁の
開度検出値との差が所定の値を超えたときで、か
つ前記加減弁急閉手段の作動時にのみ、前記バイ
パス弁を急開させるバイパス弁急開手段と、 を有するタービン制御装置。
[Claims] 1. A main steam flow rate signal based on a deviation between a main steam pressure setting value of main steam generated from a nuclear reactor and a detected main steam pressure value, a turbine speed setting value of a turbine driven by the main steam, and a turbine. a low value selection means for selecting the lower value of a speed regulation rate signal based on a deviation of the detected speed value and a speed command signal based on the sum of a load setting value of the turbine; and a selection output of the low value selection means. a regulating valve control means for controlling the opening degree of a regulating valve that receives input and adjusts the main steam flow rate; and a bypass valve opening command for the main steam flow rate based on the deviation between the selection output of the low value selection means and the main steam flow rate signal. bypass valve control means for outputting a value to control the opening degree of the bypass valve; adjustment valve quick closing means for rapidly closing the adjustment valve in the event of a predetermined abnormality; A turbine control device comprising: bypass valve quick-opening means for suddenly opening the bypass valve only when the difference between the detected value and the detected value exceeds a predetermined value and when the adjustment valve quick-closing means is activated.
JP23705387A 1987-09-21 1987-09-21 Turbine control device Granted JPS6480706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23705387A JPS6480706A (en) 1987-09-21 1987-09-21 Turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23705387A JPS6480706A (en) 1987-09-21 1987-09-21 Turbine control device

Publications (2)

Publication Number Publication Date
JPS6480706A JPS6480706A (en) 1989-03-27
JPH0577841B2 true JPH0577841B2 (en) 1993-10-27

Family

ID=17009715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23705387A Granted JPS6480706A (en) 1987-09-21 1987-09-21 Turbine control device

Country Status (1)

Country Link
JP (1) JPS6480706A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2823347B2 (en) * 1990-09-27 1998-11-11 株式会社東芝 Turbine control device
DE102008006254A1 (en) * 2008-01-25 2009-07-30 Areva Np Gmbh Method for controlling a light water reactor and such a light water reactor
JP7369732B2 (en) * 2021-02-25 2023-10-26 株式会社日立製作所 Output control device and output control method for nuclear power plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132102A (en) * 1984-07-25 1986-02-14 Hitachi Ltd Turbine controller
JPS62237053A (en) * 1986-02-28 1987-10-17 Toyota Motor Corp Air-fuel ratio control method for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132102A (en) * 1984-07-25 1986-02-14 Hitachi Ltd Turbine controller
JPS62237053A (en) * 1986-02-28 1987-10-17 Toyota Motor Corp Air-fuel ratio control method for internal combustion engine

Also Published As

Publication number Publication date
JPS6480706A (en) 1989-03-27

Similar Documents

Publication Publication Date Title
JPH11352284A (en) Reactor system pressure control method through core power control
JPH0577841B2 (en)
JP2823347B2 (en) Turbine control device
JPS6158903A (en) Turbine controller for nuclear reactor
JPH0850195A (en) Reactor pressure rise preventing device at load interruption
JPH0429921B2 (en)
JPS63297703A (en) Turbine controller
JPH07103808B2 (en) Load back-up method when the system frequency drops sharply
JP2523493B2 (en) Turbin bypass system
JPS6029916B2 (en) Boiling water reactor water supply control device
JPS6149106A (en) Turbine control device of nuclear reactor
JPH0639886B2 (en) Steam turbine speed controller
JPS63117298A (en) Turbine controller
JPH0719007A (en) Turbine control device
JPH04219405A (en) Turbine controller
JPH04214907A (en) Turbine controlling device
JPH04179804A (en) Turbine controller
JPS60156908A (en) Turbine high-speed valve controller
JPS62139908A (en) Turbine controller
JP2564351B2 (en) Output control device for reactor plant
JPH0754084B2 (en) Turbine controller for steam generation plant
JP2731331B2 (en) Feedwater pump recirculation flow control device
JPS6132102A (en) Turbine controller
JPS6032002B2 (en) Turbine control device
JPS60129694A (en) Controller for pressure of nuclear power plant

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term