JPH0850195A - Reactor pressure rise preventing device at load interruption - Google Patents

Reactor pressure rise preventing device at load interruption

Info

Publication number
JPH0850195A
JPH0850195A JP6184457A JP18445794A JPH0850195A JP H0850195 A JPH0850195 A JP H0850195A JP 6184457 A JP6184457 A JP 6184457A JP 18445794 A JP18445794 A JP 18445794A JP H0850195 A JPH0850195 A JP H0850195A
Authority
JP
Japan
Prior art keywords
signal
steam
circuit
plu
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6184457A
Other languages
Japanese (ja)
Inventor
Yasuo Ota
康雄 大田
Ryutaro Okugawa
龍太郎 奥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP6184457A priority Critical patent/JPH0850195A/en
Publication of JPH0850195A publication Critical patent/JPH0850195A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PURPOSE:To keep a reactor pressure constant without suppressing a rise of steam turbine rotating speed more than it needs by outputting a power load unbalance(PLU) generation signal only for a prescribed time at load interruption. CONSTITUTION:At load interruption, two signals of an intermediate steam pressure signal 9 and a load sudden reduction signal 10 are inputted to the AND circuit 7 of a PLU circuit. An AND circuit 13 then inputs the output signal from an OR circuit 8 and the output of a timer 12 of inhibit signal, and outputs a PLU generation signal 14 only for a time determined by the timer 12 of the inhibit signal. Thus, the PLL circuit is operated up to a primary peak to suppress a rise of rotating speed of a steam turbine, but this is canceled on and after it. Further, a steam governor forced close signal is also eliminated on and after it. Thus, the whole steam quantity is most suitably distributed to the steam turbine and a condenser, respectively, by a steam governor and a turbine bypass valve, and the reactor pressure is never raised and can be kept constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気式油圧制御装置を
使用した原子力発電所における蒸気タービンの制御に係
り、特に負荷遮断時の原子炉圧力上昇防止装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to control of a steam turbine in a nuclear power plant using an electric hydraulic control device, and more particularly to a reactor pressure rise prevention device when a load is cut off.

【0002】[0002]

【従来の技術】原子力発電所における電気式油圧制御装
置による蒸気タービンの制御装置は、実速度信号と速度
設定信号の偏差である速度偏差信号や、主蒸気圧力信号
と圧力設定信号の偏差である圧力偏差信号、および蒸気
タービン保護のための種々のインターロック信号によ
り、蒸気タービンの回転速度制御や原子炉の圧力制御、
あるいは蒸気タービンをトリップさせることにより蒸気
タービンの保護を行うものである。
2. Description of the Related Art A steam turbine control device using an electrohydraulic control device in a nuclear power plant uses a speed deviation signal which is a deviation between an actual speed signal and a speed setting signal and a deviation between a main steam pressure signal and a pressure setting signal. With the pressure deviation signal and various interlock signals for steam turbine protection, steam turbine rotation speed control and reactor pressure control,
Alternatively, the steam turbine is protected by tripping the steam turbine.

【0003】従来の負荷遮断時における図示しない蒸気
タービンおよびタービンバイパス弁に対する制御回路
は、図2のブロック図に示すように、通常は低値優先回
路1に対して負荷設定信号+速度偏差信号(△δ)2
と、圧力偏差信号(△P)3を入力して、低値優先回路
1の出力する蒸気加減弁流量指令信号4により、蒸気加
減弁の開度を調節して、蒸気タービンへの蒸気量を制御
している。
As shown in the block diagram of FIG. 2, a conventional control circuit for a steam turbine and a turbine bypass valve (not shown) at the time of load cut-off is normally a load setting signal + speed deviation signal ( Δδ) 2
Then, the pressure deviation signal (ΔP) 3 is input, and the opening degree of the steam control valve is adjusted by the steam control valve flow rate command signal 4 output from the low value priority circuit 1 to control the steam amount to the steam turbine. Have control.

【0004】また、タービンバイパス弁流量指令信号5
は、前記圧力偏差信号3と蒸気加減弁流量指令信号4と
の差を偏差検出器6で得て、これによりタービンバイパ
ス弁の開度を調節して、図示しない復水器へのタービン
バイパス流量を制御している。
Further, the turbine bypass valve flow rate command signal 5
The deviation detector 6 obtains the difference between the pressure deviation signal 3 and the steam control valve flow rate command signal 4, and the degree of opening of the turbine bypass valve is adjusted by this, so that the turbine bypass flow rate to a condenser (not shown) is obtained. Are in control.

【0005】なお、通常は圧力偏差信号3が蒸気加減弁
流量指令信号4と等しいため、タービンバイパス弁流量
指令信号5の出力は0%となっているので、タービンバ
イパス弁は閉じ、原子炉が発生した蒸気は全て蒸気加減
弁を介して蒸気タービンに流入されている。
Since the pressure deviation signal 3 is normally equal to the steam control valve flow rate command signal 4, the output of the turbine bypass valve flow rate command signal 5 is 0%, so the turbine bypass valve is closed and the reactor is closed. All the generated steam is flowing into the steam turbine through the steam control valve.

【0006】このような状態で原子炉に負荷遮断が生じ
ると、パワーロードアンバランス(以下PLUと略称す
る)が発生し、前記蒸気加減弁が強制閉止されると共
に、蒸気加減弁流量指令4も負荷設定信号のクリアー、
速度偏差の閉方向への増大により0%となる。
When the load is cut off in the reactor in such a state, a power load imbalance (hereinafter abbreviated as PLU) occurs, the steam control valve is forcibly closed, and the steam control valve flow rate command 4 is also issued. Clear load setting signal,
It becomes 0% due to the increase of the speed deviation in the closing direction.

【0007】このために、今まで原子炉が発生した全蒸
気量を蒸気加減弁を介して、蒸気タービンに送達してい
たものが、前記図2からも分かるように、タービンバイ
パス弁を通し、蒸気タービンをバイパスして復水器へ流
れ込ませる。
For this reason, the total amount of steam generated by the reactor has been delivered to the steam turbine through the steam control valve, but as shown in FIG. Bypass the steam turbine and let it flow into the condenser.

【0008】また、このPLU発生時には、蒸気加減弁
流量指令4とは無関係に機械的に蒸気加減弁を全閉にす
るが、この状態はPLUが発生している間を継続する。
なお、若しも、このようにPLUが発生している状態に
おいて、蒸気タービン速度が速度設定値を下回ることが
あれば、蒸気加減弁には開指令信号が出力され、タービ
ンバイパス弁に閉指令信号が入力されて、タービンバイ
パス流量を減少させることになる。
When the PLU is generated, the steam control valve is mechanically fully closed regardless of the steam control valve flow rate command 4, but this state continues while the PLU is generated.
If the steam turbine speed may fall below the speed setting value while the PLU is occurring in this way, an open command signal is output to the steam control valve and a close command is issued to the turbine bypass valve. A signal will be input to reduce the turbine bypass flow rate.

【0009】しかしながら、蒸気加減弁は強制閉止され
ているため開かないので、タービンバイパス流量を減少
しただけ、蒸気の流出量が減少して原子炉圧力が上昇す
ることになる。
However, since the steam control valve is not closed because it is forcibly closed, as the turbine bypass flow rate is decreased, the outflow amount of steam is decreased and the reactor pressure is increased.

【0010】[0010]

【発明が解決しようとする課題】蒸気タービン制御装置
における蒸気加減弁とタービンバイパス弁を制御するP
LU回路は、図3のロジック図に示すようにAND回路
7とOR回路8でなり、PLU発生の条件としては、中
間蒸気圧力信号9(例えば40%以上)と、負荷急減信号
10(例えば40%/10msec)の2つの信号がAND回路7
に入力されると、PLU発生信号11を出力する。なお、
前記中間蒸気圧力が40%以上であれば、このPLU回路
は動作し続ける。
P for controlling a steam control valve and a turbine bypass valve in a steam turbine control device.
The LU circuit is composed of an AND circuit 7 and an OR circuit 8 as shown in the logic diagram of FIG. 3, and the conditions for PLU generation are an intermediate steam pressure signal 9 (for example, 40% or more) and a sudden load decrease signal.
Two signals of 10 (for example, 40% / 10 msec) are AND circuit 7
When it is input to, the PLU generation signal 11 is output. In addition,
If the intermediate vapor pressure is above 40%, the PLU circuit will continue to operate.

【0011】また中間蒸気圧力は、負荷遮断すなわちP
LU発生から数10秒たってからリセットされるケースも
ある。このPLU回路は、負荷遮断による蒸気タービン
回転数の急速な上昇を押え込む目的で設置されており、
したがって、蒸気タービン回転数がピーク値を過ぎてか
らは、このPLU回路の作動による蒸気タービン回転数
上昇の抑制は期待できない。
The intermediate steam pressure is also the load cutoff, that is, P
In some cases, it may be reset several tens of seconds after the LU occurs. This PLU circuit is installed for the purpose of suppressing the rapid increase in the steam turbine speed due to load shedding.
Therefore, after the steam turbine speed exceeds the peak value, suppression of the increase in the steam turbine speed due to the operation of the PLU circuit cannot be expected.

【0012】すなわち、負荷遮断に際してのタービン回
転数は、図4の特性曲線図に示すように、負荷遮断(P
LU発生)と同時に上昇して1次ピーク、および2次ピ
ークを経て整定に向う。
That is, the turbine speed at the time of load shedding is determined as shown in the characteristic curve diagram of FIG.
At the same time as the generation of LU), the temperature rises and goes through the first peak and the second peak toward settling.

【0013】したがって、PLU回路が、その本来の目
的である蒸気タービン回転数の押え込みに極めて有効な
効果を発揮するのは、負荷遮断発生から数秒の間であ
り、それ以降ではPLU回路は不必要であった。
Therefore, the PLU circuit exerts an extremely effective effect in suppressing the steam turbine speed, which is its original purpose, for a few seconds after the load is cut off, and thereafter, the PLU circuit is unnecessary. Met.

【0014】また、PLU回路が動作しており、かつ蒸
気加減弁を機械的に強制閉止している時は、蒸気タービ
ン回転数が設定回転数を割り込むような場合にも、蒸気
加減弁は開動作せず、タービンバイパス弁の流量指令信
号5を作っている蒸気加減弁の流量指令信号4が、ター
ビンバイパス弁の流量指令信号5から減算されることと
なるので、タービンバイパス弁は閉動作をする。
Further, when the PLU circuit is operating and the steam control valve is mechanically closed forcibly, the steam control valve is opened even when the steam turbine speed falls below the set speed. Since the flow rate command signal 4 of the steam control valve that does not operate and produces the flow rate command signal 5 of the turbine bypass valve is subtracted from the flow rate command signal 5 of the turbine bypass valve, the turbine bypass valve closes. To do.

【0015】このように、蒸気タービンの制御装置にお
いては、本来は蒸気加減弁が開いた分だけタービンバイ
パス弁が閉じるようにして、原子炉圧力を一定に保とう
とする機能が、PLU発生中は充分に働かなかった。
As described above, in the steam turbine control device, the function of keeping the reactor pressure constant by closing the turbine bypass valve by the amount that the steam control valve is originally opened has the function of keeping the reactor pressure constant. Didn't work well.

【0016】また、PLUが蒸気加減弁開指令信号4の
出力中にキャンセルされた場合には、蒸気加減弁が急閉
して、これが原子炉への外乱となる恐れがあった。本発
明の目的とするところは、負荷遮断時にPLU発生信号
を一定時間のみ動作させて、必要以上に蒸気タービン回
転数の上昇を抑制せず、原子炉圧力を一定に保つ負荷遮
断時の原子炉圧力上昇防止装置を提供することにある。
Further, if the PLU is canceled while the steam control valve opening command signal 4 is being output, the steam control valve may close suddenly, which may cause disturbance to the reactor. An object of the present invention is to operate a PLU generation signal only for a certain period of time when the load is cut off to prevent the steam turbine speed from being increased more than necessary and keep the reactor pressure constant when the load is cut off. It is to provide a pressure rise prevention device.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するため
本発明に係る負荷遮断時の原子炉圧力上昇防止装置は、
蒸気タービン制御装置におけるパワーロードアンバラン
ス回路において、負荷遮断時に所定時間だけパワーロー
ドアンバランス発生信号を出力させることを特徴とす
る。
In order to achieve the above-mentioned object, a reactor pressure rise preventing device at the time of load shedding according to the present invention is
The power load unbalance circuit in the steam turbine control device is characterized in that the power load unbalance generation signal is output for a predetermined time when the load is cut off.

【0018】[0018]

【作用】本発明においては、PLU回路の本来の目的の
負荷遮断によるタービン回転数上昇の抑制機能を妨げ
ず、しかも、少なくともタービン回転数上昇の1次ピー
ク以降はにについては、PLU回路を動作させない。
According to the present invention, the PLU circuit does not interfere with the function of suppressing the increase in turbine speed due to the original purpose of load shedding, and the PLU circuit operates at least after the first peak of the increase in turbine speed. Do not let

【0019】しかしその後は、蒸気加減弁流量指令信号
とタービンバイパス弁流量指令信号を協調させて制御
し、蒸気加減弁とタービンバイパス弁の開度を最適に調
節するので、原子炉圧力の上昇を抑制して常に一定に保
つと共に、蒸気加減弁開指令出力中のPLU回路キャン
セルによる蒸気加減弁の急開も防止できる。
However, after that, since the steam control valve flow rate command signal and the turbine bypass valve flow rate command signal are controlled in cooperation with each other to optimally adjust the opening degrees of the steam control valve and the turbine bypass valve, the reactor pressure is increased. It is possible to suppress and keep the steam control valve constant at all times, and it is possible to prevent the steam control valve from being suddenly opened by canceling the PLU circuit during the steam control valve opening command output.

【0020】[0020]

【実施例】本発明の一実施例を図面を参照して説明す
る。なお、上記した従来技術と同じ構成部分には同一符
号を付して詳細な説明を省略する。図1のロジック図に
示すようにPLU回路は、AND回路7とOR回路8、
この外に否定信号のタイマー12とAND回路13で構成さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. It should be noted that the same components as those of the above-described conventional technique are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in the logic diagram of FIG. 1, the PLU circuit includes an AND circuit 7 and an OR circuit 8,
In addition to this, it is composed of a negative signal timer 12 and an AND circuit 13.

【0021】上記構成による作用としては、中間蒸気圧
力信号9(例えば40%以上)と、負荷急減信号10(例え
ば40%/10msec)の2つの信号が前記AND回路7に入
力されると、OR回路8からの出力信号と否定信号のタ
イマー12の出力を入力してAND回路13は、否定信号の
タイマー12により決定されている時間(例えば図4に示
す第1ピークを過ぎるまで)のみPLU発生信号14を出
力する。
The operation of the above configuration is that when two signals of the intermediate steam pressure signal 9 (for example, 40% or more) and the load rapid decrease signal 10 (for example, 40% / 10 msec) are input to the AND circuit 7, OR By inputting the output signal from the circuit 8 and the output of the negative signal timer 12, the AND circuit 13 generates the PLU only for the time determined by the negative signal timer 12 (for example, until the first peak shown in FIG. 4 is exceeded). Output signal 14.

【0022】これにより、蒸気タービンの回転速度は1
次ピークまでの間はPLU回路が作動して蒸気タービン
の回転数の上昇を抑制するが、それ以降はキャンセルさ
れ、さらに、このキャンセル以降では、蒸気加減弁強制
閉止信号もなくなる。
As a result, the rotation speed of the steam turbine is 1
Until the next peak, the PLU circuit operates to suppress the increase in the rotational speed of the steam turbine, but is canceled after that, and after this cancellation, the steam control valve forced closing signal also disappears.

【0023】したがって、蒸気加減弁流量指令信号4
と、タービンバイパス弁流量指令信号5は協調して制御
されるので、これ以降に原子炉で発生した全蒸気量は、
蒸気加減弁とタービンバイパス弁とで、それぞれ蒸気タ
ービンと復水器に最適に配分されることから、原子炉圧
力の上昇を招くことがなく、常に一定に保つことが可能
となる。
Therefore, the steam control valve flow rate command signal 4
And the turbine bypass valve flow rate command signal 5 is controlled in a coordinated manner, the total amount of steam generated in the reactor thereafter is
Since the steam control valve and the turbine bypass valve are optimally distributed to the steam turbine and the condenser, respectively, it is possible to keep the reactor pressure constant without increasing the reactor pressure.

【0024】また、蒸気加減弁開信号出力中のPLUキ
ャンセルによる蒸気加減弁強制閉止信号がなくなって
も、引き続き前記蒸気加減弁流量指令信号4により蒸気
加減弁が調節されるため、PLUキャンセルによる蒸気
加減弁の急開を抑制することから、原子炉圧力に与える
外乱の発生も防止することができる。
Even if the steam control valve forced closing signal due to the PLU cancellation during the output of the steam control valve opening signal disappears, the steam control valve is continuously adjusted by the steam control valve flow rate command signal 4, so that the steam control by PLU cancellation is performed. Since the rapid opening of the regulator valve is suppressed, it is possible to prevent the occurrence of a disturbance that affects the reactor pressure.

【0025】[0025]

【発明の効果】以上本発明によれば、負荷遮断時のター
ビン回転数の上昇を抑制すると共に、蒸気加減弁流量指
令とタービンバイパス弁流量指令とを協調して制御さ
せ、負荷遮断時の原子炉圧力炉圧の上昇を防止する。ま
た、蒸気加減弁開指令出力中のPLU信号キャンセルに
よる蒸気加減弁開動作に起因する原子炉圧への外乱も防
ぐ効果がある。
As described above, according to the present invention, the increase of the turbine speed at the time of load shedding is suppressed, and the steam control valve flow rate command and the turbine bypass valve flow rate command are controlled in a coordinated manner, and the atom at the time of load shedding is controlled. Furnace pressure Prevents rise in furnace pressure. Further, there is an effect of preventing disturbance to the reactor pressure due to the steam control valve opening operation due to the PLU signal cancellation during the steam control valve opening command output.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の原子炉圧力上昇防止装
置のロジック図。
FIG. 1 is a logic diagram of a reactor pressure rise prevention device according to an embodiment of the present invention.

【図2】蒸気加減弁流量指令とタービンバイパス弁流量
指令の関係を表わすブロック図。
FIG. 2 is a block diagram showing a relationship between a steam control valve flow rate command and a turbine bypass valve flow rate command.

【図3】従来のパワーロードアンバランス回路のロジッ
ク図。
FIG. 3 is a logic diagram of a conventional power load unbalance circuit.

【図4】負荷遮断時のタービン回転数の挙動特性曲線
図。
FIG. 4 is a behavior characteristic curve diagram of turbine rotational speed at the time of load shedding.

【符号の説明】[Explanation of symbols]

1…低値優先回路、2…負荷設定信号+速度偏差信号、
3…圧力偏差信号、4…蒸気加減弁流量指令信号、5…
タービンバイパス弁流量指令信号、6…偏差検査器、
7,13…AND回路、8…OR回路、9…中間蒸気圧力
信号、10…負荷急減信号、11,14…PLU信号、12…否
定信号のタイマー。
1 ... Low value priority circuit, 2 ... Load setting signal + speed deviation signal,
3 ... Pressure deviation signal, 4 ... Steam control valve flow rate command signal, 5 ...
Turbine bypass valve flow rate command signal, 6 ... Deviation tester,
7, 13 ... AND circuit, 8 ... OR circuit, 9 ... Intermediate steam pressure signal, 10 ... Load rapid decrease signal, 11, 14 ... PLU signal, 12 ... Negative signal timer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸気タービン制御装置のパワーロードア
ンバランス回路において、負荷遮断時に所定時間だけパ
ワーロードアンバランス発生信号を出力させることを特
徴とする負荷遮断時の原子炉圧力上昇防止装置。
1. A reactor pressure rise prevention device at the time of load cutoff, wherein a power load unbalanced circuit of a steam turbine control device outputs a power load unbalance generation signal for a predetermined time when the load is cut off.
JP6184457A 1994-08-05 1994-08-05 Reactor pressure rise preventing device at load interruption Pending JPH0850195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6184457A JPH0850195A (en) 1994-08-05 1994-08-05 Reactor pressure rise preventing device at load interruption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6184457A JPH0850195A (en) 1994-08-05 1994-08-05 Reactor pressure rise preventing device at load interruption

Publications (1)

Publication Number Publication Date
JPH0850195A true JPH0850195A (en) 1996-02-20

Family

ID=16153491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6184457A Pending JPH0850195A (en) 1994-08-05 1994-08-05 Reactor pressure rise preventing device at load interruption

Country Status (1)

Country Link
JP (1) JPH0850195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107013261A (en) * 2017-05-02 2017-08-04 国网重庆市电力公司 A kind of power load unbalance protection criterion based on rotating speed and power signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107013261A (en) * 2017-05-02 2017-08-04 国网重庆市电力公司 A kind of power load unbalance protection criterion based on rotating speed and power signal

Similar Documents

Publication Publication Date Title
JPH0850195A (en) Reactor pressure rise preventing device at load interruption
JP3404480B2 (en) Turbine control device
JPH0577841B2 (en)
JP2863581B2 (en) Turbine steam control valve controller
JPS6158903A (en) Turbine controller for nuclear reactor
JPH0719007A (en) Turbine control device
JPH0429921B2 (en)
JPH081124B2 (en) Turbine advance emergency control method
JPS63117298A (en) Turbine controller
JPH0441798B2 (en)
JPS63297703A (en) Turbine controller
JPS63277804A (en) Turbine control device for steam generating plant
JPS6029916B2 (en) Boiling water reactor water supply control device
JPS62139908A (en) Turbine controller
JPH0637843B2 (en) Turbine controller
JPS60129694A (en) Controller for pressure of nuclear power plant
JPH04219405A (en) Turbine controller
JP2002097904A (en) Turbine controlling device
JPS62210205A (en) Turbine controller
JPH06230176A (en) Turbine controller
JPS63285205A (en) Load setting device for turbine control device
JPS6275003A (en) Steam turbine speed control device
JPH0754085B2 (en) Control device for steam turbine
JPS59185808A (en) Control device for main steam pressure of power plant
JPH04134102A (en) Turbine controller