JPH01269094A - Water level controller for nuclear reactor - Google Patents

Water level controller for nuclear reactor

Info

Publication number
JPH01269094A
JPH01269094A JP63096703A JP9670388A JPH01269094A JP H01269094 A JPH01269094 A JP H01269094A JP 63096703 A JP63096703 A JP 63096703A JP 9670388 A JP9670388 A JP 9670388A JP H01269094 A JPH01269094 A JP H01269094A
Authority
JP
Japan
Prior art keywords
water level
reactor
signal
reactor water
nuclear reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63096703A
Other languages
Japanese (ja)
Inventor
Yasuo Ota
康雄 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63096703A priority Critical patent/JPH01269094A/en
Publication of JPH01269094A publication Critical patent/JPH01269094A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To suppress a variation of a water level of a nuclear reactor to a narrow range when a sudden variation of a furnace water temperature has been generated by providing a nuclear reactor water level detector, a furnace water temperature detector, a nuclear reactor water level setting device, a nuclear reactor water level controller and a flow rate regulator. CONSTITUTION:A furnace water temperature detector 31 detects a temperature of a coolant in a nuclear reactor 1 and outputs a furnace water temperature signal 39 to a nuclear reactor water level controller 34. A nuclear reactor water level detector 32 detects a water level of the coolant in the nuclear reactor 1, and outputs a nuclear reactor water level signal 40 to the controller 34. A nuclear reactor water level setting device 41 outputs a nuclear reactor water level setting signal 42 to the controller 34. A dump flow rate regulating valve 33 inputs a nuclear reactor water level control signal 43 from the controller 34, and adjusts a discharge of the coolant of the nuclear reactor 1. According to this constitution, by preceding a variation of a water level of the nuclear reactor caused by a sudden variation of a furnace water temperature, a water level correcting signal is outputted from a compensating part of the controller 34, and an opening of the regulating valve 33 is adjusted, therefore, comparing with a conventional one, a suppressing operation against a water level fluctuation is executed in advance, and safety and controllability of the nuclear reactor can be improved.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、原子炉水位制御装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a nuclear reactor water level control device.

(従来の技術) 沸騰水型原子炉において、原子炉内の冷却材の水位制御
は、原子炉の安全性およびイ呆護の面で重要な制御の一
つである。
(Prior Art) In a boiling water nuclear reactor, controlling the water level of the coolant in the reactor is one of the important controls in terms of reactor safety and protection.

通常運転時における原子炉の水位制御は、H子炉内の冷
却材の水位を検出し、この水位と予めプログラムされた
設定水位とを比較し、この過不足を解消するように給水
を増減して行なわれている。
Reactor water level control during normal operation detects the coolant water level in the H subreactor, compares this water level with a pre-programmed water level, and increases or decreases the water supply to correct the excess or deficiency. It is being done.

原子炉の起動時および停止過渡期などの低出方時におけ
る水位制御は、蒸気発生量が少ないため原子炉への給水
量も比例して抑制されているので、原子炉内の冷却材の
排出量を増減して行なわれている。このような低出力運
転時においても、制御棒駆動系から原子炉内へ流入する
駆動水による水位の上昇、冷却材の温度変化による膨張
・収縮及び炉内圧力の変動によって起こる減圧沸騰の前
後の水位変化により適正な水位制御が必要とされている
Water level control at times of low output, such as during reactor startup and transitional shutdown periods, reduces the amount of water supplied to the reactor due to the small amount of steam generated. This is done by increasing or decreasing the amount. Even during such low-power operation, water level rises due to drive water flowing into the reactor from the control rod drive system, expansion and contraction due to temperature changes in the coolant, and fluctuations in reactor pressure before and after depressurized boiling. Appropriate water level control is required due to water level changes.

従来の原子炉水位制御装置を第3図の系統図を参照して
説明する。
A conventional nuclear reactor water level control system will be explained with reference to the system diagram shown in FIG.

原子炉1の中央部には燃料(図示せず)が装荷される炉
心2が設置されている。この炉心2は。
A reactor core 2 to which fuel (not shown) is loaded is installed in the center of the nuclear reactor 1 . This core 2.

制御棒(図示せず)が下方から挿入されあるいは下方へ
引き抜かれる。この制御棒は、制御棒案内管18を介し
て制御棒を駆動する制御棒駆動系(CRD)3に接続さ
れている1M子炉1の内側には、原子炉1内の冷却材を
強制循環させるジェットポンプ4が配置されている。こ
のジェットポンプ4は、再循環ポンプ5を具備した原子
炉冷却材再循環系6に接続されている。この原子炉冷却
材再循環系6の配管7には、炉水温度検出器8が付設さ
れでいる。原子炉1には、主蒸気配管9が接続されてい
る。この主蒸気配管9は、隔離弁10を介してタービン
(図示せず)に接続されている。原子炉1には給水配管
11を介して給水ポンプ(図示せず)が接続されている
。原子炉再循環系6には、原子炉冷却材浄化系(CUW
)12が接続されている。この原子炉冷却材浄化系12
は、給水配管11に接続されている。原子炉冷却材浄化
系12の配管13には、配管14を介してダンプ流量調
整弁15が接続されている。このダンプ流量調整弁15
は、復水器(図示せず)に接続されている。原子炉1に
は、原子炉圧力検出器16が付設されている。
A control rod (not shown) is inserted or withdrawn from below. The control rods are connected to a control rod drive system (CRD) 3 that drives the control rods via control rod guide tubes 18. Inside the 1M slave reactor 1, the coolant inside the reactor 1 is forced to circulate. A jet pump 4 is arranged to This jet pump 4 is connected to a reactor coolant recirculation system 6 comprising a recirculation pump 5 . A reactor water temperature detector 8 is attached to the piping 7 of the reactor coolant recirculation system 6 . A main steam pipe 9 is connected to the nuclear reactor 1 . This main steam pipe 9 is connected to a turbine (not shown) via an isolation valve 10. A water supply pump (not shown) is connected to the nuclear reactor 1 via a water supply pipe 11. The reactor recirculation system 6 includes a reactor coolant purification system (CUW).
)12 are connected. This reactor coolant purification system 12
is connected to the water supply pipe 11. A dump flow rate regulating valve 15 is connected to the pipe 13 of the reactor coolant purification system 12 via a pipe 14 . This dump flow rate adjustment valve 15
is connected to a condenser (not shown). A reactor pressure detector 16 is attached to the nuclear reactor 1 .

原子炉水位制御器21は、原子炉水位検出器17と原子
炉水位設定器22からの信号を入力し、ダンプ流量調整
弁15へ信号を出力している。原子炉水位制御器21内
には、比較部23と主制御部24が設定されている。
The reactor water level controller 21 receives signals from the reactor water level detector 17 and the reactor water level setter 22 and outputs a signal to the dump flow rate adjustment valve 15 . A comparison section 23 and a main control section 24 are set within the reactor water level controller 21.

給水配管11から原子炉1に給水された冷却材は。The coolant is supplied to the reactor 1 from the water supply pipe 11.

原子炉冷却材再循環系6により炉心2へ送り込まれる。It is fed into the reactor core 2 by the reactor coolant recirculation system 6.

炉心2に装荷された燃料から熱を奪った冷却材は蒸気と
なり、主蒸気配管9を通りタービンに供給される。ター
ビンで仕事をした蒸気は、復水器で凝縮され給水ポンプ
により再び給水配管11を通り原子炉1に給水される。
The coolant that removes heat from the fuel loaded in the reactor core 2 becomes steam and is supplied to the turbine through the main steam pipe 9. The steam that has worked in the turbine is condensed in a condenser, and is again supplied to the reactor 1 through the water supply pipe 11 by the water supply pump.

また原子炉冷却材再循環系6から原子炉冷却材浄化系1
2に取り込まれた冷却材は、浄化された後、給水配管1
1を介して原子炉1に再び送り込まれる。
In addition, the reactor coolant recirculation system 6 to the reactor coolant purification system 1
After being purified, the coolant taken into the water supply pipe 1
1 to the nuclear reactor 1 again.

原子炉水位検出器17は、原子炉1内の冷却材の水位を
検出し原子炉水位信号25を出力している。
The reactor water level detector 17 detects the water level of the coolant in the nuclear reactor 1 and outputs a reactor water level signal 25.

原子炉水位設定器22は、予め原子炉1内の水位がプロ
グラムされており、原子炉水位設定信号26を出力して
いる。比較部23は、原子炉水位信号25と原子炉水位
設定信号26とを減算し、水位偏差信号27を出力して
いる。主制御部24は、水位偏差信号27を比例および
積分動作して原子炉水位制御信号28を出力している。
The reactor water level setter 22 is programmed with the water level in the reactor 1 in advance, and outputs a reactor water level setting signal 26. The comparator 23 subtracts the reactor water level signal 25 and the reactor water level setting signal 26 and outputs a water level deviation signal 27. The main control unit 24 performs proportional and integral operations on the water level deviation signal 27 and outputs a reactor water level control signal 28 .

ダンプ流量調整弁15は、原子炉水位制御信号28を入
力し、弁開度を作動制御している。ダンプ流量調整弁1
5は、弁開度を調整することにより、冷却材の排出量を
調整して原子炉1の水位を制御している。
The dump flow rate adjustment valve 15 receives a reactor water level control signal 28 and controls the valve opening degree. Dump flow rate adjustment valve 1
5 controls the water level of the reactor 1 by adjusting the amount of coolant discharged by adjusting the valve opening degree.

ところで、低出力で運転する沸騰水型原子炉の水位が変
化する要因としては、前述したように3つの要因が挙げ
られる。すなわち、制御棒駆動系から原子炉内へ流入す
る駆動水による水位の上昇。
By the way, as mentioned above, there are three factors that cause the water level of a boiling water reactor operated at low output to change. In other words, the water level rises due to drive water flowing into the reactor from the control rod drive system.

冷却材の温度変化による膨張・収縮、および炉内圧力の
変動によって起こる減圧沸騰の前後における水位の変化
である。このうち制御棒駆動系から高圧作動水として流
入する冷却材による水位の上昇は変化量も少ない上にそ
の変化量の把握が容易であるため、その対応となる水位
制御も比較的容易である。
These are changes in the water level before and after boiling under reduced pressure, which are caused by the expansion and contraction of the coolant due to temperature changes and fluctuations in the pressure inside the furnace. Of these, the increase in water level due to the coolant flowing in as high-pressure working water from the control rod drive system has a small amount of change and is easy to grasp, so corresponding water level control is also relatively easy.

これに対し、冷却材の温度変化と炉内圧力の変動による
水位の変化は比較的大きく、特に炉水温度降下中に原子
炉が臨界になり、温度上昇に転じるような温度変化率の
大きい場合、水位外乱の幅は非常に大きいことが知られ
ている。
On the other hand, changes in water level due to changes in coolant temperature and pressure inside the reactor are relatively large, especially when the rate of temperature change is large, such as when the reactor becomes critical and the temperature begins to rise while the reactor water temperature is falling. It is known that the width of water level disturbance is extremely large.

炉水温度降下中に原子炉が臨界になり、温度上昇に転じ
るよ、うな場合の原子炉水位の時間的変化を第4図に示
す。第4図(A)は、横軸に時間、縦軸に炉水温度をと
って示す炉水温度変化のグラフである、第4図(B)は
、横軸に時間、縦軸に原子炉水位をとって示す原子炉水
位変化のグラフである。第4図(A)の曲線aに示すよ
うに、温度降下中に原子炉が臨界となり炉水温度が上昇
に転じた場合、水位制御の結果は第4図CB)の実線の
曲線すに示すようになる。すなわち、炉水温度の急激な
変化によって原子炉水位は、急上昇する。この時、原子
炉水位制御信号は、原子炉水位の増加を検出して初めて
原子炉水位を下げるようにダンプ流量調整弁の弁開度を
増加させるが、水位の変化が急激なために水位上昇を抑
制することができない。その後、水位は低下側に大きく
変化した後、徐々に元の水位に復帰する。
Figure 4 shows the temporal changes in the reactor water level when the reactor becomes critical while the reactor water temperature is falling and the temperature begins to rise. Figure 4 (A) is a graph of reactor water temperature changes with time on the horizontal axis and reactor water temperature on the vertical axis. Figure 4 (B) is a graph of reactor water temperature changes with time on the horizontal axis and reactor water temperature on the vertical axis. It is a graph showing changes in reactor water level based on the water level. As shown in curve a in Figure 4 (A), if the reactor becomes critical during the temperature drop and the reactor water temperature begins to rise, the result of water level control is shown in the solid curve in Figure 4 (CB). It becomes like this. That is, the reactor water level rises rapidly due to a sudden change in the reactor water temperature. At this time, the reactor water level control signal increases the valve opening of the dump flow control valve to lower the reactor water level only after detecting an increase in the reactor water level, but the water level rises due to the rapid change in the water level. cannot be suppressed. After that, the water level changes significantly to the lower side, and then gradually returns to the original water level.

このように、従来の原子炉水位制御装置は、原子炉水位
の変化を検出して初めて原子炉水位制御信号を変化させ
、ダンプ流量調整弁の弁開度を調整し、原子炉水位の外
乱を抑制するように動作する。
In this way, conventional reactor water level control devices change the reactor water level control signal only after detecting changes in the reactor water level, adjust the valve opening of the dump flow rate adjustment valve, and prevent disturbances to the reactor water level. Acts to suppress.

(発明が解決しようとする課題) 温度降下中に原子炉が臨界になり、温度上昇に転じるよ
うな大きな温度変化により急激な水位変化が発生する場
合は、十分に水位変動を抑制することができなかった。
(Problem to be solved by the invention) When a nuclear reactor becomes critical during a temperature drop and a sudden change in water level occurs due to a large temperature change that causes the temperature to rise, it is not possible to sufficiently suppress the water level fluctuation. There wasn't.

したがって、このような状態になった時、原子炉水位高
の警報が作動する恐れがあり、運転員がこの警報に対し
必要な対応操作をしなければならなかった。
Therefore, when such a situation occurs, there is a risk that a reactor water level alarm will be activated, and operators will have to take necessary actions in response to this alarm.

本発明の目的は、急激な炉水温度の変化が発生した場合
に、原子炉水位の変化を狭い範囲に抑制できる原子炉水
位制御装置を得ることにある。
An object of the present invention is to obtain a reactor water level control device that can suppress changes in reactor water level within a narrow range when a sudden change in reactor water temperature occurs.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために、本発明においては、原子炉
内の冷却材の水位を検出し原子炉水位信号を出力する原
子炉水位検出器と、前記冷却材の温度を検出し炉水温度
信号を出方する炉水温度検出器と、前記冷却材の水位が
設定され原子炉水位設定信号を出力する原子炉水位設定
器と、前記原子炉水位信号と前記炉水温度信号と前記原
子炉水位設定信号とを入力し原子炉水位制御信号を出力
する原子炉水位制御器と、前記原子炉水位制御信号を入
力し前記原子炉から排出する前記冷却材の水量を調整す
る流量調整器とから成ることを特徴とする原子炉水位制
御装置を提供する。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a reactor water level detector that detects the water level of the coolant in a nuclear reactor and outputs a reactor water level signal, and a reactor water temperature detector that detects the temperature of the coolant and outputs a reactor water temperature signal; a reactor water level setting device that sets the water level of the coolant and outputs a reactor water level setting signal; a reactor water level controller that inputs a reactor water temperature signal and the reactor water level setting signal and outputs a reactor water level control signal; and a reactor water level controller that inputs the reactor water level control signal and discharges the coolant water from the reactor. Provided is a nuclear reactor water level control device characterized by comprising a flow rate regulator that adjusts the flow rate.

(作 用) このように構成された装置においては、炉水温度の変化
により原子炉水位制御信号を変化させるので、炉水温度
の変化による原子炉水位の変化を狭い範囲に抑制するこ
とが可能となる。
(Function) In a device configured in this way, the reactor water level control signal changes depending on changes in reactor water temperature, so it is possible to suppress changes in reactor water level due to changes in reactor water temperature to a narrow range. becomes.

(実施例) 以下、本発明に係る原子炉水位制御装置の一実施例を第
1図及び第2図を参照して説明する。
(Example) Hereinafter, an example of a nuclear reactor water level control device according to the present invention will be described with reference to FIGS. 1 and 2.

第1図は系統図、第2図は要部を示すプロ、ツク図であ
る。尚、第3図と同一の部品、箇所には同一の符号を付
して、その構成の説明は省略する。
Figure 1 is a system diagram, and Figure 2 is a professional diagram showing the main parts. Note that the same parts and locations as in FIG. 3 are designated by the same reference numerals, and explanations of their configurations will be omitted.

第1図に示すように、炉水温度検出器31は、原子炉冷
却材再循環系6の配管7に付設されている。
As shown in FIG. 1, the reactor water temperature detector 31 is attached to the piping 7 of the reactor coolant recirculation system 6.

原子炉水位検出器32は、原子炉1に付設されている。Reactor water level detector 32 is attached to nuclear reactor 1 .

流量調整器であるダンプ流量調整弁33は、原子炉冷却
材浄化系12と復水器の間に設置されている。第2図に
示すように原子炉水位制御器34は、炉水体積変化補償
部35と主制御部36の2つの主要部から構成され、そ
の他比較部37及び積算部38が設定されている。
A dump flow rate adjustment valve 33, which is a flow rate regulator, is installed between the reactor coolant purification system 12 and the condenser. As shown in FIG. 2, the reactor water level controller 34 is composed of two main parts: a reactor water volume change compensator 35 and a main control part 36, and is also provided with a comparison part 37 and an integration part 38.

炉水温度検出器31は、原子炉1内の冷却材の温度を検
出し、炉水温度信号39を原子炉水位制御器34へ出力
している。JM子炉水位検出器32は、原子炉1内の冷
却材の水位を検出し、原子炉水位信号40を原子炉水位
制御器34へ出力している。原子炉水位設定器41は、
予め水位が設定されており、原子炉水位設定信号42を
原子炉水位制御器34へ出方している。ダンプ流量調整
弁33は、原子炉水位制御信号43を入力し、原子炉1
の冷却材の排出量を調整している。
The reactor water temperature detector 31 detects the temperature of the coolant in the reactor 1 and outputs a reactor water temperature signal 39 to the reactor water level controller 34. The JM slave reactor water level detector 32 detects the water level of the coolant in the reactor 1 and outputs a reactor water level signal 40 to the reactor water level controller 34. The reactor water level setter 41 is
The water level is set in advance, and a reactor water level setting signal 42 is output to the reactor water level controller 34. The dump flow rate adjustment valve 33 inputs the reactor water level control signal 43 and controls the reactor 1.
The amount of coolant discharged is adjusted.

炉水温度信号39は、炉水体積変化補償部35に入力さ
れている。炉水体積変化補償部35では、入力した炉水
温度信号39を分岐して変化率演算部44及び関数発生
部45に入力している。変化率演算部44では、炉水温
度の変化率の演算を行ない炉水温度号46と炉水膨張率
信号47は乗算部48に入力され、この乗算部48でか
け合わされ炉水体積変化信号49となり、利得(ゲイン
)50を通り、水位補正信号51として炉水体積変化補
償部35から出力される。
The reactor water temperature signal 39 is input to the reactor water volume change compensator 35 . The reactor water volume change compensator 35 branches the input reactor water temperature signal 39 and inputs it to the rate of change calculator 44 and the function generator 45 . The rate of change calculating section 44 calculates the rate of change of the reactor water temperature, and the reactor water temperature number 46 and the reactor water expansion coefficient signal 47 are input to the multiplier 48, where they are multiplied together to become the reactor water volume change signal 49. , gain 50, and is output from the reactor water volume change compensator 35 as a water level correction signal 51.

原子炉水位信号40及び原子炉水位設定信号42は比較
部37において減算され、水位偏差信号52どなる。こ
の水位偏差信号52は、積算部38において、水位補正
信号51と加算され修正水位偏差信号53となり主制御
部36に入力される。主制御部36は、修正水位偏差信
号53を比例および積分動作させ、原子炉水位制御信号
43を出力している。この原子炉水位制御信号43は、
R子炉水位制御器34から出力され、ダンプ流量調整弁
33の弁開度を調整している。
The reactor water level signal 40 and the reactor water level setting signal 42 are subtracted in the comparator 37, resulting in a water level deviation signal 52. This water level deviation signal 52 is added to the water level correction signal 51 in the integrating section 38 to form a corrected water level deviation signal 53 which is input to the main control section 36 . The main control unit 36 operates the corrected water level deviation signal 53 proportionally and integrally, and outputs the reactor water level control signal 43. This reactor water level control signal 43 is
It is output from the R child reactor water level controller 34 and adjusts the valve opening degree of the dump flow rate adjustment valve 33.

原子炉の炉水温度降下中に原子炉が臨界になり、温度上
昇に転じた場合の原子炉水位の時間的変化を第4図(B
)の曲線Cで示す、急激な炉水温度の変化により原子炉
水位が変化するのに先行して、炉水体積変化補償部から
水位補正信号が出力され、ダンプ流量g[整弁の開度が
調整されるので、従来と比較し、先行して水位変動の抑
制動作が行なわれている。
Figure 4 (B
), a water level correction signal is output from the reactor water volume change compensator before the reactor water level changes due to a sudden change in reactor water temperature, and the dump flow rate g [valve opening degree is adjusted, so compared to the conventional method, water level fluctuations are suppressed in advance.

この実施例においては、急激な炉水温度の変化が発生し
た場合、原子炉水位の変動範囲を大幅に抑制することが
できる。したがって、原子炉水位高による警報が作動す
ることが防止できるので、運転員の警報に対する対応操
作を軽減できる。特に、炉水温度降下中に臨界するよう
な場合、原子炉水位の制御管理が容易にできる。
In this embodiment, when a sudden change in reactor water temperature occurs, the range of fluctuation in the reactor water level can be significantly suppressed. Therefore, it is possible to prevent an alarm from being activated due to a high water level in the reactor, thereby reducing the number of operations required by the operator to respond to the alarm. In particular, in the case where the reactor water becomes critical while the reactor water temperature is decreasing, the reactor water level can be easily controlled and managed.

イb。Ib.

また、水分の変動後、所定の水位まで復帰する時間も大
幅に短縮できるので、原子炉の安定性を向上させること
ができる。
Further, the time required for the water to return to a predetermined level after the moisture has fluctuated can be significantly shortened, so the stability of the nuclear reactor can be improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、炉水温度による水位変動を狭い範囲に
抑制できるので、原子炉の安定性、制御性を向上させる
ことができる。
According to the present invention, fluctuations in water level due to reactor water temperature can be suppressed within a narrow range, so stability and controllability of the reactor can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明に係る原子炉水位制御装置の
一実施例を示し、第1図はその系統図、第2図は要部の
ブロック図、第3図は従来の原子炉水位制御装置の系統
図、第4図(A)は炉水温度変化のグラフ、第4図(B
)は原子炉水位変化のグラフである。 1・・・原子炉 31・・・炉水温度降下中 32・・・原子炉水位検出器 33・・・ダンプ流量調整弁 34・・・原子炉水位制御器 35・・・炉水体積変化補償部 36・・・主制御部 37・・・比較部 38・・・積算部 39・・・炉水温度信号 40・・・原子炉水位信号 41・・・原子炉水位設定器 42・・・原子炉水位設定信号 43・・・原子炉水位制御信号 51・・・水位補正信号 52・・・水位偏差信号 53・・・修正水位偏差信号。 代理人 弁理士  則 近 憲 佑 同     第子丸   健 第1図 第3図
1 and 2 show an embodiment of the reactor water level control system according to the present invention, FIG. 1 is its system diagram, FIG. 2 is a block diagram of the main parts, and FIG. 3 is a conventional nuclear reactor water level control system. System diagram of the water level control system, Figure 4 (A) is a graph of reactor water temperature changes, Figure 4 (B)
) is a graph of reactor water level changes. 1...Reactor 31...Reactor water temperature is falling 32...Reactor water level detector 33...Dump flow rate adjustment valve 34...Reactor water level controller 35...Reactor water volume change compensation Section 36... Main control section 37... Comparison section 38... Integration section 39... Reactor water temperature signal 40... Reactor water level signal 41... Reactor water level setter 42... Atomic Reactor water level setting signal 43...Reactor water level control signal 51...Water level correction signal 52...Water level deviation signal 53...Corrected water level deviation signal. Agent Patent Attorney Noriyuki Ken Yudo Daishimaru Ken Figure 1 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)原子炉内の冷却材の水位を検出し原子炉水位信号
を出力する原子炉水位検出器と、前記冷却材の温度を検
出し炉水温度信号を出力する炉水温度検出器と、前記冷
却材の水位が設定され原子炉水位設定信号を出力する原
子炉水位設定器と、前記原子炉水位信号と前記炉水温度
信号と前記原子炉水位設定信号とを入力し原子炉水位制
御信号を出力する原子炉水位制御器と、前記原子炉水位
制御信号を入力し前記原子炉から排出する前記冷却材の
水量を調整する流量調整器とから成ることを特徴とする
原子炉水位制御装置。
(1) a reactor water level detector that detects the water level of the coolant in the reactor and outputs a reactor water level signal; a reactor water temperature detector that detects the temperature of the coolant and outputs the reactor water temperature signal; a reactor water level setter for setting the water level of the coolant and outputting a reactor water level setting signal; and a reactor water level control signal for inputting the reactor water level signal, the reactor water temperature signal, and the reactor water level setting signal. A nuclear reactor water level control device comprising: a reactor water level controller that outputs the reactor water level; and a flow rate regulator that receives the reactor water level control signal and adjusts the amount of water in the coolant discharged from the reactor.
(2)原子炉水位制御器は、炉水温度信号を入力し冷却
材の温度の変化率と前記温度に対応する膨張係数とから
水位補正信号を出力する炉水体積変化補償部と、原子炉
水位信号と原子炉水位設定信号とを比較し水位偏差信号
を出力する比較部と、前記水位補正信号と前記水位偏差
信号とを足し合わせ修正水位偏差信号を出力する積算部
と、前記修正水位偏差信号を比例積分し原子炉水位制御
信号を出力する主制御部とから成ることを特徴とする請
求項1記載の原子炉水位制御装置。
(2) The reactor water level controller includes a reactor water volume change compensator that inputs a reactor water temperature signal and outputs a water level correction signal from the rate of change in coolant temperature and an expansion coefficient corresponding to the temperature; a comparison unit that compares the water level signal and the reactor water level setting signal and outputs a water level deviation signal; an integration unit that adds the water level correction signal and the water level deviation signal and outputs a corrected water level deviation signal; and the corrected water level deviation 2. The reactor water level control system according to claim 1, further comprising a main control section that proportionally integrates a signal and outputs a reactor water level control signal.
JP63096703A 1988-04-21 1988-04-21 Water level controller for nuclear reactor Pending JPH01269094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63096703A JPH01269094A (en) 1988-04-21 1988-04-21 Water level controller for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63096703A JPH01269094A (en) 1988-04-21 1988-04-21 Water level controller for nuclear reactor

Publications (1)

Publication Number Publication Date
JPH01269094A true JPH01269094A (en) 1989-10-26

Family

ID=14172121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63096703A Pending JPH01269094A (en) 1988-04-21 1988-04-21 Water level controller for nuclear reactor

Country Status (1)

Country Link
JP (1) JPH01269094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120172A (en) * 2011-12-09 2013-06-17 Hitachi-Ge Nuclear Energy Ltd Reactor core isolation cooling system and method for controlling reactor core isolation cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120172A (en) * 2011-12-09 2013-06-17 Hitachi-Ge Nuclear Energy Ltd Reactor core isolation cooling system and method for controlling reactor core isolation cooling system

Similar Documents

Publication Publication Date Title
KR890001172B1 (en) Hrsg damper control
JPS6138362B2 (en)
EP0170145A2 (en) Apparatus for controlling starting operation of boiler
US4187144A (en) Nuclear reactor power supply
JPH01269094A (en) Water level controller for nuclear reactor
JPH0942606A (en) Once-through boiler steam temperature control device
JP2899489B2 (en) Water supply control device
JP2002048891A (en) Core operation controller
JPS6022241B2 (en) Main steam pressure control method
JPS6148879B2 (en)
JPH1184078A (en) Abnormal time cooperative control system
JPH0518506A (en) Feed water controller
JP2004279221A (en) Nuclear reactor output control system
JP2004184302A (en) Nuclear reactor recirculation flow control device
JPH11258390A (en) Cooperative control system for abnormal condition
SU1460533A1 (en) Arrangement for automatic control of steam parameters in cooling/reducing unit
JPS6029699A (en) Controller for recycle flow rate
JPH03229199A (en) Nuclear power plant controller
JPH10300888A (en) Reactor control device
JPH11325407A (en) Water level control device for steam generator
JPH0241720B2 (en)
JPH04126990A (en) Controlling method for special component flow rate
JPS58205005A (en) Controller for drum level of waste heat boiler
JPH0241719B2 (en)
JPH0368360B2 (en)