JPS5882195A - Reactor feedwater control device - Google Patents

Reactor feedwater control device

Info

Publication number
JPS5882195A
JPS5882195A JP56180388A JP18038881A JPS5882195A JP S5882195 A JPS5882195 A JP S5882195A JP 56180388 A JP56180388 A JP 56180388A JP 18038881 A JP18038881 A JP 18038881A JP S5882195 A JPS5882195 A JP S5882195A
Authority
JP
Japan
Prior art keywords
flow rate
reactor
water level
pump
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56180388A
Other languages
Japanese (ja)
Other versions
JPH0225477B2 (en
Inventor
奥谷 徹郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56180388A priority Critical patent/JPS5882195A/en
Publication of JPS5882195A publication Critical patent/JPS5882195A/en
Publication of JPH0225477B2 publication Critical patent/JPH0225477B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Non-Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は原子炉の給水ポンプを−御し、原子炉の水位を
一電・に保つ原子炉給水−御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a nuclear reactor water supply control device that controls a nuclear reactor water pump and maintains the water level of the reactor at a constant level.

(b)  従来技術 一般に沸−水*原子−においては、原子炉を安定に運転
するために必要な原子炉基準水位が宇められており、原
子炉のいかなる運転状態においても、この原子炉基準水
位に対する原子炉水位の偏差は許容された範囲内になけ
ればならない。万一原子炉水位が、この許容範囲を逸脱
した1合は、原子炉スクラムにより原子炉を停止しなけ
ればならず、原子炉水位を基準値に保つことは沸褥水形
原子炉においては極めて重要なことである。一方原子炉
水位は、原子炉出力により、原子炉からタービンへ流出
する蒸気流量が変わることKより常に変動しようとする
ため、原子炉水位を基準値に保つためには、原子炉へ送
り込まれる給水流量を制御しなければならない。この目
的のために設けられている装置が原子炉給水制御装置で
あり、通常、原子炉給水ポンプの回転速度あるいは、原
子炉給水ポンプの出口に設けられた流量調整弁の開度を
変えることにより、原子炉へ送り込まれる給水流量を制
御する。
(b) Prior art In general, for boiling water *atomic, a reactor standard water level is established that is necessary for stable operation of a nuclear reactor, and this reactor standard water level is established in any operating state of a nuclear reactor. The deviation of the reactor water level from the water level must be within the permissible range. In the event that the reactor water level deviates from this allowable range, the reactor must be shut down by reactor scram, and it is extremely difficult to maintain the reactor water level at the standard value in boiling water reactors. It's important. On the other hand, the reactor water level tends to constantly fluctuate due to the change in the flow rate of steam flowing out from the reactor to the turbine depending on the reactor output, so in order to maintain the reactor water level at the standard value, it is necessary to feed water into the reactor. Flow rate must be controlled. A device installed for this purpose is a reactor feedwater control device, which usually controls the rotational speed of the reactor feedwater pump or the opening degree of the flow rate adjustment valve provided at the outlet of the reactor feedwater pump. , controls the flow rate of feed water sent to the reactor.

第1図はその一例を示した屯、ので、1は原子炉、2は
原子炉内に水を送9込むための給水ポンプ、3は給水ポ
ンプ2の出口に設けられ給水流量を調整するための流量
調整弁、4は水位基準信号を与える水位設定器、5は原
子f水位を検出する水位検出器、6は水位設定器4から
の水位基準信号L1及び水位検出器5からの水位信号り
、を入力し、流量指令信号り、を演算する水位制御器、
7はポンプの流量を検出する流量検出器、8は流量検出
器7からのポンプ流量信号L4及び水位制御器6からの
流量指令信号り、を入力し、流量調整弁3の開度を制御
する流量制御器である。
Figure 1 shows an example of this, so 1 is a nuclear reactor, 2 is a water supply pump for feeding water into the reactor, and 3 is installed at the outlet of the water supply pump 2 to adjust the water supply flow rate. 4 is a water level setting device that provides a water level reference signal, 5 is a water level detector that detects the atomic f water level, and 6 is a water level reference signal L1 from the water level setting device 4 and a water level signal from the water level detector 5. , a water level controller that inputs and calculates the flow rate command signal,
Reference numeral 7 denotes a flow rate detector that detects the flow rate of the pump, and 8 inputs a pump flow rate signal L4 from the flow rate detector 7 and a flow rate command signal R from the water level controller 6 to control the opening degree of the flow rate adjustment valve 3. It is a flow controller.

第2図は上記の構成の動作を示すブロック線図であり、
G1(8)は水位制御lI6を表わす伝達関数、G、(
8)は流量制御器8を表わす伝達関数、鴬)は流量調整
弁3を表わす伝達関数、G4(8)は原子炉1を表わす
伝達量、数である。水位基準信号り、(8)及び水位信
号り、(8)の偏差信号(水位偏差信号) L、(8)
は、水位制御器の伝達関数Gt(8)K入力され、一方
流量指令信号Ls(81及びポンプ流量信号L4(81
の偏差信号(流量偏差信号)L・(81は、流量制御器
の伝達関数G*(81に入力される。流量制御器の伝達
関数Gs(8)の出力(開度指令信号)L丁(8)は、
流量調整弁伝達関数Gmf8)に人力され、Glf81
の出力(ポンプ流量信号り、(8) ) ti厘原子炉
伝達関数、(8)に入力される。原子炉伝達関数04(
8)の出力は、水位信号LJ81となっている。このと
き、水位基準信号Ls(8)から流量偏差信号Ls(8
) tでの伝達特性は次式で表わせる。
FIG. 2 is a block diagram showing the operation of the above configuration,
G1(8) is a transfer function representing water level control lI6, G, (
8) is a transfer function representing the flow rate controller 8, G4(8) is a transfer function representing the flow rate regulating valve 3, and G4(8) is a transmission amount representing the nuclear reactor 1. Water level reference signal (8) and water level signal (8) deviation signal (water level deviation signal) L, (8)
is input to the transfer function Gt (8)K of the water level controller, while the flow rate command signal Ls (81) and pump flow rate signal L4 (81
The deviation signal (flow rate deviation signal) L・(81 is input to the transfer function G*(81) of the flow rate controller. The output (opening command signal) of the transfer function Gs(8) of the flow rate controller 8) is,
Glf81 is manually applied to the flow rate adjustment valve transfer function Gmf8).
The output (pump flow rate signal, (8)) is input to the reactor transfer function, (8). Reactor transfer function 04 (
8) is the water level signal LJ81. At this time, the flow rate deviation signal Ls(8) is calculated from the water level reference signal Ls(8).
) The transfer characteristic at t can be expressed by the following equation.

通常、水位制御器6は比例ゲイン、流量調整弁3は0形
(すなわちJim G(8)=有限)、原子炉lは積分
特性で表現され、流量制御器8は積分要素を含んでいる
のでノ G、(横=K(2−a) Iim G、(8) = −・(2−b)B −*6 1 i m G、(8) z有限       、、、
、、、  (2−C)S→0 G4(81= 17↑a8   (Ta:原子炉の時定
数) ・(2−d)となり、L、187のステップ状の
変化に対しては、ラプラス変換の最終値定理食用いるこ
とにより、L・の定常値は り、=0              ・・ (3)と
なる。従って流量指令り、とポンプ流量信号り、は−欽
し、給水ポンプ2の流量は水位制御器6により制御され
ることになる@ しかしながら給水ポンプ2が停止時は、ポンプ流量信号
L4が零であるため、o、+81xOと同様の状態とな
り、(1)式は Ls181 = Gl(8) Lt(8)      
   ・・・・・(4)と書き直される。従ってこの時
の弁開度指令信号Lテは Lイ8) = Gl ’%(8) Lt(81・・・・
・ (5)とな)、ラプラス変換の最終値定理及び(2
−b)式からも、のスラップ状変化に対しs Ltの定
常値は無限大に発散することが分かる。すなわち給水ポ
ンプ2が停止時は流量制御器8からの弁開度指令信号L
!は飽和し、流量調整弁3の開度は常に全開状態となっ
ている。
Normally, the water level controller 6 is expressed with a proportional gain, the flow rate regulating valve 3 is 0 type (i.e. Jim G(8) = finite), the reactor l is expressed with integral characteristics, and the flow rate controller 8 includes an integral element. No G, (horizontal = K (2-a) Iim G, (8) = -・(2-b) B -*6 1 im G, (8) z finite ,,,
,,, (2-C) S → 0 G4 (81 = 17↑a8 (Ta: reactor time constant) ・(2-d), and for the step-like change of L, 187, Laplace transform By using the final value theorem, the steady value of L = 0 (3).Therefore, the flow rate command and the pump flow rate signal are expressed, and the flow rate of the water supply pump 2 is controlled by water level control. However, when the water supply pump 2 is stopped, the pump flow rate signal L4 is zero, so the state is the same as o, +81xO, and equation (1) is Ls181 = Gl (8) Lt (8)
...It is rewritten as (4). Therefore, the valve opening command signal Lt at this time is L8) = Gl'% (8) Lt(81...
・ (5)), the final value theorem of Laplace transform, and (2
-b) also shows that the steady value of s Lt diverges to infinity for slap-like changes in . That is, when the water supply pump 2 is stopped, the valve opening command signal L from the flow rate controller 8
! is saturated, and the opening degree of the flow rate regulating valve 3 is always in a fully open state.

以上は説明を簡単にするために、給水ポンプ2は1台と
し九が、一般の原子カプラントでは複数台の給水ポンプ
が設置されており、通常の給水制御はこの内の何台か(
例えば4台中2台)を用いて行なわれる。残りの給水ポ
ンプはバックアップ用であり通常時停止しているが、常
時稼動している給水ポンプの故障時等、原子炉水位が許
容された範囲内を逸脱し急激に低下する可能性がある場
合に自動的に起動され、給水を行う様設計されている。
In order to simplify the explanation above, the number of water supply pumps 2 is assumed to be one (9); however, in a general atomic coupler plant, multiple water supply pumps are installed, and normal water supply control is performed using several of these pumps (
For example, 2 out of 4 units) are used. The remaining feedwater pumps are for backup purposes and are normally stopped, but in the event of a failure of a constantly running feedwater pump, etc., there is a possibility that the reactor water level may deviate from the permissible range and drop suddenly. It is designed to automatically start up and supply water.

原子炉水位に与える変動を最小限にするためには自動起
動に要する時間が短かくなければならないことは当然で
あるが、さらに自動起動され念給水ポンプに対する流量
制御もすみやかに開始されなければならない・ しかしながら前述した様に、従来の原子炉給水制御装置
では停止している給水ポンプに対する流量調整弁は全開
状口となっており、起動直談のポンプ流量は100%流
量となっている。また流量制御@8自身が飽和してい石
ため、流量制御が可能となるためには流量制御器8の飽
和が解消されなければならないが、ポンプ流量信号L4
のフィードバックがかかった直後に飽和が解消されるわ
けではなく、流量制御器8内の積分器時定数で除々に解
消される0従って従来の原子炉給水制御装置では給水ポ
ンプ2が自動起動されてから、積分器の時定数で決定さ
れる一定時間内、自動起動された給水ポンプには100
1!あるいはそれに近い流量が無制御状態で流れるとと
Kなり、この結果原子炉水位が逆に急激に上昇し、原子
炉基準水位との偏差が許容された範囲を逸脱してしまう
可能性があった。
It goes without saying that the time required for automatic startup must be short in order to minimize fluctuations in the reactor water level, but furthermore, automatic startup and flow rate control for the water supply pumps must also begin promptly. - However, as mentioned above, in the conventional reactor feed water control system, the flow rate adjustment valve for the stopped feed water pump is fully open, and the pump flow rate at startup is 100% flow rate. In addition, since the flow rate control @8 itself is saturated, the saturation of the flow rate controller 8 must be eliminated in order to enable flow rate control, but the pump flow rate signal L4
The saturation is not eliminated immediately after the feedback is applied, but is gradually eliminated by the integrator time constant in the flow rate controller 8. Therefore, in the conventional reactor feed water control system, the feed water pump 2 is not automatically started. 100 for the automatically started water pump within a certain period of time determined by the integrator time constant.
1! Or, if a flow rate close to that flow were to flow uncontrolled, it would result in a sudden rise in the reactor water level, with the possibility that the deviation from the reactor standard water level would exceed the allowable range. .

(cl  発明の目的 本発明の目的は流量制御器の飽和を無くシ、流量制御器
の飽和により生じていた給水ポンプ起動時の原子炉水位
の変動を職)除き、安室な原子炉給水制御装置を提供す
るととにある。
(cl. Purpose of the Invention The purpose of the present invention is to eliminate the saturation of the flow rate controller, and to eliminate fluctuations in the reactor water level at the time of starting the feed water pump, which were caused by the saturation of the flow rate controller). It is said to provide.

(d)  発明の構成 以下、本発明を第3図および第4図に示す一実施例に基
づいて説明する。@3図は本発明の一実施例を示す原子
炉給水制御装置の構成図である。
(d) Structure of the Invention The present invention will be described below based on an embodiment shown in FIGS. 3 and 4. @Figure 3 is a configuration diagram of a reactor water supply control system showing one embodiment of the present invention.

図中、第1図と同一符号は同−又は相轟部を示し、第1
図と異なる点は流量制御器8の出力を接点9を介して流
量制御器80八力にフィードバックしている点である。
In the figure, the same reference numerals as in Fig. 1 indicate the same or phased parts;
The difference from the figure is that the output of the flow rate controller 8 is fed back to the flow rate controller 80 via the contact 9.

第4図は上記構成の動作を示すブロック線図である。図
中、第2図と同一符号は第2図と同−又は相当部分を示
し、第2図のブロック線図と異なる点は弁開度指令信号
Lマが接点9を介して流量指令信号L1にフィードバッ
クされている点である。
FIG. 4 is a block diagram showing the operation of the above configuration. In the figure, the same reference numerals as in FIG. 2 indicate the same or equivalent parts as in FIG. 2, and the difference from the block diagram in FIG. This is a point that has been given feedback.

接点9は給水ポンプ2が停止時閉となる。従って給水ポ
ンプ2が動作中の場合は、第2図に示すブロック線図と
まつ丸く同一に’&り、制御系の動作も一致する。 ・ 一方、給水ポンプ2が停止中は流量指令r1号り。
The contact 9 is closed when the water supply pump 2 is stopped. Therefore, when the water supply pump 2 is in operation, the block diagram shown in FIG. 2 is the same as the block diagram shown in FIG. - On the other hand, while the water supply pump 2 is stopped, the flow rate command is r1.

(8)から弁開度指令信号り、(8)tでの伝達特性は
、流量信号La(8) = oであるから となる。従ってラプラス変換の最終値定理及び(2−b
)式から定常時には Ly = Lm             −(71が
成り立つことになる。従って流量指令信号り、と一度指
令信号しマは一致するため、流1 ff1J (Ml器
8は飽和することが無く、かつ流量制御弁3は水位制御
a6により直接制御される。
The valve opening command signal is obtained from (8), and the transmission characteristic at (8) t is that the flow rate signal La(8) = o. Therefore, the final value theorem of Laplace transform and (2-b
) From the formula, Ly = Lm - (71 holds true during steady state. Therefore, once the command signal is given, the flow rate 1 ff1J (Ml unit 8 is not saturated, and the flow rate is Control valve 3 is directly controlled by water level control a6.

以上の説明では接点9は給水ポンプ2が停止時閉となる
ものとしたが、給水ポンプ2の動作状部によって接点を
動作させずに、ポンプ流量信号り。
In the above explanation, it is assumed that the contact 9 is closed when the water supply pump 2 is stopped, but depending on the operating state of the water supply pump 2, the contact is not operated and the pump flow rate signal is output.

を比較回路に入力し、ポンプ流量り、が一定値以下とな
った場合、接点9を閉とするようにしても良い。また以
上は説明を簡単にするために給水ポン4流量の制御は流
量調整弁2によ炒行う方式としたが、ポンプの回転速度
により流量制御を行う方式であっても、本発明は1′)
九〈同様に適用できるものである。
may be input to the comparison circuit, and when the pump flow rate ≦ falls below a certain value, the contact 9 may be closed. Furthermore, in order to simplify the explanation, the flow rate of the water supply pump 4 is controlled by the flow rate adjustment valve 2 in the above description, but even if the flow rate is controlled by the rotational speed of the pump, the present invention will not be limited to 1'. )
(9) The same applies.

(el)  発明の詳細 な説明し九様に、本発明によれば漏水ポンプ2が停止時
であっても、流量制御器8の飽和を防止でき、かつ流量
調整弁、3の開度は常に水位制御66によって制御され
ている。従って給水ポンプ起動直後から流量制御が有効
であり、流量調整弁3の開直も起−一からプラントの状
WjJK応じて制御されているために流量制御開始時点
にシいても適切な@駅となっている。よって常時稼動し
ている給水ポンプの故障等によりバックアップ用給水ポ
ンプが自動起動され丸場合であっても、原子炉への過給
水は起こらず原子炉水位を許容軸回内圧安定に制御する
ことが可能である。
(el) Detailed Description of the Invention According to the present invention, saturation of the flow rate controller 8 can be prevented even when the leakage pump 2 is stopped, and the opening degree of the flow rate regulating valve 3 can be maintained at all times. It is controlled by a water level control 66. Therefore, the flow rate control is effective immediately after starting the water supply pump, and since the opening and closing of the flow rate adjustment valve 3 is controlled from the beginning according to the state of the plant WjJK, even when the flow rate control is started, it is not possible to set the appropriate @ station. It has become. Therefore, even if the backup water pump is automatically started due to a malfunction of the constantly running water pump, superfeeding of water to the reactor does not occur and the reactor water level can be controlled stably at the allowable shaft internal pressure. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の原子炉給水制御装置の構成を示すブロッ
ク図、第2図は従来の原子炉給水制御装置の動作を示す
ブロック図、第3図は本発明の一実施例の構成を示すブ
ロック図、114図は本発明の一実施例の動作を示すブ
ロック図でちる。 1・・・原子炉      2・・給水ポンプ3 ・流
量調整弁    4・・・水位設定器5・水位検出Is
    6・・水位制御器7・・流量検出a    8
 流量制御49・・・接点 (7317)  代理人 弁珊士則 近 憲 佑 (ほ
か1名)゛第1図 第2図 12 (s) 第3図 第4図 q′ 12(5ン
FIG. 1 is a block diagram showing the configuration of a conventional reactor feed water control device, FIG. 2 is a block diagram showing the operation of a conventional reactor feed water control device, and FIG. 3 is a block diagram showing the configuration of an embodiment of the present invention. Block Diagram FIG. 114 is a block diagram showing the operation of one embodiment of the present invention. 1... Nuclear reactor 2... Water supply pump 3 - Flow rate adjustment valve 4... Water level setting device 5 - Water level detection Is
6...Water level controller 7...Flow rate detection a 8
Flow rate control 49...Contact (7317) Agent Kensuke Chika (and 1 other person) Fig. 1 Fig. 2 12 (s) Fig. 3 Fig. 4 q' 12 (5

Claims (1)

【特許請求の範囲】[Claims] 原子炉の水位基準信号および原子炉基水位信漫を入力し
原子炉給水ポンプに対する流量指令信号を演算する水位
制御器と、前記流量指令信号および前記原子炉給水ポン
プの実流量信号を入力し、前記原子炉給水ポンプの流量
を制御する積分要素を含む流量制御器と、前記原子炉給
水ポンプが停止しているとき前記積分要素の出力信号を
前記流量指令信号にフィードバッタするライ−ドパツタ
ループとを具・備し九ことを特徴とする原子炉給水制御
装置。
a water level controller that inputs a reactor water level reference signal and a reactor base water level confidence and calculates a flow rate command signal for the reactor feed water pump, and inputs the flow rate command signal and the actual flow rate signal of the reactor feed water pump; a flow rate controller including an integral element that controls the flow rate of the reactor feed water pump; and a ride patch loop that feeds an output signal of the integral element to the flow rate command signal when the reactor feed water pump is stopped. A nuclear reactor water supply control system characterized by nine tools and provisions.
JP56180388A 1981-11-12 1981-11-12 Reactor feedwater control device Granted JPS5882195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56180388A JPS5882195A (en) 1981-11-12 1981-11-12 Reactor feedwater control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56180388A JPS5882195A (en) 1981-11-12 1981-11-12 Reactor feedwater control device

Publications (2)

Publication Number Publication Date
JPS5882195A true JPS5882195A (en) 1983-05-17
JPH0225477B2 JPH0225477B2 (en) 1990-06-04

Family

ID=16082355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56180388A Granted JPS5882195A (en) 1981-11-12 1981-11-12 Reactor feedwater control device

Country Status (1)

Country Link
JP (1) JPS5882195A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293271U (en) * 1989-01-05 1990-07-24
JPH0293272U (en) * 1989-01-05 1990-07-24

Also Published As

Publication number Publication date
JPH0225477B2 (en) 1990-06-04

Similar Documents

Publication Publication Date Title
KR920007744B1 (en) Automatic steam generator control at low power
US4478783A (en) Nuclear power plant feedwater controller design
JPS5882195A (en) Reactor feedwater control device
JPH0422479B2 (en)
JPS6277507A (en) Feedwater controller for nuclear reactor
JPS61275505A (en) Regulation valve warming control and device thereof
JPS5916679B2 (en) Reactor water supply control system
JPS61246502A (en) Feedwater controller
JPS59114496A (en) Reactor isolation cooling device
JPS5882196A (en) Reactor feedwater control device
JP3136786B2 (en) Reactor water level control method and apparatus
JPH01114797A (en) Speed controller for steam turbine
JPS61225503A (en) Controller for feedwater of nuclear reactor
JPS61272508A (en) Feed water controller for nuclear reactor
JPH01269093A (en) Feed water controller for nuclear reactor
JPS6148879B2 (en)
JPH081122B2 (en) Water supply control device
JP2965607B2 (en) Steam turbine controller
JPS6041759B2 (en) Reactor pressure control device
JPS62105091A (en) Turbine controller
JPH0241720B2 (en)
JPH0222360B2 (en)
JPS6153559B2 (en)
JPS62112099A (en) Nuclear reactor isolation cooling system controller
JPH0639889B2 (en) Steam turbine speed controller