JPH0648082B2 - Reactor water supply controller - Google Patents

Reactor water supply controller

Info

Publication number
JPH0648082B2
JPH0648082B2 JP60063908A JP6390885A JPH0648082B2 JP H0648082 B2 JPH0648082 B2 JP H0648082B2 JP 60063908 A JP60063908 A JP 60063908A JP 6390885 A JP6390885 A JP 6390885A JP H0648082 B2 JPH0648082 B2 JP H0648082B2
Authority
JP
Japan
Prior art keywords
flow rate
signal
reactor
pump
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60063908A
Other languages
Japanese (ja)
Other versions
JPS61225503A (en
Inventor
徹郎 奥谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60063908A priority Critical patent/JPH0648082B2/en
Publication of JPS61225503A publication Critical patent/JPS61225503A/en
Publication of JPH0648082B2 publication Critical patent/JPH0648082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は原子炉の給水ポンプを制御し、原子炉の水位を
一定に保つ原子炉給水制御装置に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a reactor feedwater control device for controlling a feedwater pump of a reactor to keep a water level of the reactor constant.

[発明の技術的背景] 一般に沸騰水形原子炉においては、原子炉を安定に運転
するために必要な原子炉基準水位が定められており、原
子炉のいかなる運転状態においても、この原子炉基準水
位に対する原子炉水位の偏差は許容された範囲内になけ
ればならない。万一、原子炉水位がこの許容範囲を逸脱
した場合は、原子炉出力を低下あるいは原子炉を停止し
なければならず、原子炉水位を基準値に保つことは沸騰
水形原子炉においては極めて重要なことである。一方、
原子炉水位は、原子炉出力により、原子炉からタービン
へ流出する蒸気流量が変わることにより常に変動し易
く、原子炉水位を基準値に保つためには、原子炉へ送り
込まれる給水流量を制御しなければならない。この目的
のために設けられたのが原子炉給水制御装置であり、通
常、原子炉給水ポンプの回転速度あるいは、原子炉給水
ポンプの出口に設けられた流量調整弁の開度を変えるこ
とにより、原子炉へ送り込まれる給水流量を制御する。
[Technical background of the invention] Generally, in boiling water reactors, the reactor standard water level necessary for stable operation of the reactor is defined, and in any operating state of the reactor, this reactor standard water level is set. The deviation of the reactor water level from the water level must be within the allowable range. Should the reactor water level deviate from this allowable range, the reactor power must be reduced or the reactor must be shut down, and maintaining the reactor water level at the standard value is extremely It's important. on the other hand,
The reactor water level tends to fluctuate constantly because the steam flow rate from the reactor to the turbine changes depending on the reactor output. There must be. It is a reactor water supply control device provided for this purpose, usually, by changing the rotational speed of the reactor water supply pump, or by changing the opening of the flow rate adjustment valve provided at the outlet of the reactor water supply pump, Controls the flow rate of feed water fed into the reactor.

第4図はその一例を示したもので、1は原子炉、22は
原子炉内に水を送り込むための給水ポンプ、3は給水ポ
ンプ2の出口に設けられ給水流量を調整するための流量
調整弁、4は水位基準信号を与える水位設定器、5は原
子炉水位を検出する水位検出器、6は水位設定器4から
の水位基準信号L1及び水位検出器5からの水位信号L2
を入力し、水位偏差信号L3を演算する第1の演算器、
7は水位偏差信号L3を入力し、流量指令信号L4を演算
する水位制御器、8は給水ポンプの流量を検出する流量
検出器、9は流量検出器8からのポンプ流量信号L5
び流量制御器出力信号L7を入力し、ポンプ流量が低の
場合は流量制御器出力信号L7を、ポンプ流量が低でな
い場合はポンプ流量信号L5を選択し、選択信号L8を出
力する切替接点、10は水位制御器7からの流量指令信号
4及び切替接点出力信号L8を入力し、流量偏差信号L
6を演算する第2の演算器、11は流量偏差信号L6を入力
し、流量調整弁3を駆動する流量制御器であり、流量制
御器出力信号L7を演算する。
FIG. 4 shows an example thereof, 1 is a reactor, 22 is a water supply pump for sending water into the reactor, and 3 is a flow rate adjustment provided at the outlet of the water supply pump 2 for adjusting the water supply flow rate. Valve 4 is a water level setting device that gives a water level reference signal, 5 is a water level detector that detects the reactor water level, and 6 is a water level reference signal L 1 from the water level setting device 4 and a water level signal L 2 from the water level detector 5.
, A first calculator for calculating the water level deviation signal L 3
7 is a water level controller which inputs the water level deviation signal L 3 and calculates the flow rate command signal L 4 , 8 is a flow rate detector which detects the flow rate of the water supply pump, 9 is a pump flow rate signal L 5 from the flow rate detector 8 and Input the flow rate controller output signal L 7 , select the flow rate controller output signal L 7 when the pump flow rate is low, and select the pump flow rate signal L 5 when the pump flow rate is not low and output the selection signal L 8 . The switching contact, 10 receives the flow rate command signal L 4 and the switching contact output signal L 8 from the water level controller 7, and the flow rate deviation signal L
Second calculator for calculating a 6, 11 enter the flow rate difference signal L 6, a flow controller for driving the flow control valve 3, to calculate the flow controller output signal L 7.

第5図は上記の構成の動作を示すブロック線図であり、
G1(S)は水位制御器7を表わす伝達関数、G2(S)は流量制
御器11を表わす伝達関数、G3(S)は流量調整弁3を表わ
す伝達関数、G4(S)は原子炉1を表わす伝達関数であ
る。この時、ポンプ流量が低でない(すなわち切替接点
9がポンプ流量信号L5を選択中)ならば水位基準信号L
1(S)から流量制御偏差信号L6(S)までの伝達特性は次式
で表わされる。
FIG. 5 is a block diagram showing the operation of the above configuration,
G 1 (S) is a transfer function representing the water level controller 7, G 2 (S) is a transfer function representing the flow rate controller 11, G 3 (S) is a transfer function representing the flow rate adjusting valve 3, and G 4 (S) Is a transfer function representing the reactor 1. At this time, if the pump flow rate is not low (that is, the switching contact 9 is selecting the pump flow rate signal L 5 ), the water level reference signal L
The transfer characteristic from 1 (S) to the flow control deviation signal L 6 (S) is expressed by the following equation.

通常、水位制御器7は比例ゲイン、流量調整弁3は0形 原子炉1は積分性で表現され、流量制御器11は通常積分
要素を含んでいるので、 となり、L1(S)のステップ状の変化に対しては、ラプラ
ス変換の最終値定理を用いることにより、L6の定常値
は L6=0 ……(3) となる。従って流量指令信号L4とポンプ流量信号L5
一致し、給水ポンプ2の流量は水位制御器7により制御
されることになる。しかしながら、給水ポンプ2が停止
時は、流量調整弁3の開度によらず常に流量信号L5
0であり、流量指令信号L4とは一致せず L6≠0 ……(4) となる。すなわち流量制御器11は積分器を含んでいるた
め上記(4)式により流量制御器11は飽和することにな
り、流量調整弁3の開度は常に全開状態となっている。
Normally, the water level controller 7 is a proportional gain, and the flow rate adjustment valve 3 is a 0 type Since the reactor 1 is represented by the integrability and the flow controller 11 usually includes the integral element, Next, for the step change in L 1 (S), by using the final value theorem Laplace transform, the steady value of L 6 becomes L 6 = 0 ...... (3) . Therefore, the flow rate command signal L 4 and the pump flow rate signal L 5 match, and the flow rate of the water supply pump 2 is controlled by the water level controller 7. However, when the water supply pump 2 is stopped, the flow rate signal L 5 =
0, which does not match the flow rate command signal L 4 , resulting in L 6 ≠ 0 (4). That is, since the flow rate controller 11 includes the integrator, the flow rate controller 11 is saturated by the above equation (4), and the opening degree of the flow rate adjusting valve 3 is always in the fully open state.

一方、一般の原子力プラントでは複数台の給水ポンプが
設置されており、通常の給水制御はこの内の何台か(例
えば4台中2台)を用いて行なわれる。残りの給水ポン
プはバックアップ用であり通常停止しているが、常用系
給水ポンプ故障時等、原子炉水位が許容された範囲を逸
脱し急激に低下する可能性が有る場合は、自動的に起動
され、給水を行なうように設計されている。しかしなが
ら前述した様にポンプ停止時に流量制御器11が飽和して
いた場合、自動起動された給水ポンプの流量は100%あ
るいはそれに近い値で流量制御器11の飽和が解消される
までの一定時間、無制御状態で流れることになり、逆に
過給水となり、原子炉水位が急激に上昇し、許容された
範囲を逸脱してしまう。
On the other hand, in a general nuclear power plant, a plurality of water supply pumps are installed, and normal water supply control is performed using some of them (for example, two out of four). The remaining water supply pumps are for backup use and are normally stopped, but if there is a possibility that the reactor water level will deviate from the allowable range and drop sharply due to a failure of the service water supply pump, it will be automatically started. And is designed to provide water. However, as described above, when the flow rate controller 11 is saturated when the pump is stopped, the flow rate of the automatically started water supply pump is 100% or a value close to it, and the constant time until the saturation of the flow rate controller 11 is eliminated, It will flow in an uncontrolled state, and on the contrary, it will become supercharged water, and the reactor water level will rise rapidly and deviate from the allowable range.

このため、給水ポンプ2が停止時であっても、流量制御
器11を飽和させないために設けられているのが、切替接
点9である。ポンプ流量低の場合は切替接点9は流量制
御器出力信号L7を選択しているため流量指令信号L4
ら流量制御器出力信号L7までの伝達特性は、 となる。従ってラプラス変換の最終値定理及び(2)式か
ら定常時には、 L7=L4 ……(5) となり、給水ポンプ停止時であっても流量制御器11は飽
和することはなく、また流量制御器出力信号L7は流量
指令信号L4と同一の値に維持されることになる。
Therefore, the switching contact 9 is provided so as not to saturate the flow rate controller 11 even when the water supply pump 2 is stopped. Transfer characteristic in the case of pump flow-low flow command signal L 4 for switching contact 9 has selected the flow controller output signal L 7 to flow controller output signal L 7 is Becomes Therefore, from the final value theorem of the Laplace transform and Eq. (2), L 7 = L 4 (5) in the steady state, the flow controller 11 does not saturate even when the feed pump is stopped, and the flow control The device output signal L 7 will be maintained at the same value as the flow rate command signal L 4 .

[背景技術の問題点] しかしながら、これはあくまでも定常時の特性であり、
切替接点9の切替時には流量制御器出力信号L7とポン
プ流量信号L5が一致していない限り第6図に示す通
り、ポンプ流量が低でない場合と低の場合とで流量偏差
信号L6はそれぞれL4−L5およびL4−L7となって、
流量偏差信号L6にバンプが生じる。これは切替接点9
により流量制御器出力信号L7とポンプ流量信号L5を切
替えているためであり、両者に偏差があった場合は、そ
の偏差分が流量制御器11を通して変動分として出力さ
れ、流量制御器出力信号L7にバンプが発生する。
[Problems of background art] However, this is a characteristic in a steady state,
As shown in FIG. 6, when the switching contact 9 is switched, unless the flow rate controller output signal L 7 and the pump flow rate signal L 5 are the same, the flow rate deviation signal L 6 depends on whether the pump flow rate is low or low. L 4 -L 5 and L 4 -L 7 , respectively,
A bump is generated in the flow rate deviation signal L 6 . This is the switching contact 9
This is because the flow rate controller output signal L 7 and the pump flow rate signal L 5 are switched by. If there is a deviation between them, the deviation is output as a variation through the flow rate controller 11, and the flow rate controller output A bump is generated on the signal L 7 .

一方、流量制御器出力信号L7とポンプ流量信号L5は、
流量制御調整弁3の開度/流量間の特性が非線形性を持
つために、通常一致しない。このため、従来構成では切
替接点9の切替時、必ずバンプが発生し、原子炉への給
水流量が変動するため、結果的に原子炉水位が変動し、
原子炉基準水位との偏差が許容された範囲を逸脱するお
それがあった。
On the other hand, the flow rate controller output signal L 7 and the pump flow rate signal L 5 are
The characteristics between the opening degree / flow rate of the flow rate control adjustment valve 3 have non-linearity and therefore do not usually match. Therefore, in the conventional configuration, when switching the switching contact 9, a bump is always generated, and the flow rate of water supplied to the reactor fluctuates. As a result, the reactor water level fluctuates,
There was a risk that the deviation from the reactor standard water level would deviate from the allowable range.

[発明の目的] 本発明は、ポンプ流量信号と流量制御器出力の切替をバ
ンプレスに行なうことにより、原子炉水位の変動を取り
除き、安定した原子炉給水制御装置を提供することを目
的とする。
[Object of the Invention] It is an object of the present invention to provide a stable reactor feedwater control device by eliminating the fluctuation of the reactor water level by switching the pump flow signal and the output of the flow controller to bumpless. .

[発明の概要] このため本発明は、原子炉の基準水位信号L1と検出水
位信号L1との偏差水位信号L3を演算する第1演算器6
と、前記第1演算器6ら出力される偏差水位信号L3
応じて原子炉給水ポンプ2に対する指令流量信号L4
演算する水位制御器7と、前記指令流量信号L4とフィ
ードバック信号L8との偏差流量信号L6を演算する第2
演算器10と、前記第2演算器10から出力される偏差
流量信号L6に応じて前記原子炉給水ポンプ2の流量を
制御する流量制御信号L7を演算する流量制御器11
と、前記原子炉給水ポンプ2の流量が「低」の場合は前
記流量制御器11から出力される流量制御信号L7を、
前記原子炉給水ポンプ2の流量が「低でない」場合は前
記原子炉給水ポンプ2の検出流量信号L5を選択して前
記フィードバック信号L8として前記第2演算器10に
出力する切替回路9とを備えた原子炉給水制御装置にお
いて、前記流量制御器11から出力される流量制御信号
7と前記原子炉給水ポンプ2の検出流量信号L5との偏
差L9を演算する第3演算器12と、前記原子炉給水ポ
ンプ流量が「低」から「低でない」あるいは「低でな
い」から「低」に変化したときだけ前記第3演算器12
の出力L3を所定時間後0に収束する信号に補正して前
記第2演算器10に加える補正回路14を設けたことを
特徴としている。
SUMMARY OF THE INVENTION Accordingly the present invention, the first computing unit for calculating a deviation level signal L 3 of the reference water level signal L 1 of the reactor and the detection level signal L 1 6
And a water level controller 7 for calculating a command flow rate signal L 4 for the reactor feed water pump 2 in accordance with the deviation water level signal L 3 output from the first calculator 6, the command flow rate signal L 4 and the feedback signal L Deviation from 8 Second flow rate signal L 6 is calculated
A calculator 10 and a flow controller 11 for calculating a flow control signal L 7 for controlling the flow of the reactor feedwater pump 2 according to the deviation flow signal L 6 output from the second calculator 10.
And when the flow rate of the reactor feedwater pump 2 is “low”, the flow rate control signal L 7 output from the flow rate controller 11 is
When the flow rate of the reactor feed water pump 2 is “not low”, the detection flow rate signal L 5 of the reactor feed water pump 2 is selected and is output as the feedback signal L 8 to the second computing unit 10. In a reactor water supply control device including a third arithmetic unit 12 for calculating a deviation L 9 between a flow control signal L 7 output from the flow controller 11 and a detected flow signal L 5 of the reactor feed water pump 2. And only when the reactor feedwater pump flow rate changes from "low" to "not low" or "not low" to "low".
It is characterized in that a correction circuit 14 for correcting the output L 3 of the above-mentioned to a signal which converges to 0 after a predetermined time and adding it to the second arithmetic unit 10 is provided.

[発明の実施例] 以下、本発明を第1図に示す実施例に基づいて説明す
る。第1図は本発明の一実施例を示す原子炉給水制御装
置の構成図である。図中、第4図と同一符号は同一また
は相当部を示し、第4図と異なる点は、 ポンプ流量信号L5+流量制御器出力信号L7 −切替接点出力信号L8×2 ……(6) を演算する第3の演算器12を設けた点、第3の演算器12
の出力信号L3を接点13を介して1次遅れ回路14に入力
した点、および、1次遅れ回路14の出力信号L10を補正
信号として接点15を介して第2の演算器10に入力した点
である。
[Embodiment of the Invention] Hereinafter, the present invention will be described based on an embodiment shown in FIG. FIG. 1 is a block diagram of a reactor water supply control device showing an embodiment of the present invention. In the figure, the same reference numerals as in FIG. 4 indicate the same or corresponding parts, and the difference from FIG. 4 is that pump flow rate signal L 5 + flow rate controller output signal L 7 −switching contact output signal L 8 × 2. The point that the third arithmetic unit 12 for calculating 6) is provided, and the third arithmetic unit 12
Of the output signal L 3 from the first delay circuit 14 via the contact 13 and the output signal L 10 of the first delay circuit 14 as a correction signal to the second computing unit 10 via the contact 15. That is the point.

第2図は接点13及び15の動きを示したもので、定常状態
では接点13は閉、接点15は開となっており、切替接点9
が動作した時(すなわちポンプ流量が「低」→「低でな
い」、またはは「低でない」→「低」に変化した時)か
ら一定時間(t1)のみ接点13は開、接点15は閉となる。従
って、定常状態においては、流量制御器11に入力される
流量偏差信号L6は第4図に示す構成と変わらず、制御
動作も同様となる。一方、切替接点9が動作後一定時間
(t1)は1次遅れ回路14の出力信号L10が接点15を介して
第2の加算器10に入力されるため、流量偏差信号L6
次遅れ回路出力信号L10が加えられることになる。
FIG. 2 shows the movements of the contacts 13 and 15. In the steady state, the contact 13 is closed and the contact 15 is open.
The contact 13 is open and the contact 15 is closed for a certain time (t 1 ) from when the pump operates (that is, when the pump flow changes from "low" to "not low" or to "not low" to "low"). Becomes Therefore, in the steady state, the flow rate deviation signal L 6 input to the flow rate controller 11 is the same as that shown in FIG. 4, and the control operation is the same. On the other hand, after the switching contact 9 has been operated for a certain time
At (t 1 ), since the output signal L 10 of the first-order lag circuit 14 is input to the second adder 10 via the contact point 15, the second-lag circuit output signal L 10 is added to the flow rate deviation signal L 6. become.

第3図は1次遅れ回路出力信号L10及び流量偏差信号L
6の変化を示す特性図である。定常状態でポンプ流量が
「低」の場合は、 L6=L4−L7 ……(7) であり、また(6)式から L10=L5+L7−L7×2=L5−L7 ……(8) となっている。従って、ポンプ流量が「低」→「低でな
い」となって、切替接点9が動作した直後は、接点15が
閉し、 L6=L4−L5+L10=L4−L5+L5−L7 =L4−L7 ……(9) となり、流量偏差信号L6は変化せずにバンプは発生し
ない。
FIG. 3 shows the primary delay circuit output signal L 10 and the flow rate deviation signal L 10.
It is a characteristic view which shows the change of 6 . When the pump flow rate is “low” in the steady state, L 6 = L 4 −L 7 (7), and from the equation (6), L 10 = L 5 + L 7 −L 7 × 2 = L 5 has become a -L 7 ...... (8). Thus, the pump flow rate becomes "low" → "no low", immediately after the switching contact 9 is operated, the contact 15 closed, L 6 = L 4 -L 5 + L 10 = L 4 -L 5 + L 5 -L 7 = L 4 -L 7 (9), the flow rate deviation signal L 6 does not change and no bump occurs.

一方、切替接点9が動作後は接点13は開となるため、一
定の時定数(T)をもってゆるやかにL10は0に近づく。
従って、t1を十分大きくすれば流量偏差信号L6は、 L6=L4−L5+L10=L4−L5 ……(10) となった後、接点13が閉、接点15が開となり、第4図に
示す構成例と同様になる。以上はポンプ流量が「低」→
「低でない場合」を説明したが、逆の場合も同様の動作
となる。
On the other hand, since the contact 13 is opened after the switching contact 9 operates, L 10 gradually approaches 0 with a constant time constant (T).
Therefore, if t 1 is made sufficiently large, the flow rate deviation signal L 6 becomes L 6 = L 4 −L 5 + L 10 = L 4 −L 5 (10), then the contact 13 is closed and the contact 15 is closed. It is opened and becomes similar to the configuration example shown in FIG. Above is a low pump flow rate →
Although "when not low" has been described, the same operation is performed in the opposite case.

即ち、ポンプ流量「低でない」場合は、 L6=L4−L5 ……(11) また、1次遅れ回路14の出力信号L10は、 L10=L5+L7−L5×2=L7−L5 ……(12) 次に、ポンプ流量「低でない」場合→「低」となって切
替接点9が動作した直後は、 L6=L4−L7+L10=L4−L7+L7−L5 =L4−L5 ……(13) となって、流量偏差信号L6は変化せずにバンプは発生
しない。その後、L10は徐々に0に下り、これにより流
量偏差信号L6は、 L6=L4−L7+L10=L4−L7 ……(14) に落ち着き、バンプレスに「L4−L5」から「L4
7」に移行する。
That is, when the pump flow rate is not “low”, L 6 = L 4 −L 5 (11) Further, the output signal L 10 of the first-order delay circuit 14 is L 10 = L 5 + L 7 −L 5 × 2 = L 7 −L 5 (12) Next, when the pump flow rate is “not low” → “low” and immediately after the switching contact 9 operates, L 6 = L 4 −L 7 + L 10 = L 4 -L 7 + L 7 -L 5 = L 4 -L 5 (13), the flow rate deviation signal L 6 does not change and no bump occurs. After that, L 10 gradually falls to 0, whereby the flow rate deviation signal L 6 settles to L 6 = L 4 −L 7 + L 10 = L 4 −L 7 (14), and the bumpless “L 4 from -L 5, "" L 4 -
L 7 ”.

ところで、以上に説明した実施例では1次遅れ回路14の
時定数Tを一定値にしたが、第3から明らかな様に時定
数Tが大であるほど流量偏差信号L6の変化はゆるやか
になり、切替接点9動作時の原子炉水位制御上は好まし
くなる。しかしながら時定数Tを大とすると前記(8)
式、(13)式の演算も遅れることになり、ポンプ流量L5
が変動している場合等は必ずしもL10がL10=L7−L5
あるいはL10=L5−L7をを満足しないことになる。従
ってこの様な場合は切替接点9動作時のバンプを完全に
防止できない。そこで、この問題を解決するには、1次
遅れ回路14の時定数Tを可変にすれば良い。すなわち、 とすることにより、T1を小、T2を大とすれば上記の問
題を解決することができる。
By the way, although the time constant T of the first-order lag circuit 14 is set to a constant value in the embodiment described above, the larger the time constant T is, the more gradually the change of the flow rate deviation signal L 6 is made. Therefore, it is preferable in controlling the reactor water level when the switching contact 9 is operated. However, if the time constant T is large, the above (8)
The calculation of equation (13) is also delayed, and the pump flow rate L 5
Is fluctuating, L 10 is not always L 10 = L 7 −L 5
Alternatively, L 10 = L 5 −L 7 will not be satisfied. Therefore, in such a case, it is not possible to completely prevent bumping when the switching contact 9 is operated. Therefore, in order to solve this problem, the time constant T of the first-order delay circuit 14 may be made variable. That is, By setting T 1 to be small and T 2 to be large, the above problem can be solved.

この場合、Tを変更するとt1も変更しなければならな
いため、t1の設定変更が煩雑になるという問題がある
が、これは1次遅れ回路出力信号L10をコンパレータに
より確認するという手段で解決できる。すなわち、 |L10|<ε (εは小さい正の値) ……(16) となったことを検出するコンパレータを設け、切替接点
9動作後、このコンパレータが動作するまで接点13を
開、接点15を閉とするものである。この様にすすればt
1はTにより自動的に決定されるため、上記の問題点が
解決される。
In this case, if T is changed, t 1 must also be changed, so there is a problem that the setting change of t 1 becomes complicated, but this is a means of confirming the first-order lag circuit output signal L 10 by a comparator. Solvable. That is, | L 10 | <ε (ε is a small positive value) A comparator is provided to detect that (16), and after the switching contact 9 operates, the contact 13 is opened until the comparator operates and the contact 13 is opened. 15 is closed. In this way, t
Since 1 is automatically determined by T, the above problem is solved.

なお、前記実施例の記載からも明らかなように第2の演
算器10に加える信号L10は徐々に0に収束する信号で
あれば良いことから、回路14は必ずしも一時遅れ回路
に限ること無く、例えばランプ回路等の出力を徐々に0
に絞っていくような回路であればどのような補正回路で
も良いことは明らかである。
As is clear from the description of the above embodiment, the signal L 10 applied to the second arithmetic unit 10 may be a signal that gradually converges to 0. Therefore, the circuit 14 is not necessarily limited to the temporary delay circuit. , Gradually reduce the output of the lamp circuit, etc.
It is clear that any correction circuit may be used as long as it is a circuit that narrows down to.

[発明の効果] 以上の様に本発明によれば、ポンプ流量が変化したと
き、一定時間だけ1次遅れ回路出力信号を補正信号とし
て流量偏差信号に加える様にしたので、流量制御器にフ
ィードバックするポンプ流量信号と流量制御器出力信号
との切替をバンプレスに行なうことができ、原子炉給水
流量の変動が無く、原子炉水位は安定に制御される。
As described above, according to the present invention, when the pump flow rate changes, the first-order lag circuit output signal is added as a correction signal to the flow rate deviation signal for a certain period of time, so feedback to the flow rate controller is performed. The pump flow rate signal and the flow rate controller output signal can be switched to bumpless, the reactor feed water flow rate does not fluctuate, and the reactor water level is controlled stably.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す原子炉給水制御装置の
構成図、第2図は第1図の動作を示すタイミングチャー
ト、第3図は第1の特性図、第4図は従来の原子炉給水
制御装置の構成図、第5図は第4図のブロックダイアグ
ラム図、第6図は第4図の特性図である。 1……原子炉、2……給水ポンプ、3……流量調整弁、
4……水位設定器、5……水位検出器、6……第1の演
算器、7……水位制御器、8……流量検出器、9……切
替接点、10……第2の演算器、11……流量制御器、12…
…第3の演算器、13……接点、14……1次遅れ回路、15
……接点。
FIG. 1 is a block diagram of a reactor water supply control device showing an embodiment of the present invention, FIG. 2 is a timing chart showing the operation of FIG. 1, FIG. 3 is a first characteristic diagram, and FIG. 5 is a block diagram of FIG. 4 is a block diagram of FIG. 4, and FIG. 6 is a characteristic diagram of FIG. 1 ... Reactor, 2 ... Water pump, 3 ... Flow control valve,
4 ... Water level setter, 5 ... Water level detector, 6 ... First calculator, 7 ... Water level controller, 8 ... Flow rate detector, 9 ... Switching contact, 10 ... Second calculation Device, 11 ... Flow controller, 12 ...
… Third calculator, 13 …… Contact, 14 …… First-order delay circuit, 15
……contact.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原子炉の基準水位信号と検出水位信号との
偏差水位信号を演算する第1演算器と、 前記第1演算器から出力される偏差水位信号に応じて原
子炉給水ポンプに対する指令流量信号を演算する水位制
御器と、 前記指令流量信号とフィードバック信号との偏差流量信
号を演算する第2演算器と、 前記第2演算器から出力される偏差流量信号に応じて前
記原子炉給水ポンプの流量を制御する流量制御信号を演
算する流量制御器と、 前記原子炉給水ポンプの流量が「低」の場合は前記流量
制御器から出力される流量制御信号を、前記原子炉給水
ポンプの流量が「低でない」場合は前記原子炉給水ポン
プの検出流量信号を選択して前記フィードバック信号と
して前記第2演算器に出力する切替回路とを備えた原子
炉給水制御装置において、 前記流量制御器から出力される流量制御信号と前記原子
炉給水ポンプの検出流量信号との偏差を演算する第3演
算器と、 前記原子炉給水ポンプ流量が「低」から「低でない」あ
るいは「低でない」から「低」に変化したときだけ前記
第3演算器の出力を所定時間後0に収束する信号に補正
して前記第2演算器に加える補正回路を設けたことを特
徴とする原子炉給水制御装置。
1. A first calculator for calculating a deviation water level signal between a reference water level signal and a detected water level signal of a nuclear reactor, and a command to a reactor feed water pump according to the deviation water level signal output from the first arithmetic unit. A water level controller that calculates a flow rate signal, a second calculator that calculates a deviation flow rate signal between the command flow rate signal and a feedback signal, and the reactor feedwater according to the deviation flow rate signal output from the second calculator A flow rate controller for calculating a flow rate control signal for controlling the flow rate of the pump, and a flow rate control signal output from the flow rate controller when the flow rate of the reactor feed water pump is “low”, When the flow rate is not “low”, in a reactor water supply control device including a switching circuit that selects the detected flow rate signal of the reactor water supply pump and outputs it as the feedback signal to the second computing unit, A third calculator for calculating a deviation between a flow rate control signal output from the flow rate controller and a detected flow rate signal of the reactor feedwater pump, and the reactor feedwater pump flow rate from "low" to "not low" or " An atom characterized by providing a correction circuit for correcting the output of the third arithmetic unit to a signal that converges to 0 after a predetermined time only when changing from "not low" to "low" and adding the signal to the second arithmetic unit. Reactor water supply control device.
JP60063908A 1985-03-29 1985-03-29 Reactor water supply controller Expired - Lifetime JPH0648082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60063908A JPH0648082B2 (en) 1985-03-29 1985-03-29 Reactor water supply controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60063908A JPH0648082B2 (en) 1985-03-29 1985-03-29 Reactor water supply controller

Publications (2)

Publication Number Publication Date
JPS61225503A JPS61225503A (en) 1986-10-07
JPH0648082B2 true JPH0648082B2 (en) 1994-06-22

Family

ID=13242897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60063908A Expired - Lifetime JPH0648082B2 (en) 1985-03-29 1985-03-29 Reactor water supply controller

Country Status (1)

Country Link
JP (1) JPH0648082B2 (en)

Also Published As

Publication number Publication date
JPS61225503A (en) 1986-10-07

Similar Documents

Publication Publication Date Title
KR920005279B1 (en) Digital control system
US4478783A (en) Nuclear power plant feedwater controller design
JPH0648082B2 (en) Reactor water supply controller
JPS6239919B2 (en)
JPH0450602B2 (en)
JPS6039845B2 (en) Nuclear turbine pressure control device
JPS6197597A (en) Controller for feedwater to nuclear reactor
JPH0225477B2 (en)
JPH0335922Y2 (en)
JP2543900B2 (en) Water supply control device
JP2668143B2 (en) Steam turbine control device and control method therefor
JPS5818506A (en) Method of controlling operation of boiler turbine under variable pressure
JPS6370001A (en) Nuclear-reactor feedwater controller
JPS61246502A (en) Feedwater controller
JPS6314002A (en) Feedwater controller for steam generator
JPS59128495A (en) Automatic load follow-up control device
JPS62157598A (en) Controller for water level of nuclear reactor
JPS61226573A (en) Water level controller
JPH03156104A (en) Speed governing device
JPS63121798A (en) Load follow-up controller for nuclear power plant
JPH0345638B2 (en)
JPH05142390A (en) Water supply control device
JPS6277507A (en) Feedwater controller for nuclear reactor
JPH01269093A (en) Feed water controller for nuclear reactor
JPH01263403A (en) Supply water controlling device