JPH01263403A - Supply water controlling device - Google Patents

Supply water controlling device

Info

Publication number
JPH01263403A
JPH01263403A JP63088092A JP8809288A JPH01263403A JP H01263403 A JPH01263403 A JP H01263403A JP 63088092 A JP63088092 A JP 63088092A JP 8809288 A JP8809288 A JP 8809288A JP H01263403 A JPH01263403 A JP H01263403A
Authority
JP
Japan
Prior art keywords
flow rate
water level
signal
reactor
main steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63088092A
Other languages
Japanese (ja)
Inventor
Takeji Haniyuda
羽生田 武二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63088092A priority Critical patent/JPH01263403A/en
Publication of JPH01263403A publication Critical patent/JPH01263403A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To enable a water level controlling approximating to a normal operation of a water level controlling device to be performed by a method wherein each of variation of a main steam flow rate signal and variation of water feeding flow rate and each of a variation of a pressure signal of a reactor or a boiler and a water level signal are relatively offset in a transition state. CONSTITUTION:In case that a low transition state is continuously generated, at first a variation of a main steam flow rate signal S8 is detected by a transition accommodator 14, a transition main steam flow rate signal S23 is outputted in advance by a reactor pressure compensation circuit, thereby a water feeding flow rate S13 is corrected. As a water feeding flow rate S13 is controlled, a water feeding flow rate signal S7 is also varied. If this amount of variation is coincided with an amount of variation of the main steam flow rate, it is eliminated and a biasing for an output of a water level controlling device 2 becomes zero. Similarly, after the main steam flow rate signal S8 is varied, void is increased or decreased in response to a variation of inter-reactor pressure generated in delay, thereby a water level in the reactor is rapidly increased or decreased. A rapid variation of this water level signal S1 is detected by a transition accommodator 11, a transition water level signal S21 is added to an output part as a biasing signal and this is compensated by an output signal of the transition output signal S6.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子炉またはボイラの水位をある設定値に維持
するように給水流量を制御する給水制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a water supply control device that controls the flow rate of water supply so as to maintain the water level of a nuclear reactor or boiler at a certain set value.

(従来の技術) 沸騰水型原子炉(以下、BINRと略す)またはドラム
式ボイラにおいては、原子炉またはボイラの性能あるい
は安全の面から炉水位またはボイラ水位をある一定レベ
ルに保つ必要がある。このため、炉水位またはボイラ水
位の変動に応じて給水制御系により給水流量を制御して
いる。第4図に従来使用されている給水流量制御装置(
特願昭60−279048号明細書参照)を原子炉給水
制御に適用した例を示す。
(Prior Art) In a boiling water nuclear reactor (hereinafter abbreviated as BINR) or a drum boiler, it is necessary to maintain the reactor water level or boiler water level at a certain level from the standpoint of reactor or boiler performance or safety. For this reason, the water supply flow rate is controlled by a water supply control system according to fluctuations in the reactor water level or boiler water level. Figure 4 shows the conventionally used water supply flow rate control device (
An example in which the method (see Japanese Patent Application No. 60-279048) is applied to reactor water supply control will be shown.

第4図において、水位検出器により検出された原子炉水
位S】と、予め設定した設定水位S2を加算器1へ入力
して得られる水位偏差信号S3を水位制御器2へ入力す
る。
In FIG. 4, a water level deviation signal S3 obtained by inputting a reactor water level S detected by a water level detector and a preset water level S2 to an adder 1 is input to a water level controller 2.

この水位制御器2は、比例および積分コントローラで構
成され、原子炉が通常運転中に生じる例えば炉出力変更
に伴う炉水位変動に追従して制御信号S4を出力する。
The water level controller 2 is composed of a proportional controller and an integral controller, and outputs a control signal S4 in accordance with reactor water level fluctuations that occur during normal operation of the reactor, for example, due to a change in reactor output.

また、前記の比例、積分が応容土問題となる原子炉圧力
上昇に起因する炉水位変動については、原子炉内圧力信
号S5を人力し、過渡的な圧力変化に応答するように設
定された過渡補償器3が炉水位変動を抑制する過渡圧力
信号S6を出力する。
In addition, regarding reactor water level fluctuations caused by a rise in reactor pressure, where the proportional and integral equations described above are a problem, the reactor pressure signal S5 is manually generated and set to respond to transient pressure changes. The transient compensator 3 outputs a transient pressure signal S6 that suppresses reactor water level fluctuations.

また、給水流量と主蒸気流量が等しければ、水位変動は
零となるので、給水流量信号S7と主蒸気流量信号S8
の流量偏差信号S9も零とするよう加算器4へ入力し、
両者の偏差信号S9にゲイン5を乗じる。
Furthermore, if the feed water flow rate and the main steam flow rate are equal, the water level fluctuation will be zero, so the feed water flow rate signal S7 and the main steam flow rate signal S8
input to the adder 4 so that the flow rate deviation signal S9 of is also set to zero,
The difference signal S9 between the two is multiplied by a gain of 5.

水位制御器2、過渡補償器3、ケイン5の各出力信号S
、、、S6.S□。を加算器6へ入力し、それら出力信
号の和である流量制御信号Sllを給水制御器7に入力
して給水流量を演算し、給水サーボ系8への旺動信号S
12を出力する。これにより、流量制御信号81.1に
応した給水流量S13得ることができる。
Each output signal S of the water level controller 2, transient compensator 3, and cane 5
,,,S6. S□. is inputted into the adder 6, and the flow rate control signal Sll, which is the sum of these output signals, is inputted into the water supply controller 7 to calculate the water supply flow rate, and an activation signal S to the water supply servo system 8 is inputted.
Outputs 12. Thereby, the water supply flow rate S13 corresponding to the flow rate control signal 81.1 can be obtained.

ところで、原子炉水位に変動が発生する主な要因は、炉
圧力、給水流量および原子炉出力変更による主蒸気流量
の変化である。
By the way, the main factors that cause fluctuations in reactor water level are changes in reactor pressure, feed water flow rate, and main steam flow rate due to changes in reactor power.

前記したように主蒸気流量80と給水流量S7は通常等
しいので、もし両者の間にミスマツチが発生すれば、そ
の偏差信号(ミスマツチ信号)S!lにゲインを乗して
給水流量513を制御し、流量偏差S9が零となるよう
にしている。主蒸気流量と給水流量は、負荷遮断、再循
環ポンプ[・リップ、給水ポンプ1〜リツプ等が発生し
た過渡状態において、当然ミスマツチが発生しているの
で、ミスマツチ量と符号に応して給水流量指令を増減す
ることにより連応性が向上する。
As mentioned above, the main steam flow rate 80 and the feed water flow rate S7 are usually equal, so if a mismatch occurs between the two, the deviation signal (mismatch signal) S! The water supply flow rate 513 is controlled by multiplying l by a gain so that the flow rate deviation S9 becomes zero. The main steam flow rate and the feed water flow rate are naturally mismatched in transient states such as load shedding, recirculation pump lip, water pump 1 lip, etc., so the feed water flow rate is determined according to the amount and sign of the mismatch. Coordination is improved by increasing or decreasing the number of commands.

(発明が解決しようとする課題) しかし、上記偏差信号S9は水位制御器2にとれば外乱
となり、オーバーシュート量や整定時間の増加を招くこ
とになる。例えば、第5図に示すように、MG速度を急
増させた場合、主蒸気流量S。
(Problem to be Solved by the Invention) However, the deviation signal S9 becomes a disturbance when received by the water level controller 2, leading to an increase in the amount of overshoot and the settling time. For example, as shown in FIG. 5, when the MG speed is rapidly increased, the main steam flow rate S.

が急増し原子炉水位S1が急減した後、炉圧信号S5の
減少を過渡補償器3て検出し、給水流量S ]、 3を
減少させる補正が行なわれるが、主蒸気流量信号Snと
給水流量信号S7の偏差により大きな給水増加バイアス
が加えられているため、炉水位S1の回復が遅く、かつ
後半では給水流量Se]を余分に制御するためオーバー
シュート気味となる。
After the reactor water level S1 rapidly decreases, the transient compensator 3 detects a decrease in the reactor pressure signal S5, and a correction is made to reduce the feedwater flow rate S],3, but the main steam flow rate signal Sn and the feedwater flow rate Since a large feed water increase bias is applied due to the deviation of the signal S7, the recovery of the reactor water level S1 is slow, and in the latter half, there is a tendency to overshoot because the feed water flow rate Se] is extra controlled.

このため、第4図に示したゲイン5を大きくし過渡状態
の応答特性を改善する調整が必要であるが、ゲイン!l
!+整だけでは限度がある。また、原子カブラン!−に
よる発電量の電力系統に占める割合は年々増加している
ため、原子カブラン1〜はベース負荷から火力プラント
同様AFCや、昼と夜の出力を変更する出力調整が必要
となってきている。これらの運転では、プラントにとリ
ノ」1過渡状態が連続して発生していることになり、こ
の時に前記した過渡状態が発生するおそれがある。
Therefore, it is necessary to make adjustments to increase the gain 5 shown in FIG. 4 to improve the response characteristics in the transient state, but the gain! l
! + There is a limit to just adjusting. Also, Atomic Kaburan! The proportion of power generated by - in the electric power system is increasing year by year, so it is becoming necessary for Atomic Power Plants 1 to 1. In these operations, transient states occur continuously in the plant, and there is a risk that the above-mentioned transient state will occur at this time.

このようしこ、原子炉またはボイラが運転中に炉水位ま
たはボイラ水位の変動を引き起こす主要因である炉圧ま
たはボイラ内圧、給水流量および原子炉またはボイラ出
力変更による主蒸気流量の変化において従来技術では圧
力変動については、原子炉またはボイラの圧力信号を微
分特性の過渡補償器を介して水位制御器に加えることに
より、炉圧またはボイラ内圧変動により引き起こされる
炉水位またはボイラ水位の過渡的な変動の抑制を行−4
= なっており、給水流量および主蒸気流量については、検
出流量をフィードバック信号として使用し、これら物理
量の変動に即応性し、炉水位またはボイラ水位の大幅な
変動を抑制していた。
In this case, the prior art deals with changes in reactor pressure or boiler internal pressure, feed water flow rate, and main steam flow rate due to changes in reactor or boiler output, which are the main factors that cause fluctuations in reactor water level or boiler water level during operation of a nuclear reactor or boiler. Regarding pressure fluctuations, by applying the reactor or boiler pressure signal to the water level controller via a transient compensator with differential characteristics, transient fluctuations in the reactor water level or boiler water level caused by fluctuations in reactor pressure or boiler internal pressure can be detected. -4
= , and for the feed water flow rate and main steam flow rate, the detected flow rate was used as a feedback signal, responding quickly to changes in these physical quantities and suppressing large fluctuations in the reactor water level or boiler water level.

しかし、プラント運用の変化により、AFC運転や出力
変動回数が増え、主蒸気流量や、給水流量の変動が多く
なり、小過渡状態が連続して発生すると、前記物理量の
フィードバックはゲインが大きく大幅な変動を抑制する
反面、水位制御器にとっての外乱として与える影響が無
視できなくなってきた。
However, due to changes in plant operation, the number of AFC operations and output fluctuations increases, the main steam flow rate and feed water flow rate fluctuate more, and small transient conditions occur continuously, the feedback of the physical quantities has a large gain and becomes large. Although fluctuations are suppressed, the influence of disturbance on water level controllers can no longer be ignored.

また、再循環ポンプのトリップによる炉水位またはボイ
ラ水位のスエリングや圧力制御系の変動による水位変動
は、再循環流量や原子炉またはボイラ内圧力の整定につ
れて再び元の水位に復帰するのに対して、第4図に示し
た従来の給水制御系は、水位偏差信号をそのまま制御系
に導入するため見掛は上の水位変動にも追従して、給水
流量を調節するので余分な水位変動を生し、過渡現象の
終わりの時点で、給水の過不足による給水系機器のトリ
ップを引き起こし、以後の制御が不能となる不具合があ
った。
In addition, water level fluctuations due to swelling of the reactor water level or boiler water level due to recirculation pump tripping or fluctuations in the pressure control system will return to the original water level as the recirculation flow rate and pressure within the reactor or boiler settle. , the conventional water supply control system shown in Figure 4 inputs the water level deviation signal directly into the control system, so it appears to follow the above water level fluctuations and adjust the water supply flow rate, which causes unnecessary water level fluctuations. However, at the end of the transient phenomenon, an excess or shortage of water caused the water supply equipment to trip, making further control impossible.

そこで本発明は、原子炉またはボイラが運転中に発生す
る大きな水位変動を速やかに抑制し、原子炉またはボイ
ラを安定して運転することができるコンバクI〜で経済
的な給水制御装置を提供することを目的とする。
Therefore, the present invention provides an economical water supply control device that can quickly suppress large water level fluctuations that occur during operation of a nuclear reactor or boiler and operate the reactor or boiler stably. The purpose is to

[発明の構成コ (課題を解決するための手段) 本発明は、原子炉またはボイラの水位を制御するために
、炉またはボイラの水位を検出して実水位と設定水位と
の偏差を零とするように水位制御器により給水流量を制
御する給水制御装置において、原子炉またはボイラの圧
力と、原子炉またはボイラから発生する主蒸気流量と、
原子炉またはボイラへ供給される給水流量と、炉水位ま
たはボイラ水位の各検出信号を微分特性の過渡補償器を
介して水位制御器の出力信号に加えるようにしたもので
ある。
[Configuration of the Invention (Means for Solving the Problems) The present invention detects the water level of the reactor or boiler and eliminates the deviation between the actual water level and the set water level in order to control the water level of the reactor or boiler. In a water supply control device that controls the water supply flow rate using a water level controller, the pressure of the reactor or boiler, the main steam flow rate generated from the reactor or boiler,
Each detection signal of the water supply flow rate supplied to the nuclear reactor or boiler and the reactor water level or boiler water level is added to the output signal of the water level controller via a transient compensator with differential characteristics.

(作用) 上記の手段により、過渡状態においては、主蒸気流量信
号の変動と給水流量信号の変動が、また、原子炉または
ボイラの圧力信号の変動と水位信号の変動が各々互いに
相殺され、水位制御器の出力信号に加わるバイアスが零
となるように作用するため、定常運転に近い水位制御が
可能となる。
(Function) With the above means, in a transient state, fluctuations in the main steam flow rate signal and fluctuations in the feed water flow rate signal, as well as fluctuations in the reactor or boiler pressure signal and fluctuations in the water level signal, cancel each other out, and the water level Since the bias applied to the output signal of the controller becomes zero, water level control close to steady operation is possible.

(実施例) 以下、本発明を原子カプラントへ適用した場合の一実施
例を第1図および第2図を参照しつつ説明する。
(Example) Hereinafter, an example in which the present invention is applied to an atomic couplant will be described with reference to FIGS. 1 and 2.

第1図は本発明の一実施例による給水制御装置の構成図
を示したものであり、図中、第4図と同一符号は同一ま
たは相当部分を示し、第4図の構成と異なる点は、炉水
位信号Slを微分特性の過渡補償器11に入力して得ら
れた過渡水位信号521を加算器】2に加える点と、給
水流量信号Slを微分特性の過渡補償器13に入力し得
られる過渡給水流量信号S22と、主蒸気流量信号SO
を微分特性の過渡補償器14に入力して得られた過渡主
蒸気流量信号S23とを加算器15に入力し、得られる
偏差信号S24を加算器]2に加え、更に偏差信号S2
4と過渡水位信号SZXとの偏差を加算器6に加えてい
る点である。
FIG. 1 shows a configuration diagram of a water supply control device according to an embodiment of the present invention. In the figure, the same reference numerals as in FIG. 4 indicate the same or corresponding parts, and the points that differ from the configuration in FIG. , the reactor water level signal Sl is input to the transient compensator 11 with differential characteristics, and the obtained transient water level signal 521 is added to the adder]2, and the feed water flow rate signal Sl is input to the transient compensator 13 with differential characteristics. The transient feedwater flow rate signal S22 and the main steam flow rate signal SO
is inputted into the transient compensator 14 with differential characteristics, and the transient main steam flow rate signal S23 obtained is inputted into the adder 15, and the obtained deviation signal S24 is added to the adder]2, and the deviation signal S2
4 and the transient water level signal SZX is added to the adder 6.

この構成で、炉水位は、比例および積分コンI・ローう
で構成された水位制御器2により、設定水位信号S2と
原子炉水位信号S1の水位偏差信号S3を零にするよう
に制御される。一方、通常運転中に給水流量信号S7と
主蒸気流量信号Soとは所定出力レートに従って徐々に
且つ同様に変化する。このため、通常運転中に生しる例
えば炉出力変更に伴う炉水位変動は、殆ど発生しない。
With this configuration, the reactor water level is controlled by the water level controller 2, which is composed of a proportional and integral controller I, so that the water level deviation signal S3 between the set water level signal S2 and the reactor water level signal S1 is made zero. . On the other hand, during normal operation, the feedwater flow rate signal S7 and the main steam flow rate signal So gradually and similarly change according to a predetermined output rate. Therefore, fluctuations in the reactor water level that occur during normal operation, for example due to changes in reactor output, hardly occur.

また、前記の比例および積分コントローラが応答上問題
となる原子炉圧力−に昇に起因する炉水位変動について
は、第4図に示した従来回路の動作と全く同様に説明で
きる。即ち、電力系統側に発生した擾乱のために発電機
周波数がある値以上に上昇した場合には、ガバナが動作
してタービンに流入する蒸気を調節する加減弁を閉方向
に動作させる。このとき、原子炉圧力か上昇し、原子炉
が運転中に炉内に常時存在するボイ1−をつぶし、その
ボイド消失のために炉水位が急激に低下する。前記の水
位制御器2は、比例、積分コンI・ローラのため炉水位
の急激な変動に対する応答は遅いため、原子炉内の急激
な圧力変化を過渡補償器3により検出し、原子炉内圧力
信号S5の変化に応じた過渡圧力信号S6を水位制御器
2の出力S4に加算して、原子炉圧力に起因する炉水位
変動を抑制する。
Further, the reactor water level fluctuation caused by the rise in reactor pressure, which poses a problem in the response of the proportional and integral controllers, can be explained in exactly the same way as the operation of the conventional circuit shown in FIG. That is, when the generator frequency rises above a certain value due to a disturbance occurring in the power system, the governor operates to close the control valve that regulates the steam flowing into the turbine. At this time, the reactor pressure increases and the void 1-, which is always present in the reactor while the reactor is in operation, collapses, and the reactor water level drops rapidly due to the disappearance of the void. The water level controller 2 described above is a proportional/integral controller I/roller, so the response to sudden changes in the reactor water level is slow, so the transient compensator 3 detects sudden pressure changes in the reactor, A transient pressure signal S6 corresponding to a change in the signal S5 is added to the output S4 of the water level controller 2 to suppress reactor water level fluctuations caused by reactor pressure.

この過渡補償器3は、第2図に示すように、不完全微分
回路3Aと、位相補償関数3Bと、リミッタ3Cとから
構成されている。不完全微分回路3Aは運転上発生する
長時間(数10秒以上)の原子炉圧力変動には応答せず
、原子炉の急激な水位変動を引き起こす圧力変動のみに
応答して出力を発生する。また、位相補償関数3Bは、
位相補償を行なう周波数範囲に見あうよう決定される。
As shown in FIG. 2, this transient compensator 3 is composed of an incomplete differentiator circuit 3A, a phase compensation function 3B, and a limiter 3C. The incomplete differential circuit 3A does not respond to long-term reactor pressure fluctuations (several tens of seconds or more) that occur during operation, but generates an output in response only to pressure fluctuations that cause rapid water level fluctuations in the reactor. Moreover, the phase compensation function 3B is
It is determined to match the frequency range in which phase compensation is to be performed.

−例として示すとに;ゲイン、 TJ〜5;時定数、 
S;ラプラス猷算子である。過渡補償器3の出力S6は
炉水位制御系に対しては、バイアスとして働き、炉水位
制御系の安定性へは直接影響を与えない。そのため、時
定数T】〜5は第1図の過渡圧力信号S6から給水制御
器7を通して炉水位までの制御遅れを補償するように決
定される。また、ゲインには原子炉圧力変動に対して給
水制御系の応答が満足するように決定される。また、こ
の過渡補償器出力Sbが過大となり、炉水位を大幅に変
動させないように出力を制限するためのリミッタを設け
ている。
- As an example; gain, TJ~5; time constant,
S: Laplace Hikanko. The output S6 of the transient compensator 3 acts as a bias for the reactor water level control system and does not directly affect the stability of the reactor water level control system. Therefore, the time constant T]~5 is determined to compensate for the control delay from the transient pressure signal S6 in FIG. 1 to the reactor water level through the water supply controller 7. Further, the gain is determined so that the response of the water supply control system to reactor pressure fluctuations is satisfactory. Further, a limiter is provided to limit the output so that the transient compensator output Sb becomes excessive and the reactor water level does not fluctuate significantly.

しかしながら、前記の手段たけでは、AFC運転のよう
な系統周波数に同調するための出力変動や電力調整のた
めの出力変更時のような、比較的変化の穏やかな炉圧変
動が連続的に発生する場合に不具合を生ずる。原子炉内
圧力は、主蒸気流量変化の結果、時間遅れを持って変化
するので、この圧力変化により、給水流量S13を制御
して炉水位を一定に保とうとすると、前記小過渡状態が
周期的に発生した場合、主蒸気流量信号Soか増加した
時過渡補償器3からの補正過渡圧力信号s6により給水
流量S13を増加する。給水流量信号s7が増と検出さ
れたときに今度はガバナ動作によりタービンに流入する
主蒸気流量が減少しているような位相ズレがあると、第
4図に示した従来回路では主蒸気流量信号S8と給水流
量信号s7の偏差は大きくなり、これにゲイン5が乗ぜ
られるため、給水制御器7には非常に大きな流量制御信
号Sllが久方され給水流量を制御するため余分な水位
変動を生ずることになる。
However, with the above measures alone, furnace pressure fluctuations with relatively gentle changes occur continuously, such as when output fluctuations are made to tune to the grid frequency during AFC operation, or when output changes are made for power adjustment. This may cause problems in some cases. The reactor pressure changes with a time delay as a result of changes in the main steam flow rate, so if an attempt is made to control the feed water flow rate S13 to keep the reactor water level constant due to this pressure change, the small transient state will occur periodically. If this occurs, when the main steam flow rate signal So increases, the feed water flow rate S13 is increased by the corrected transient pressure signal s6 from the transient compensator 3. If there is a phase shift such that the main steam flow rate flowing into the turbine is decreased due to governor operation when the feed water flow rate signal s7 is detected to have increased, then in the conventional circuit shown in Fig. 4, the main steam flow rate signal The deviation between S8 and the water supply flow rate signal s7 becomes large and is multiplied by a gain of 5, so that a very large flow rate control signal Sll is applied to the water supply controller 7 for a long time to control the water supply flow rate, resulting in extra water level fluctuations. It turns out.

このため本発明の制御装置では、第2図に示す構成と同
等の過渡補償器11.13.14を給水流量信号S7、
主蒸気流量信号Soおよび原子炉水位信号slに各々設
けて、これら過渡補償器11.13.14の出力信号を
水位制御器2の出力側に加える構成としている。過渡補
償器出力s[iは、炉水位制御系に対してはバイアスと
して働いているため通常運転中の緩やかな各プロセス信
号の変化には追従しないので、炉水位制御系の安定性へ
は直接影響を与えない。
Therefore, in the control device of the present invention, the transient compensators 11.13.14 having the same configuration as shown in FIG.
The main steam flow rate signal So and the reactor water level signal sl are provided respectively, and the output signals of these transient compensators 11, 13, and 14 are added to the output side of the water level controller 2. Since the transient compensator output s[i acts as a bias for the reactor water level control system, it does not follow gradual changes in each process signal during normal operation, so it has no direct effect on the stability of the reactor water level control system. No impact.

一方、前記小過渡状態が連続的に発生する場合には先ず
主蒸気流量信号Seの変化が過渡補償器14によって検
知され、炉圧補償回路より先行して過渡主蒸気流量信号
S23が出力されることにより給=11= 水流量S13が補正される。給水流量S13が制御され
ると給水流量信号S7も変化し、この変化量が主蒸気流
量の変化量と一致すると相殺され、水位制御器2の出力
へのバイアスは零となる。同様に主蒸気流量信号Soが
変動した後、遅れて発生する炉内圧力変化により、ボイ
ドが増加または減少して、炉水位が急激に増加または減
少する。この水位信号S1の急変を過渡補償器11で検
知し、過渡水位信号S2]を水位制御器2の出力側へバ
イアスとして加え、過渡圧力信号S6の出力信号と相殺
する。
On the other hand, when the small transient state occurs continuously, a change in the main steam flow rate signal Se is first detected by the transient compensator 14, and a transient main steam flow rate signal S23 is outputted before the furnace pressure compensation circuit. As a result, the supply=11=water flow rate S13 is corrected. When the feed water flow rate S13 is controlled, the feed water flow rate signal S7 also changes, and when this amount of change matches the amount of change in the main steam flow rate, it is canceled out, and the bias to the output of the water level controller 2 becomes zero. Similarly, after the main steam flow rate signal So fluctuates, voids increase or decrease due to a change in the reactor pressure that occurs with a delay, and the reactor water level rapidly increases or decreases. This sudden change in the water level signal S1 is detected by the transient compensator 11, and the transient water level signal S2 is applied as a bias to the output side of the water level controller 2 to cancel out the output signal of the transient pressure signal S6.

以上のように過渡状態においては、主蒸気流量信号So
の変動と給水流量信号S7の変動が、また、炉内圧力信
号S5の変動と原子炉水位信号S1の変動が各々互いに
相殺され、バイアスが零となるように作用するため、定
常運転に近い水位制御が可能となる。そのため、過渡補
償器I3は過渡給水流量信号S22から給水制御器7を
通して炉水位となる迄の制御遅れを補償するように決定
され、ゲインには主蒸気流量変動に対して同等の応答性
が得られるように決定される。同様に、過渡補償器14
は、過渡主蒸気流量信号S23から給水制御器7を通し
て給水流量となり、最終的に炉水位となる迄の制御遅れ
を補償するよう決定され、ゲインには給水流量変動に対
して同等となるよう決定される。また、過渡補償器11
は過渡水位信号323から給水制御器7を通して炉水位
までの制御遅れを補償し、ゲインには原子炉内圧力補償
系と同等になるよう決定される。例えば、第3図に示す
ように、第5図に示した従来例同様にMG速度を急増さ
せた場合を考えると、主蒸気流量信号S8の急増に対し
て過渡補償器14により過渡主蒸気流量信号S23が出
力され、給水流量S13を増方向に補正するため、炉水
位S1が回復し始め給水流量信号S7が増方向に変化し
たことを過渡補償器13により検知し、過渡給水流量信
号S22が出力される。これにより、給水流量S13の
増加が抑制され炉水位の回復が一時抑えられる。
As mentioned above, in the transient state, the main steam flow rate signal So
The fluctuations in the feed water flow rate signal S7, as well as the fluctuations in the reactor pressure signal S5 and the fluctuations in the reactor water level signal S1, cancel each other out and act so that the bias becomes zero, so that the water level is close to that of steady operation. Control becomes possible. Therefore, the transient compensator I3 is determined to compensate for the control delay from the transient feedwater flow rate signal S22 to the reactor water level through the feedwater controller 7, and the gain has the same responsiveness to main steam flow rate fluctuations. It is determined that Similarly, transient compensator 14
is the feedwater flow rate from the transient main steam flow rate signal S23 through the feedwater controller 7, and is determined to compensate for the control delay until the reactor water level is finally reached, and the gain is determined to be equivalent to feedwater flow rate fluctuations. be done. In addition, the transient compensator 11
compensates for the control delay from the transient water level signal 323 to the reactor water level through the water supply controller 7, and the gain is determined to be equivalent to that of the reactor pressure compensation system. For example, as shown in FIG. 3, if we consider the case where the MG speed is suddenly increased as in the conventional example shown in FIG. The signal S23 is output, and in order to correct the feed water flow rate S13 in the increasing direction, the transient compensator 13 detects that the reactor water level S1 has started to recover and the feed water flow rate signal S7 has changed in the increasing direction, and the transient feed water flow rate signal S22 is Output. As a result, an increase in the feed water flow rate S13 is suppressed, and recovery of the reactor water level is temporarily suppressed.

その後、炉圧信号S5が減少したことによる過渡圧力信
号S6が、給水を減少させようと動作するが同時に炉水
位S】の減少が過渡補償器11により検知され給水流量
S 13を増加させるよう動作する。このため、給水増
のバイアスと給水域のバイアスがバランス良く加えられ
、第5図に見られるような後半のオーバーシュー1〜か
なく力1水位S1の整定も速く行なわれることが判る。
Thereafter, the transient pressure signal S6 caused by the decrease in the reactor pressure signal S5 operates to reduce the water supply, but at the same time, the transient compensator 11 detects a decrease in the reactor water level S and operates to increase the water supply flow rate S13. do. Therefore, it can be seen that the bias for increasing the water supply and the bias for the water supply area are applied in a well-balanced manner, and the latter half overshoe 1 to force 1 water level S1 is quickly set as shown in FIG.

なお、上記実施例では、本発明の給水制御装置を原子カ
ブランl−に適用した場合について説明したが、火力プ
ラントに適用した場合も同様にHQ明するごどかできる
。この場合、再循環流鼠の変0jは原子炉の場合にはス
エリンクによる水位変動どボイ1−を循環させることに
よる出力変化、即ち主蒸気流量変化に表わオしるのに対
し、ボイラの場合には主に水位夢島とし2て表われる相
違があるが、本発明による構成によれば、7・F位変動
、主蒸気流量変動共に過渡補償しているため同様に説明
できる。
In the above embodiment, the water supply control device of the present invention is applied to an atomic power plant, but it can be similarly applied to a thermal power plant. In this case, in the case of a nuclear reactor, the change in the recirculation flow rate is expressed by the change in output due to the circulation of the boiler, that is, the change in the main steam flow rate, whereas in the case of a nuclear reactor, the change in the water level due to the water link is expressed by the change in the main steam flow rate. In this case, there are differences mainly expressed as water level Yumeshima and 2, but according to the configuration of the present invention, transient compensation is performed for both the 7.F level fluctuation and the main steam flow rate fluctuation, so it can be explained in the same way.

[発明の効果] 以上述べたように本発明の給水制御装置によれば、原子
炉またはボイラが運転中に発生する大きな水位変動や連
続的に発生ずる小過渡状態に対して、水位変動の主要因
である主蒸気流量変動や給水流量変動、圧力変動に対し
ては、速やかに抑制する効果が得られる。
[Effects of the Invention] As described above, according to the water supply control device of the present invention, large water level fluctuations that occur during operation of a nuclear reactor or boiler, and small transient states that occur continuously, can be controlled by the main water level fluctuations. The main steam flow rate fluctuation, feed water flow rate fluctuation, and pressure fluctuation, which are the main causes, can be quickly suppressed.

そのために、これらの過渡状態における運転マージンが
確保され、原−r炉または火力ブラン1−の安定運転を
行なうことができる。
Therefore, an operating margin in these transient states is ensured, and stable operation of the nuclear reactor or thermal power blast 1- can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す給水制御装置の構成図
、第2図は第1図の過渡補償器の構成図。 第3図は第1図の給水制御装置の応答特性図、第4図は
従来の給水制御装置の構成図、第5図は従来の給水制御
装置の応答特性図である。 1.4,6,12.15・・・加算器、2・・・水位制
御器、3 、 ] ]、 。 ]3.14・・・過渡補償器、5・・・ゲイン、7・自
給水制御器、8・・・給水サーボ系。
FIG. 1 is a block diagram of a water supply control device showing an embodiment of the present invention, and FIG. 2 is a block diagram of the transient compensator shown in FIG. 1. FIG. 3 is a response characteristic diagram of the water supply control device shown in FIG. 1, FIG. 4 is a block diagram of a conventional water supply control device, and FIG. 5 is a response characteristic diagram of the conventional water supply control device. 1.4, 6, 12.15... Adder, 2... Water level controller, 3, ] ], . ]3.14...Transient compensator, 5...Gain, 7.Self-supply water controller, 8...Water supply servo system.

Claims (1)

【特許請求の範囲】[Claims] 原子炉またはボイラの水位を制御するために、炉または
ボイラの水位を検出して実水位と設定水位との偏差を零
とするように水位制御器により給水流量を制御する給水
制御装置において、原子炉またはボイラの圧力の変化分
を検出する回路と、原子炉またはボイラに供給される給
水流量の変化分を検出する回路と、原子炉またはボイラ
から発生する主蒸気流量の変化分を検出する回路と、原
子炉またはボイラの水位の変化分を検出する回路を備え
、これら変化分検出回路出力を前記水位制御器出力に加
えて給水流量を制御することを特徴とする給水制御装置
In order to control the water level of a nuclear reactor or boiler, a water supply control device detects the water level of the reactor or boiler and controls the water supply flow rate using a water level controller so that the deviation between the actual water level and the set water level is zero. A circuit that detects changes in the pressure of the reactor or boiler, a circuit that detects changes in the flow rate of feed water supplied to the reactor or boiler, and a circuit that detects changes in the flow rate of main steam generated from the reactor or boiler. and a circuit for detecting a change in the water level of a nuclear reactor or boiler, and the output of the change detection circuit is added to the output of the water level controller to control the water supply flow rate.
JP63088092A 1988-04-12 1988-04-12 Supply water controlling device Pending JPH01263403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63088092A JPH01263403A (en) 1988-04-12 1988-04-12 Supply water controlling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63088092A JPH01263403A (en) 1988-04-12 1988-04-12 Supply water controlling device

Publications (1)

Publication Number Publication Date
JPH01263403A true JPH01263403A (en) 1989-10-19

Family

ID=13933226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63088092A Pending JPH01263403A (en) 1988-04-12 1988-04-12 Supply water controlling device

Country Status (1)

Country Link
JP (1) JPH01263403A (en)

Similar Documents

Publication Publication Date Title
EP0093118B1 (en) Hrsg damper control
US7053341B2 (en) Method and apparatus for drum level control for drum-type boilers
US4748814A (en) Electric power generating plant
JPH01263403A (en) Supply water controlling device
CN110912209B (en) Primary frequency modulation optimization method and device under thermal power unit machine following mode and medium
JP2001295607A (en) Method and device for controlling load of thermal power plant
JP2515797B2 (en) Turbin controller
JPS6123365B2 (en)
JP2509682B2 (en) Pressure plant pressure control equipment
JPS639638B2 (en)
JPS60245905A (en) Controller for steam temperature of boiler
JPH01123199A (en) Controlling of nuclear reactor output
JPH0641804B2 (en) Auxiliary steam pressure controller
JPH01269093A (en) Feed water controller for nuclear reactor
JPH0241720B2 (en)
JPS61272403A (en) Control device for turbine
JPH0326998A (en) Reactor feed water controller for boiling water reactor
JPS6391403A (en) Method of controlling boiler
JPS6059483B2 (en) Boiler water supply system stabilization device
JPS6123995A (en) Water-supply-pressure cooperation controller for nuclear reactor
JPH02169902A (en) Boiler steam temperature control device
JPS6275002A (en) Control device for feed water pump driving turbine
JPH0524401B2 (en)
JPS6148879B2 (en)
JPS63129104A (en) Steam turbine governor control switching