JPS61210616A - Formation of semiconductor thin film - Google Patents

Formation of semiconductor thin film

Info

Publication number
JPS61210616A
JPS61210616A JP5298285A JP5298285A JPS61210616A JP S61210616 A JPS61210616 A JP S61210616A JP 5298285 A JP5298285 A JP 5298285A JP 5298285 A JP5298285 A JP 5298285A JP S61210616 A JPS61210616 A JP S61210616A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
compound semiconductor
grown
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5298285A
Other languages
Japanese (ja)
Inventor
Tatsuya Yamashita
山下 達哉
Toshiaki Kinosada
紀ノ定 俊明
Koji Tomita
孝司 富田
Jiyunkou Takagi
悛公 高木
Takeshi Sakurai
武 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5298285A priority Critical patent/JPS61210616A/en
Publication of JPS61210616A publication Critical patent/JPS61210616A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To prevent the generation of thermal deformation by epitaxially growing a semiconductor thin film by heating a compound semiconductor substrate to be grown through a compound semiconductor substrate made of the same material. CONSTITUTION:When a compound semiconductor substrate 2 which has a thermal decomposition prevention layer on the back surface and is made of the same material with a compound semiconductor substrate to be grown is heated from the back surface, the thermal decomposition of materials constituting a substrate from the back surface of the substrate 1 is restrained by the vapor pressure of the materials constituting the substrate escaped from the front surface of the substrate 2 which is heated directly by the heat conduction or the heat radiation from the front surface of the substrate 2 at a higher temperature than the temperature of the compound semiconductor substrate 1 to be grown and the flat back surface of the substrate 1 is maintained after the growth. Since the thermal decomposition prevention layer exists on the back surface of the substrate 2, the evaporation of component materials from the back surface of the compound substrate 2 is prevented. The generation of the thermal deformation of the substrate 1 is also prevented since the thermal decomposition prevention layer is not provided on the substrate 1.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、MBE法(分子線エピタキシャル法)等にお
いて、被成長化合物半導体基板を加熱しながら半導体薄
膜をエピタキシャル成長させる半導体薄膜の形成法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for forming a semiconductor thin film, in which a semiconductor thin film is epitaxially grown while heating a compound semiconductor substrate to be grown, using the MBE method (molecular beam epitaxial method) or the like.

〈従来技術〉 近年、MBE法は、成長された半導体薄膜おj;び不純
物ドーピングの制御性が優れ、かつ急峻で平坦なヘテロ
界面が得られる等の利点を有しているため、超高周波半
導体素子あるいは半導体レーザに代表される光エレクト
ロニクス素子の製造方法として注目を集めている。
<Prior art> In recent years, the MBE method has been used for ultra-high frequency semiconductors because it has advantages such as excellent controllability of grown semiconductor thin films and impurity doping, and the ability to obtain steep and flat heterointerfaces. It is attracting attention as a method for manufacturing optoelectronic devices such as devices or semiconductor lasers.

従来より、MBE法ではモリブデン(MO)などの高融
点金属を材料とする冶具(以下、サセプタと呼ぶ)を用
い、被成長半導体基板を成長室に保持し、所望の温度に
加熱する際、インジウム(In)などの低融点金属(以
下ソルダーと呼ぶ)を用いて半田装着する。結晶成長時
の半導体基板加熱方法としては、サセプタの背後に設置
されたタンタルヒータによりまずサセプタを加熱し、溶
融したソルダーを介して熱伝導により、半導体基板か加
熱される方式が採用されている。このような、半導体基
板の加熱方法では、半導体基板の裏面に祠着したソルダ
ーを、エピタキシャル成長後、除去する工程が必要とな
る。通常、熱塩酸等のエツチングにより、」二記ソルダ
ーは除去可能であるが、ソルダーは加熱時に半導体基板
裏面と化学反応を起こしているため、ソルダー除去後も
、半導体基板の裏面には凹凸および表面荒れが生ずる。
Conventionally, in the MBE method, a jig (hereinafter referred to as a susceptor) made of a high-melting point metal such as molybdenum (MO) is used to hold the semiconductor substrate to be grown in a growth chamber and heat it to a desired temperature. Soldering is performed using a low melting point metal (hereinafter referred to as solder) such as (In). The method used to heat a semiconductor substrate during crystal growth is to first heat the susceptor with a tantalum heater installed behind the susceptor, and then heat the semiconductor substrate by heat conduction through the molten solder. Such a method of heating a semiconductor substrate requires a step of removing solder deposited on the back surface of the semiconductor substrate after epitaxial growth. Normally, the solder described in "2" can be removed by etching with hot hydrochloric acid, etc. However, since the solder causes a chemical reaction with the back surface of the semiconductor substrate when heated, even after the solder is removed, there will be unevenness and unevenness on the back surface of the semiconductor substrate. Roughness occurs.

この半導体基板の裏面の凹凸は、後続するホトリソグラ
フィー等の諸工程で、半導体基板を割れ易くし、また微
細加工に困難をきたすなど、MBE成長した半導体基板
を用いた素子作成において重大な問題であった。
This unevenness on the back surface of the semiconductor substrate is a serious problem in the production of devices using MBE-grown semiconductor substrates, as it makes the semiconductor substrate easy to break during subsequent photolithography and other processes, and also makes microfabrication difficult. there were.

近年、このような問題を解決するため、Inなどのソル
ダーをサセプタと半導体基板裏面との中間に用いないい
わゆるソルダーフリー型の基板加熱法が提案されている
In recent years, in order to solve such problems, a so-called solder-free substrate heating method has been proposed in which a solder such as In is not used between the susceptor and the back surface of the semiconductor substrate.

その第1の方法としては、半導体基板と同程度あるいは
それ以下の大きさの貫通孔を有するサセプタに半導体基
板を固定し、上記貫通孔を通してヒータからの熱輻射に
よって上記半導体基板を直接加熱する方法がある。しか
し、この様な方法では、半導体基板面内での温度分布を
±30℃以下にすることは困難であり、また半導体紙板
の温度が600℃程度の成長ではさほど問題はないが、
例えば砒化ガリウ1、(GaAs)のような化合物半導
体基板を用いた場合のように化合物半導体基板を700
℃以上に加熱すると、化合物半導体基板の構成物質が、
化合物半導体基板の裏面より激しく蒸発し、化合物半導
体基板の裏面に凹凸あるいは表面荒れが生ずる。
The first method is to fix the semiconductor substrate to a susceptor that has a through hole that is the same size or smaller than the semiconductor substrate, and directly heat the semiconductor substrate through the through hole by heat radiation from a heater. There is. However, with this method, it is difficult to keep the temperature distribution within the plane of the semiconductor substrate below ±30°C, and although there is no problem when the semiconductor paper board is grown at a temperature of about 600°C,
For example, when using a compound semiconductor substrate such as gallium arsenide (GaAs),
When heated above ℃, the constituent materials of the compound semiconductor substrate are
It evaporates violently from the back side of the compound semiconductor substrate, causing unevenness or surface roughness on the back side of the compound semiconductor substrate.

また、第2の方法としては、被成長化合物半導体基板の
裏面をMoなどを材料とするサセプタに直接密着させ、
サセプタ背後のヒータによりサセプタを加熱して、サセ
プタからの熱伝導あるいは熱輻射によって、被成長化合
物半導体基板を加熱する方法がある。しかし、この第2
の方法は、化合物半導体基板とサセプタの密着の程度が
悪く、化合物半導体基板の中心部の温度が低下したり、
また、化合物半導体基板の温度700℃以」二の成長で
はその裏面の熱分解による荒れ、凹凸が認め一3= られる。
In addition, as a second method, the back surface of the compound semiconductor substrate to be grown is directly brought into close contact with a susceptor made of a material such as Mo,
There is a method in which the susceptor is heated by a heater behind the susceptor, and the compound semiconductor substrate to be grown is heated by thermal conduction or thermal radiation from the susceptor. However, this second
In this method, the degree of adhesion between the compound semiconductor substrate and the susceptor is poor, and the temperature at the center of the compound semiconductor substrate decreases.
Furthermore, when a compound semiconductor substrate is grown at a temperature of 700° C. or higher, roughness and unevenness are observed on the back surface due to thermal decomposition.

また、第3の方法として、化合物半導体基板の裏面にM
Oなどの高融点金属をスパッタリング法などであらかじ
め蒸着し、上記した第1の方法で、ヒータからの熱輻射
で直接化合物半導体基板の裏面を加熱する方法がある。
In addition, as a third method, M
There is a method in which a high-melting point metal such as O is vapor-deposited in advance by sputtering or the like, and the back surface of the compound semiconductor substrate is directly heated by thermal radiation from a heater using the first method described above.

しかし、この第3の方法では、化合物半導体基板の裏面
の熱分解は抑制されるが、MBE成長前に化合物半導体
基板裏面に高融点金属を蒸着する工程が増え、また化合
物半導体基板表面の清浄化が損なわれることとなり、成
長後表面欠陥が増大することとなる。また成長中の熱履
歴により裏面高融点金属とGaAs基板との熱膨張係数
の相異が原因となる熱歪を発生し、実用的でない。
However, although this third method suppresses thermal decomposition on the back surface of the compound semiconductor substrate, it requires an additional step of vapor depositing a high melting point metal on the back surface of the compound semiconductor substrate before MBE growth, and also requires cleaning of the surface of the compound semiconductor substrate. This results in an increase in surface defects after growth. Furthermore, thermal distortion during growth occurs due to the difference in coefficient of thermal expansion between the high melting point metal on the back surface and the GaAs substrate, making it impractical.

〈発明の目的〉 そこで、本発明の目的は、加熱により離脱する成分を含
むGaAs等のような被成長化合物半導体基板にMBE
法により半導体薄膜をエピタキシャル成長させる方法に
おいて、被成長化合物半導体基板のエピタキシャル成長
前のその被成長化合物半導体基板の前処理工程を煩雑に
することなく、上記被成長化合物半導体基板を比較的高
温に加熱した場合でも、被成長化合物半導体基板の裏面
からの基板構成物質の蒸発を抑制でき、化合物半導体基
板の裏面の平坦度を維持でき、しかも、エピタキシャル
成長中の熱履歴による熱歪を生じることがないようにす
ることである。
<Objective of the Invention> Therefore, an object of the present invention is to apply MBE to a compound semiconductor substrate to be grown, such as GaAs, which contains a component that is released by heating.
In a method for epitaxially growing a semiconductor thin film by a method, the compound semiconductor substrate to be grown is heated to a relatively high temperature without complicating the pretreatment process of the compound semiconductor substrate to be grown before the epitaxial growth of the compound semiconductor substrate to be grown. However, it is possible to suppress the evaporation of substrate constituent materials from the back surface of the compound semiconductor substrate to be grown, maintain the flatness of the back surface of the compound semiconductor substrate, and prevent thermal distortion from occurring due to thermal history during epitaxial growth. That's true.

〈発明の構成および作用〉 上記目的を達成するため、本発明は、被成長化合物半導
体基板と同種の材料からなり、かつ裏面に熱分解防止層
を有する化合物半導体基板をサセプタに塔載すると共に
、上記化合物半導体基板の表面に」二記被成長化合物半
導体基板を密着させ、上記被成長化合物半導体基板を上
記化合物半導体基板を介して加熱して半導体薄膜をエピ
タキシャル成長させることを特徴としている。
<Structure and operation of the invention> In order to achieve the above object, the present invention includes mounting a compound semiconductor substrate made of the same material as the compound semiconductor substrate to be grown and having a thermal decomposition prevention layer on the back surface on a susceptor, and The method is characterized in that a compound semiconductor substrate to be grown (2) is brought into close contact with the surface of the compound semiconductor substrate, and the compound semiconductor substrate to be grown is heated via the compound semiconductor substrate to epitaxially grow a semiconductor thin film.

そして、裏面に熱分解防止層を有する化合物半導体基板
が裏面から加熱されると、上記化合物半導体基板の表面
からの熱伝導あるいは熱輻射によって、被成長化合物半
導体基板よりも高い温度に直後加熱される化合物半導体
基板の表面より離脱する基板構成物質の蒸気圧によって
、被成長化合物半導体基板の裏面からの基板構成物質の
熱分解が抑制され、成長後においても被成長化合物半導
体基板の平坦な裏面が維持される。また、化合物半導体
基板の裏面には熱分解防止層が存するため、その裏面か
らの化合物半導体基板の構成物質の蒸発が防止される。
When the compound semiconductor substrate having a thermal decomposition prevention layer on the back side is heated from the back side, it is immediately heated to a higher temperature than the compound semiconductor substrate to be grown due to thermal conduction or thermal radiation from the surface of the compound semiconductor substrate. The vapor pressure of the substrate constituents that separate from the surface of the compound semiconductor substrate suppresses thermal decomposition of the substrate constituents from the backside of the compound semiconductor substrate to be grown, and the flat backside of the compound semiconductor substrate to be grown is maintained even after growth. be done. Furthermore, since the thermal decomposition prevention layer exists on the back surface of the compound semiconductor substrate, evaporation of the constituent materials of the compound semiconductor substrate from the back surface is prevented.

また、被成長化合物半導体基板自体には熱分解防止層が
設けられていないため、被成長化合物半導体基板自体の
熱歪の発生が防止される。
Furthermore, since the compound semiconductor substrate to be grown itself is not provided with a thermal decomposition prevention layer, the occurrence of thermal strain in the compound semiconductor substrate to be grown itself is prevented.

〈実施例〉 以下、本発明を、半導体薄膜をMBE成長する図示の実
施例により詳細に説明する。
<Example> Hereinafter, the present invention will be explained in detail with reference to an illustrated example in which a semiconductor thin film is grown by MBE.

第1図において、■は被成長化合物半導体基板の一例で
ある直径2″の被成長GaAs基板、2は上記被成長G
aAs基板1と同じ構成物質よりなる化合物半導体基板
である直径2″のGaAs基板であり、上記GaAs基
板2の裏面2aには熱分解防止層の一例としての窒化シ
リコン(SiN)層をRFスパッタリング法(高周波ス
パッタリング法)で蒸着している。
In FIG. 1, ■ is a GaAs substrate to be grown with a diameter of 2'', which is an example of a compound semiconductor substrate to be grown, and 2 is the above-mentioned G to be grown.
It is a GaAs substrate with a diameter of 2'', which is a compound semiconductor substrate made of the same constituent material as the aAs substrate 1, and a silicon nitride (SiN) layer as an example of a thermal decomposition prevention layer is formed on the back surface 2a of the GaAs substrate 2 by RF sputtering. (High frequency sputtering method).

上記被成長G a A s基板lとGaAs基板2を重
ね合わせて、−に記被成長GaAs基板lよりも僅かに
小さい貫通孔3aを有するMo製サセプタ3のフランツ
部3bの段孔3cに嵌合している。そして、」1記被成
長GaAs基板1の外周部を止め金4で押さえ、この止
め金4をフランジ部3Cにワイヤ5で取り付(Jて、」
1記被成長GaAs基板lおよびGaAs基板2をサセ
プタ3に取り付ζ′lている。−に記G a A s基
板2のSiN層を有する裏面2aは、貫通孔3aに而し
ており、」二記貫通孔3a内に配置したヒータ6によっ
て、上記GaAs基板2を熱輻射により直接加熱するよ
うにしている。
The GaAs substrate 1 to be grown and the GaAs substrate 2 are stacked and fitted into the stepped hole 3c of the flantz portion 3b of the Mo susceptor 3, which has a through hole 3a slightly smaller than the GaAs substrate 1 to be grown. It matches. Then, the outer periphery of the GaAs substrate 1 to be grown is held down with the stopper 4, and the stopper 4 is attached to the flange portion 3C with the wire 5 (J).
1. The GaAs substrate 1 to be grown and the GaAs substrate 2 are mounted on a susceptor 3. - The back surface 2a of the GaAs substrate 2 having the SiN layer is provided with a through hole 3a, and the GaAs substrate 2 is directly heated by heat radiation by the heater 6 disposed in the through hole 3a. I'm trying to heat it up.

」二記GaAs基板2がヒータ6により加熱されると、
被成長GaAs基板1はGaAs基板2の表面からの熱
輻射または熱伝導によって、たとえば700℃に面内一
様に加熱される。加熱された被成長GaAs基板の表面
にはGaおよびAsの分子線7が照射されて、半導体薄
膜(図示せず)のエビタギノヤル成長が行なわれる。
” When the GaAs substrate 2 is heated by the heater 6,
The GaAs substrate 1 to be grown is uniformly heated to, for example, 700° C. by thermal radiation or conduction from the surface of the GaAs substrate 2 . The surface of the heated GaAs substrate to be grown is irradiated with molecular beams 7 of Ga and As, and a semiconductor thin film (not shown) is epitaxially grown.

このとき、被成長GaAs基板lの裏面では、その温度
に対応した所定の蒸気圧で、構成物質(G a。
At this time, on the back surface of the GaAs substrate 1 to be grown, the constituent material (Ga) is grown at a predetermined vapor pressure corresponding to its temperature.

As)が蒸発しようとするが、被成長GaAs基板lよ
りも高い温度に直接加熱されるGaAs基板2の表面よ
り離脱するGa、Asの蒸気圧によって、被成長GaA
s基板1の裏面からのGaやAsの蒸発が抑制され、し
たがって、成長後においても、被成長GaAs基板1の
裏面の平坦度が確保される。
However, due to the vapor pressure of the Ga and As released from the surface of the GaAs substrate 2, which is directly heated to a higher temperature than the GaAs substrate 1 to be grown, the GaAs to be grown is evaporated.
Evaporation of Ga and As from the back surface of the s-substrate 1 is suppressed, and therefore the flatness of the back surface of the GaAs substrate 1 to be grown is ensured even after growth.

また、GaAs基板2の裏面2aはヒータ6によって直
接加熱されているが、SiN層により、GaおよびAs
の蒸発は抑制される。したがって、GaAs基板2を、
被成長CaAs基板lの長時間の成長あるいは複数回に
わたる成長を行なう場合にも使用することができた。
In addition, although the back surface 2a of the GaAs substrate 2 is directly heated by the heater 6, the SiN layer
evaporation is suppressed. Therefore, the GaAs substrate 2 is
It could also be used when growing a CaAs substrate 1 to be grown over a long period of time or over multiple times.

また、」1記被成長GaAs基板1の裏面にはMO等の
異種物質からなる熱分解防止層を設けていず、同種構成
物質からなるGaAs基板2が密着しているため、成長
中の熱履歴による熱歪等が生じない。
In addition, since no thermal decomposition prevention layer made of a different material such as MO is provided on the back surface of the GaAs substrate 1 to be grown, and the GaAs substrate 2 made of the same constituent material is in close contact with it, the thermal history during growth No thermal distortion etc. will occur.

1記実施例では化合物半導体基板として、GaAs基板
を用いたが、InP基板等を用いてもよい。
In the first embodiment, a GaAs substrate was used as the compound semiconductor substrate, but an InP substrate or the like may also be used.

また、熱分解防止層として、SiN層を用いたが、Si
O2層、BN層等を用いてもよい。
In addition, although a SiN layer was used as the thermal decomposition prevention layer,
An O2 layer, a BN layer, etc. may also be used.

〈発明の効果〉 以」−より明らかなように、本発明によれば、MBE成
長等において、基板前処理工程を煩雑にすることなく、
比較的高い基板温度であっても、被成長化合物半導体基
板の平坦度を維持でき、かつ、成長中の熱履歴による熱
歪をなくすることができる。
<Effects of the Invention> As is clear from the above, according to the present invention, in MBE growth etc., without complicating the substrate pretreatment process,
Even at a relatively high substrate temperature, the flatness of the compound semiconductor substrate to be grown can be maintained, and thermal distortion due to thermal history during growth can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に用いる装置の断面図であ
る。 1・・被成長GaAs基板、2−GaAs基板、3サセ
プタ。
FIG. 1 is a sectional view of an apparatus used in an embodiment of the present invention. 1. GaAs substrate to be grown, 2-GaAs substrate, 3 susceptor.

Claims (1)

【特許請求の範囲】[Claims] (1)予め準備された被成長化合物半導体基板を所望温
度に加熱した状態に維持しながら、その被成長化合物半
導体基板の表面に半導体薄膜をエピタキシャル成長させ
る半導体薄膜形成法において、 上記被成長化合物半導体基板と同種の材料からなり、か
つ裏面に熱分解防止層を有する化合物半導体基板をサセ
プタに塔載すると共に、上記化合物半導体基板の表面に
上記被成長化合物半導体基板を密着させ、上記被成長化
合物半導体基板を上記化合物半導体基板を介して加熱し
て半導体薄膜をエピタキシャル成長させることを特徴と
する半導体薄膜形成法。
(1) In a semiconductor thin film forming method in which a semiconductor thin film is epitaxially grown on the surface of a compound semiconductor substrate to be grown while maintaining the compound semiconductor substrate to be grown which has been prepared in advance heated to a desired temperature, the compound semiconductor substrate to be grown is A compound semiconductor substrate made of the same kind of material and having a thermal decomposition prevention layer on the back surface is mounted on a susceptor, and the compound semiconductor substrate to be grown is brought into close contact with the surface of the compound semiconductor substrate, and the compound semiconductor substrate to be grown is A method for forming a semiconductor thin film, comprising epitaxially growing a semiconductor thin film by heating through the compound semiconductor substrate.
JP5298285A 1985-03-15 1985-03-15 Formation of semiconductor thin film Pending JPS61210616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5298285A JPS61210616A (en) 1985-03-15 1985-03-15 Formation of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5298285A JPS61210616A (en) 1985-03-15 1985-03-15 Formation of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPS61210616A true JPS61210616A (en) 1986-09-18

Family

ID=12930109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5298285A Pending JPS61210616A (en) 1985-03-15 1985-03-15 Formation of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS61210616A (en)

Similar Documents

Publication Publication Date Title
US4053350A (en) Methods of defining regions of crystalline material of the group iii-v compounds
US4599069A (en) Substrate holder for molecular beam epitaxy apparatus
JPH10163114A (en) Semiconductor device and manufacturing method thereof
US4948751A (en) Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor
US4514250A (en) Method of substrate heating for deposition processes
JPS61210616A (en) Formation of semiconductor thin film
JPH0952792A (en) Substrate holder of apparatus for growing semiconductor
JPH06291058A (en) Manufacture of semiconductor substrate
US20220108890A1 (en) Method for preparing a substrate
JPS61198789A (en) Continuous manufacture of optical semiconductor element
JPS6398120A (en) Crystal growth method
JPS6225249B2 (en)
JP3157866B2 (en) Substrate holder for molecular beam crystal growth and molecular beam crystal growth method
JPH0215520B2 (en)
JPS63282190A (en) Molecular beam crystal growth device
JPH07201748A (en) Manufacture of semiconductor substrate
JPH04299822A (en) Semiconductor wafer and manufacture thereof
JPS6126598A (en) Preparation of germanium thin film crystal
JPH02185018A (en) Method of forming semiconductor film
JPH0234916B2 (en) BUNSHISENEPITAKISHARUKETSUSHOSEICHOHO
JPS62196814A (en) Substrate holder for molecular beam epitaxy
JPS6235514A (en) Molecular beam crystal growth method
JPS63222416A (en) Manufacture of epitaxial crystal
JPS59171115A (en) Manufacture of substrate for semiconductor device
JPS5975619A (en) Manufacture of semiconductor circuit element