JPH0215520B2 - - Google Patents

Info

Publication number
JPH0215520B2
JPH0215520B2 JP22153284A JP22153284A JPH0215520B2 JP H0215520 B2 JPH0215520 B2 JP H0215520B2 JP 22153284 A JP22153284 A JP 22153284A JP 22153284 A JP22153284 A JP 22153284A JP H0215520 B2 JPH0215520 B2 JP H0215520B2
Authority
JP
Japan
Prior art keywords
substrate
single crystal
substrate support
support member
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22153284A
Other languages
Japanese (ja)
Other versions
JPS61101488A (en
Inventor
Akihiro Shibatomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22153284A priority Critical patent/JPS61101488A/en
Publication of JPS61101488A publication Critical patent/JPS61101488A/en
Publication of JPH0215520B2 publication Critical patent/JPH0215520B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分子線結晶成長装置、特に結晶を成長
させる単結晶基板を該装置内で支持加熱する構造
の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a molecular beam crystal growth apparatus, and particularly to an improvement in the structure for supporting and heating a single crystal substrate on which a crystal is to be grown within the apparatus.

半導体装置等には単結晶基板上に所要の単結晶
層をエピタキシヤル成長した基体が広く用いられ
ている。
2. Description of the Related Art Substrates in which a required single crystal layer is epitaxially grown on a single crystal substrate are widely used in semiconductor devices and the like.

エピタキシヤル成長には種々の方法が行われて
いるが、分子線結晶成長方法(MBE法)は、単
結晶層の構成元素及び不純物元素を10-10Torr程
度の高真空中でセルから蒸発させ、ビーム状に基
板に照射してエピタキシヤル成長を行う方法であ
る。
Various methods are used for epitaxial growth, but the molecular beam crystal growth method (MBE method) evaporates constituent elements and impurity elements of a single crystal layer from a cell in a high vacuum of about 10 -10 Torr. This is a method in which epitaxial growth is performed by irradiating the substrate in the form of a beam.

MBE法では基板に到達する各元素の分子数は、
蒸発系の幾何学的形状と蒸発源温度とによつて一
義的に決定される。従つて結晶の成長速度、混晶
の組成比或いは不純物ドープ量などを正確に制御
することができ、例えば超格子構造など最も精密
な結晶成長に適している。
In the MBE method, the number of molecules of each element reaching the substrate is
It is uniquely determined by the geometry of the evaporation system and the evaporation source temperature. Therefore, it is possible to accurately control the crystal growth rate, the composition ratio of the mixed crystal, the amount of impurity doping, etc., and it is suitable for the most precise crystal growth such as a superlattice structure.

良好な単結晶層をエピタキシヤル成長するため
にはこれを成長する基板の状態も同様に重要であ
るが、従来の分子線結晶成長装置はこの点につい
てなお不十分である。
In order to epitaxially grow a good single crystal layer, the condition of the substrate on which it is grown is equally important, but conventional molecular beam crystal growth apparatuses are still inadequate in this respect.

〔従来の技術〕[Conventional technology]

分子線結晶成長装置内で化合物単結晶層を成長
させる基板を保持し加熱するために、従来最も一
般的に行われている構造の例の模式図を第2図に
示す。
FIG. 2 shows a schematic diagram of an example of a conventionally most commonly used structure for holding and heating a substrate on which a single crystal layer of a compound is grown in a molecular beam crystal growth apparatus.

同図において、21は基板支持器、22は基板
支持器21を固定するピン、23は加熱ヒータ、
24は熱反射板、25は熱電対、26は回転機構
である。基板支持器21は例えばモリブデン
(Mo)等の高融点金属を用いて通常円板状に形
成され、その面上に適量のインジウム(In)27
を塗布して単結晶を成長させる基板11を張りつ
けている。
In the figure, 21 is a substrate supporter, 22 is a pin for fixing the substrate supporter 21, 23 is a heater,
24 is a heat reflecting plate, 25 is a thermocouple, and 26 is a rotation mechanism. The substrate support 21 is usually formed into a disk shape using a high melting point metal such as molybdenum (Mo), and has an appropriate amount of indium (In) 27 on its surface.
A substrate 11 on which a single crystal is grown is attached.

例えば基板11が砒化ガリウム(GaAs)単結
晶基板であり、この上にGaAs、砒化アルミニウ
ムガリウム(AlGaAs)等の単結晶層を成長する
際には、基板支持器21、インジウム(In)27
を介して基板11を例えば温度680℃程度に加熱
して前記の如くエピタキシヤル成長を実施する。
For example, when the substrate 11 is a gallium arsenide (GaAs) single crystal substrate and a single crystal layer of GaAs, aluminum gallium arsenide (AlGaAs), etc. is grown thereon, the substrate support 21, the indium (In) 27
The substrate 11 is heated, for example, to a temperature of about 680° C. to perform epitaxial growth as described above.

この温度においてIn27はGaAs基板11に拡
散して密着力が得られ、基板11が真空中で良く
固定されるとともに、基板支持器21と単結晶基
板11との間の熱伝導が良く、温度分布が均一に
なるという利点がある。
At this temperature, In27 diffuses into the GaAs substrate 11 to obtain adhesion, the substrate 11 is well fixed in vacuum, and the heat conduction between the substrate support 21 and the single crystal substrate 11 is good, resulting in temperature distribution. This has the advantage of being uniform.

しかしながら、例えば1時間程度のMBE成長
中にこのInの拡散深さは100μm程度に達し、エピ
タキシヤル成長後に、In層27を融解して基板1
1を基板支持器21から取り外し、そのInが拡散
した部分を付着しているInとともに研磨して取り
除いている。
However, during MBE growth for about one hour, the diffusion depth of this In reaches about 100 μm, and after epitaxial growth, the In layer 27 is melted and the substrate 1 is
1 was removed from the substrate support 21, and the part where In was diffused was removed by polishing together with the attached In.

上記の従来方法では、(a)前記の研磨工程が必要
になるのみならず、(b)エピタキシヤル成長した単
結晶層がこの研磨工程で汚染されることが避けが
たい。(c)基板及び成長層の周囲や表面へのInの付
着を免れないが、これをGaAsに対して選択的に
除去することは不可能であり、この付着したInは
後の工程で障害発生の原因にもなる。(d)蒸発した
Inがセルに入り、これがビームに含まれて成長す
る単結晶を汚染する。(e)単結晶基板と基板支持器
との間の熱膨張係数の差により、単結晶基板にス
リツプライン等の欠陥を生じ易い。などの問題点
がある。
In the above-mentioned conventional method, (a) not only the above-mentioned polishing step is required, but also (b) it is difficult to avoid contamination of the epitaxially grown single crystal layer in this polishing step. (c) It is inevitable that In will adhere to the periphery and surface of the substrate and growth layer, but it is impossible to selectively remove this from GaAs, and this adhered In will cause problems in later processes. It can also cause (d) evaporated
In enters the cell and is included in the beam and contaminates the growing single crystal. (e) Due to the difference in thermal expansion coefficient between the single crystal substrate and the substrate support, defects such as slip lines are likely to occur in the single crystal substrate. There are other problems.

前記の問題を生ずるInを使用しない単結晶基板
支持構造が、シリコン(Si)基板については実施
されている。この場合には先に例示した基板支持
器をを円環状にして、Si基板を裏面から直接加熱
している。
In-free single crystal substrate support structures have been implemented for silicon (Si) substrates that suffer from the aforementioned problems. In this case, the substrate support exemplified above is made into an annular shape, and the Si substrate is directly heated from the back side.

しかしながら前記GaAs等の化合物単結晶基板
については、基板裏面を解放して加熱するならば
砒素(As)等が蒸発し、単結晶基板に裏面から
多くの欠陥を発生するために、この構造は適用不
可能である。
However, for compound single crystal substrates such as GaAs, if the back side of the substrate is opened and heated, arsenic (As) etc. will evaporate and many defects will be generated from the back side of the single crystal substrate, so this structure cannot be applied. It's impossible.

また前記基板支持器21に類似する円板状の基
板支持器を用い、これに単結晶基板を押しつける
構造も知られている。この構造によれば化合物単
結晶基板裏面からの蒸発は阻止されるが、単結晶
基板表面の温度分布が良好になる基板支持器との
間の熱伝導を得るためには、単結晶基板に大きな
圧力を加えることが必要であつて、単結晶基板に
歪を生じて実用に適しない。
Also known is a structure in which a disk-shaped substrate support similar to the substrate support 21 is used and a single crystal substrate is pressed against the disk-shaped substrate support. This structure prevents the compound from evaporating from the back side of the single-crystal substrate, but in order to achieve good temperature distribution on the single-crystal substrate surface and to obtain heat conduction between the substrate support and the single-crystal substrate, it is necessary to It is necessary to apply pressure, which causes distortion in the single crystal substrate, making it unsuitable for practical use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明した如く、従来の分子線結晶成長装置
を用いて化合物半導体層のエピタキシヤル成長を
行う場合には、汚染、結晶欠陥等の障害を避けが
たく、基板を支持、加熱する構造を改善してこの
問題を解決することがが強く要望されている。
As explained above, when performing epitaxial growth of a compound semiconductor layer using a conventional molecular beam crystal growth apparatus, problems such as contamination and crystal defects are unavoidable, and the structure for supporting and heating the substrate must be improved. There is a strong need to solve this problem.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、単結晶基板の裏面を基板支持部
材に密着し、該基板支持部材を透過した熱線によ
り該基板を加熱して、該基板の表面上に単結晶層
をエピタキシヤル成長する本発明による分子線結
晶成長装置により解決される。なお上記熱線とは
熱作用に着目した赤外線の呼称であり、当業者周
知の概念である。
The above-mentioned problem can be solved by the present invention, in which the back side of a single crystal substrate is brought into close contact with a substrate support member, the substrate is heated by a heat ray transmitted through the substrate support member, and a single crystal layer is epitaxially grown on the front surface of the substrate. This problem was solved by using a molecular beam crystal growth device. Note that the above-mentioned heat ray is a term for infrared rays that focuses on thermal effects, and is a concept well known to those skilled in the art.

〔作 用〕[Effect]

本発明の分子線結晶成長装置に於いては、第1
図の如く、単結晶層を成長させる単結晶基板11
と基板支持部材1とを重ねて密着させ、基板支持
部材を加熱ヒータ5に向けて装着する。
In the molecular beam crystal growth apparatus of the present invention, the first
As shown in the figure, a single crystal substrate 11 on which a single crystal layer is grown
and the substrate support member 1 are stacked and brought into close contact with each other, and the substrate support member is mounted facing the heater 5.

この基板支持部部材1は、耐熱性で、熱放射線
を透過し或いは自身が加熱されることにより熱線
を放射する素材であつて、結晶成長時の環境条件
に於いて化学的に安定な素材で形成される。
The substrate support member 1 is made of a heat-resistant material that transmits thermal radiation or emits heat rays when heated, and is chemically stable under the environmental conditions during crystal growth. It is formed.

単結晶基板を成長温度に昇温保持する加熱は、
前記従来例ではTa金属板等の基板支持部材が先
ず加熱され、それからの熱伝導によつて単結晶基
板が加熱されていたのに対し、本発明では基板支
持部材を透過した熱線による加熱が行われ、これ
に加えて基板支持部材自身が加熱されて放射する
熱線による加熱も行われる。
Heating to raise and maintain the single crystal substrate at the growth temperature is
In the conventional example, the substrate support member such as a Ta metal plate is heated first, and then the single crystal substrate is heated by heat conduction, whereas in the present invention, heating is performed by a hot ray that passes through the substrate support member. In addition to this, the substrate supporting member itself is heated and heated by radiated heat rays.

従つて、単結晶基板と基板支持部材との間の熱
抵抗が単結晶基板の加熱に影響を及ぼすことはな
く、単結晶基板及び成長した単結晶層に前記従来
例の如き汚染或いはストレスを与えることもな
い。また、基板結晶内原子の裏面からの蒸発や外
方拡散は、基板支持部材に密着させることによつ
て防止される。
Therefore, the thermal resistance between the single crystal substrate and the substrate support member does not affect the heating of the single crystal substrate, and does not cause contamination or stress to the single crystal substrate and the grown single crystal layer as in the conventional example. Not at all. Further, evaporation and outward diffusion of atoms within the substrate crystal from the back surface are prevented by bringing the substrate into close contact with the substrate support member.

なお、基板支持部材を形成する素材としては、
サフアイア(Al2O3)、シリコン(Si)、石英
(SiO2)等が適している。
The materials for forming the substrate support member include:
Sapphire (Al 2 O 3 ), silicon (Si), quartz (SiO 2 ), etc. are suitable.

〔実施例〕〔Example〕

以下本発明を第1図に模式図を示す実施例によ
り具体的に説明する。
The present invention will be specifically explained below with reference to an example schematically shown in FIG.

同図において、1は例えばサフアイア結晶から
なる基板支持部材、2は基板支持器、3は止め
具、4は基板支持器2を固定するピン、5は加熱
ヒータ、6は熱反射板、7は熱電対、8は回転機
構である。
In the figure, 1 is a substrate support member made of, for example, sapphire crystal, 2 is a substrate supporter, 3 is a stopper, 4 is a pin for fixing the substrate supporter 2, 5 is a heater, 6 is a heat reflection plate, and 7 is a Thermocouple 8 is a rotating mechanism.

単結晶を成長させる基板11は、円環状の基板
支持器2に基板支持部材1とともに挿入され、止
め具3により脱落が防止されている。基板支持器
2の材料、その成長装置への装着等は従来方法を
特に変更する必要はない。
A substrate 11 on which a single crystal is to be grown is inserted into an annular substrate support 2 together with a substrate support member 1, and is prevented from falling off by a stopper 3. Regarding the material of the substrate support 2, its attachment to the growth apparatus, etc., there is no need to particularly change the conventional method.

本発明による基板支持部材1の材料として、例
えばサフアイア結晶、シリコン結晶、石英等を使
用することができるが、特に前記実施例の如く基
板状とし、その表面を結晶面或いはこれに近い平
滑な面として、単結晶を成長させる基板11に良
く密着させることが望ましい。前記材料の中で
も、特にサフアイア結晶は熱放射線の透過性に優
れ、また加工精度が良く平滑面が得やすいので良
好な結果が得られる。
As the material of the substrate supporting member 1 according to the present invention, for example, sapphire crystal, silicon crystal, quartz, etc. can be used, but in particular, it is made into a substrate shape as in the above embodiment, and its surface is a crystal plane or a smooth surface close to this. Therefore, it is desirable that the single crystal be closely attached to the substrate 11 on which the single crystal is grown. Among the above-mentioned materials, sapphire crystal is particularly excellent in transmittance of thermal radiation, has good processing accuracy, and can easily obtain a smooth surface, so that good results can be obtained.

また熱源等も通常は変更することなく使用する
ことが出来るが、本発明によれば単結晶を成長さ
せる基板を直接に加熱するために、熱効率が向上
する効果が得られる。
Although the heat source and the like can normally be used without changing, according to the present invention, since the substrate on which the single crystal is grown is directly heated, the effect of improving thermal efficiency can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、分子線結晶
成長方法によるエピタキシヤル成長を、汚染ある
いは結晶欠陥を生ずることなく実施することが可
能となる。
As explained above, according to the present invention, epitaxial growth by a molecular beam crystal growth method can be performed without causing contamination or crystal defects.

更に本発明は従来使用している装置にも容易に
適用することが可能であり、化合物半導体装置等
の実用化の推進に大きい効果が得られる。
Furthermore, the present invention can be easily applied to conventionally used devices, and can be highly effective in promoting the practical use of compound semiconductor devices and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す模式図、第2図
は従来例を示す模式図である。 図において、1は基板支持部材、2は基板支持
器、3は止め具、4は固定ピン、5は加熱ヒー
タ、6は熱反射板、7は熱電対、8は回転機構、
11は単結晶を成長させる基板である。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and FIG. 2 is a schematic diagram showing a conventional example. In the figure, 1 is a substrate support member, 2 is a substrate supporter, 3 is a stopper, 4 is a fixing pin, 5 is a heater, 6 is a heat reflection plate, 7 is a thermocouple, 8 is a rotation mechanism,
11 is a substrate on which a single crystal is grown.

Claims (1)

【特許請求の範囲】 1 分子線を照射することにより単結晶基板表面
に化合物半導体層をエピタキシヤル成長させる装
置であつて、 該単結晶基板11を、その裏面を密着させて保
持する基板支持部材1を備え、 該基板支持部材は、熱源5から放射される熱線
を透過する素材から成り、 該熱源は、該基板支持部材の該単結晶基板を密
着させない側に配置されていることを特徴とする
分子線結晶成長装置。
[Scope of Claims] 1. An apparatus for epitaxially growing a compound semiconductor layer on the surface of a single crystal substrate by irradiation with molecular beams, comprising: a substrate support member that holds the single crystal substrate 11 with its back surface in close contact with the substrate support member; 1, the substrate support member is made of a material that transmits heat rays emitted from the heat source 5, and the heat source is disposed on the side of the substrate support member that does not bring the single crystal substrate into close contact with the substrate support member. Molecular beam crystal growth equipment.
JP22153284A 1984-10-22 1984-10-22 Molecular beam crystal growth apparatus Granted JPS61101488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22153284A JPS61101488A (en) 1984-10-22 1984-10-22 Molecular beam crystal growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22153284A JPS61101488A (en) 1984-10-22 1984-10-22 Molecular beam crystal growth apparatus

Publications (2)

Publication Number Publication Date
JPS61101488A JPS61101488A (en) 1986-05-20
JPH0215520B2 true JPH0215520B2 (en) 1990-04-12

Family

ID=16768189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22153284A Granted JPS61101488A (en) 1984-10-22 1984-10-22 Molecular beam crystal growth apparatus

Country Status (1)

Country Link
JP (1) JPS61101488A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288655A (en) * 1986-06-06 1987-12-15 Sumitomo Naugatuck Co Ltd Stabilized heat-resistant resin composition compounded with colorant
JP2854304B2 (en) * 1988-02-16 1999-02-03 旭電化工業株式会社 Method for producing elastic mold and method for producing molded article using elastic mold
JP2016076529A (en) * 2014-10-03 2016-05-12 東京エレクトロン株式会社 Support member for temperature measurement and heat treatment apparatus

Also Published As

Publication number Publication date
JPS61101488A (en) 1986-05-20

Similar Documents

Publication Publication Date Title
JPH0834180B2 (en) Method for growing compound semiconductor thin film
US4752590A (en) Method of producing SOI devices
JPH0215520B2 (en)
US4877573A (en) Substrate holder for wafers during MBE growth
JPS6242416A (en) Susceptor for heating semiconductor substrate
JPH03271193A (en) Substrate holder
JPS63241921A (en) Substrate heating device for molecular beam epitaxy system
JP2944426B2 (en) Molecular beam epitaxy equipment
JP2688365B2 (en) Board holder
JPS60240119A (en) Molecular beam crystal growth
JPS61220414A (en) Apparatus for generating molecular beam
JPH01305889A (en) Molecular beam cell
JPH0365590A (en) Molecular beam epitaxy apparatus
JP2692138B2 (en) Manufacturing method of single crystal thin film
JPS6237922A (en) Semiconductor substrate
JP3198971B2 (en) Molecular beam epitaxy equipment
JPS62196814A (en) Substrate holder for molecular beam epitaxy
JPS63176392A (en) Molecular beam crystal growth apparatus
JP3157866B2 (en) Substrate holder for molecular beam crystal growth and molecular beam crystal growth method
JPS61263212A (en) Molecular beam epitaxy substrate holder
JPS6223104A (en) Molecular beam epitaxial growing process
JPH06177038A (en) Formation method for mercury cadmium tellurium thin film based on molecular beam and substrate holder thereof
JPH0319693B2 (en)
JPS60128609A (en) Method of fixing semiconductor substrate
JPH0136978B2 (en)