JPS60240119A - Molecular beam crystal growth - Google Patents

Molecular beam crystal growth

Info

Publication number
JPS60240119A
JPS60240119A JP9697284A JP9697284A JPS60240119A JP S60240119 A JPS60240119 A JP S60240119A JP 9697284 A JP9697284 A JP 9697284A JP 9697284 A JP9697284 A JP 9697284A JP S60240119 A JPS60240119 A JP S60240119A
Authority
JP
Japan
Prior art keywords
substrate
melting point
crystal growth
growth
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9697284A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kondo
和博 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9697284A priority Critical patent/JPS60240119A/en
Publication of JPS60240119A publication Critical patent/JPS60240119A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To enable preventing the roughness of the back surface due to lack of an element in a substrate and detecting the heating temperature of the substrate correctly with a pyrometer by irradiating radiation on a high melting point metal coated on the back surface of the substrate which is required of crystal growth on the surface to heat the substrate for growth. CONSTITUTION:A substrate 4 is previously coated on the back surface of the substrate 4 with a high melting point metal film 12, e.g., such as molybdenum or tungsten by sputtering, etc. and the substrate 4 is heated for crystal growth by the radiation of a heater 6 located on the back. This method enables to develop a later process without removing the high melting point metal film 12 and even if the substrate 4 is made of, e.g., GaAs, the roughness of the back surface due to lack of As is not generated and a pyrometer 8 detects the heating temperature of the substrate 4 correctly.

Description

【発明の詳細な説明】 fa) 発明の技術分野 本発明は、分子線結晶成長方法に係り、特に、結晶を成
長させる基板の加熱方法に関す。
DETAILED DESCRIPTION OF THE INVENTION fa) Technical Field of the Invention The present invention relates to a method for growing molecular beam crystals, and more particularly to a method for heating a substrate for growing crystals.

fb) 技術の背景 半導体装置の製造において、結晶成長は重要な工程でそ
の成否が形成される半導体素子の特性を左右する。
fb) Background of the Technology In the manufacture of semiconductor devices, crystal growth is an important process, and its success or failure influences the characteristics of the semiconductor element formed.

この結晶成長には気相成長法、液相成長法が多く用いら
れているが、近年、化合物半導体への結晶成長に分子線
結晶成長法(MBE法)が注目されてきた。
Although the vapor phase growth method and the liquid phase growth method are often used for this crystal growth, in recent years, the molecular beam crystal growth method (MBE method) has been attracting attention for the crystal growth of compound semiconductors.

分子線結晶成長法は、第1図に平面視を模式的に示した
如くで、超高真空(例えば10”Torr程度)にした
電空室lの中において、成長させる結晶の成分元素を入
れたるつぼ2を加熱し、出てくる分子ビーム3を基板4
に当てて基板4上にエピタキシャル成長させる方法で、
基板4に捕らえられない分子は真空系によって運び去ら
れ、基板4表面には常に新鮮な分子が供給される。この
際、分子ビーム3の強さはるつぼ2の加熱温度で、分子
ビーム3を基板4に当てる当てないは機械的に開閉する
シャッタ5で、基板4の加熱温度はヒータ6の発熱で、
該発熱は基板4から発する熱線7を検知するパイロメー
タ8の出力信号でそれぞれ制御される。
In the molecular beam crystal growth method, as shown schematically in a plan view in Figure 1, constituent elements of the crystal to be grown are placed in an electric cavity L in an ultra-high vacuum (for example, about 10" Torr). The crucible 2 is heated and the molecular beam 3 that comes out is transferred to the substrate 4.
A method of epitaxially growing on the substrate 4 by applying
Molecules that are not captured by the substrate 4 are carried away by the vacuum system, and the surface of the substrate 4 is constantly supplied with fresh molecules. At this time, the intensity of the molecular beam 3 is determined by the heating temperature of the crucible 2, the shutter 5 that does not apply the molecular beam 3 to the substrate 4 is mechanically opened and closed, and the heating temperature of the substrate 4 is determined by the heat generated by the heater 6.
The heat generation is controlled by the output signal of a pyrometer 8 that detects the heat rays 7 emitted from the substrate 4.

このようなことから、分子線結晶成長法は次のような際
立った特長を有する。
For this reason, the molecular beam crystal growth method has the following outstanding features.

■ 成長層の膜厚が均一で成長速度が遅いため微細な膜
厚制御例えば10人程度の制御が可能である。
(2) Since the thickness of the growth layer is uniform and the growth rate is slow, fine control of the film thickness, for example, by about 10 people, is possible.

■ シャッタ5の開閉により多層構造の結晶成長を連続
して行うことが可能である。
(2) By opening and closing the shutter 5, it is possible to continuously grow crystals in a multilayer structure.

(C) 従来技術と問題点 第1図図示の分子線結晶成長方法において、基板4を保
持し加熱するのは、従来第2図図示(平面視)のように
行っていた。即ち、基板4の位置に耐熱性金属例えばモ
リブデンのテーブル9を設け、その正面に基板4を例え
ばインジウムなど加熱時に液体になる接合金属10で張
りつけ、テーブル9の背後にあるヒータ6の輻射線でテ
ーブル9を加熱して基板4を加熱していた。
(C) Prior Art and Problems In the molecular beam crystal growth method shown in FIG. 1, the substrate 4 was conventionally held and heated as shown in FIG. 2 (plan view). That is, a table 9 made of a heat-resistant metal such as molybdenum is provided at the position of the substrate 4, and in front of the table 9 the substrate 4 is pasted with a bonding metal 10 such as indium that becomes liquid when heated. The table 9 was heated to heat the substrate 4.

この方法は、結晶成長は具合よく出来るが、該成長後取
り出した基板4の裏面に、後の工程において不具合であ
る接合金属10が付着しているので、接合金属10を例
えば研摩などによって除去しなければならず、半導体装
置量産の品質上にも工程上にも問題がある。
In this method, crystal growth can be performed well, but since the bonding metal 10 is attached to the back surface of the substrate 4 taken out after the growth, which is a problem in the subsequent process, the bonding metal 10 is removed by, for example, polishing. Therefore, there are problems in terms of quality and process for mass production of semiconductor devices.

この改善策として、接合金属10を使用しない第3図図
示(平面視)のような方法がある。これは、第2図図示
のテーブル9を使用せず、基板4の端部を保持具11に
係止して基板4を保持し、背後にあるヒータ6の輻射線
で基板4を加熱する方法である。
As an improvement measure for this, there is a method as shown in FIG. 3 (plan view) in which the joining metal 10 is not used. This is a method of holding the substrate 4 by locking the end of the substrate 4 to the holder 11 without using the table 9 shown in FIG. 2, and heating the substrate 4 with radiation from the heater 6 located behind it. It is.

この方法は、接合金属10の問題は無くなるが、基板4
が例えばガリウム砒素(GaAs)の場合、基板4の加
熱温度が600〜700℃程度であるため成長期間中に
成長面以外の面から砒素(As)が抜けて裏面が荒れる
問題があり、加えて、この程度の温度を検知するパイロ
メータは約2μm波長の熱線を測定すること、GaAs
は該熱線に対して透明であることから、パイロメータ8
は基板4の温度よりはヒータ6の温度を検知することに
なって、基板4の加熱温度を制御することが困難である
問題もある。
This method eliminates the problem of the bonding metal 10, but
For example, in the case of gallium arsenide (GaAs), the heating temperature of the substrate 4 is about 600 to 700°C, so there is a problem that arsenic (As) escapes from surfaces other than the growth surface during the growth period, resulting in roughening of the back surface. , pyrometers that detect temperatures of this level measure heat rays with a wavelength of about 2 μm, and GaAs
Since it is transparent to the heat rays, the pyrometer 8
Since the temperature of the heater 6 is detected rather than the temperature of the substrate 4, there is also the problem that it is difficult to control the heating temperature of the substrate 4.

+d) 発明の目的 本発明の目的は上記従来の問題に鑑み、成長後除去を必
要とする補助材料を使用せず、然も、基板が例えばGa
Asなとであっても、該基板の成分の抜けによる裏面の
荒れが発生せず、且つパイロメータが該基板の加熱温度
を正しく検知することが可能な分子線結晶成長方法を提
供するにある。
+d) Object of the Invention In view of the above-mentioned conventional problems, the object of the present invention is to avoid the use of auxiliary materials that require removal after growth, and yet to
To provide a molecular beam crystal growth method that does not cause roughness on the back surface due to removal of components of the substrate even when using As, and allows a pyrometer to accurately detect the heating temperature of the substrate.

(e)発明の構成 上記目的は、表面に結晶を成長させる基板の裏面に高融
点金属を被着し、該成長に際する該基板の加熱は該被着
した高融点金属に輻射線を当てて行うことを特徴とする
分子線結晶成長方法によって達成される。
(e) Structure of the Invention The above object is to deposit a high melting point metal on the back surface of a substrate on which crystals are to be grown, and to heat the substrate during the growth by applying radiation to the deposited high melting point metal. This is achieved by a molecular beam crystal growth method characterized by the fact that it is carried out using

基板の裏面に被着する材料が高融点金属であるならば、
基板は該材料を被着したままでも成長後の工程において
製造上支障かでいので、該材料は除去する必要がない。
If the material deposited on the back side of the substrate is a high melting point metal,
There is no need to remove the material since it would be a manufacturing problem in the post-growth process if the substrate was left coated with the material.

また、被着した高融点金属が基板の成分の抜けを抑える
ので裏面の荒れは発生しない。更に、被着した高融点金
属はパイロメータが測定する熱線に対して不透明であり
且つ基板に密着しているので基板の温度は該高融点金属
の温度と同等になり、基板が該熱線に対して透明で該パ
イロメータが該高融点金属の温度を測定しても基板の加
熱温度を正しく検知することになる。
Furthermore, since the deposited high melting point metal prevents the components of the substrate from coming off, the back surface does not become rough. Furthermore, since the deposited high melting point metal is opaque to the heat rays measured by the pyrometer and is in close contact with the substrate, the temperature of the substrate is equal to the temperature of the high melting point metal, and the substrate is opaque to the heat rays. Even if the transparent pyrometer measures the temperature of the high melting point metal, it will accurately detect the heating temperature of the substrate.

かくして、本成長工程に伴う半導体装置量産の品質上や
工程上の問題を除去することが可能になる。
In this way, it is possible to eliminate quality and process problems in mass production of semiconductor devices associated with this growth process.

(fl 発明の実施例 以下本発明の実施例を図により説明する。全図を通じ同
一符号は同一対象物を示す。
(fl Embodiments of the Invention Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals indicate the same objects throughout the drawings.

第4図は基板を保持し加熱する本発明による方法の一実
施例を模式的に示した平面図、第5図は同じく他の実施
例を模式的に示した平面図である。
FIG. 4 is a plan view schematically showing one embodiment of the method of the present invention for holding and heating a substrate, and FIG. 5 is a plan view schematically showing another embodiment.

第4図図示の方法は、基板4に予め例えばモリブデンや
タングステンなどの高融点金属膜12を基板4の裏面に
蒸着法やスパッタ法などにより被着しておき、第3図図
示と同様にして結晶成長させる方法である。
In the method shown in FIG. 4, a high melting point metal film 12 such as molybdenum or tungsten is previously deposited on the back surface of the substrate 4 by vapor deposition or sputtering, and then the film is deposited in the same manner as shown in FIG. This is a method of growing crystals.

この方法によれば、先に説明したように、高融点金属膜
12を除去せずに後のニー程を進めることが可能であり
、基板4が例えばGaAsであってもAsが抜けること
による裏面の荒れは発生せず、パイロメーク8は基板4
の加熱温度を正しく検知する。
According to this method, as explained above, it is possible to proceed with the subsequent kneeing process without removing the high melting point metal film 12, and even if the substrate 4 is made of GaAs, for example, the back surface due to the removal of As No roughness occurred, and Pyromake 8 was applied to substrate 4.
Detects the heating temperature correctly.

第5図図示の方法は、第4図の方法におけるヒータ6を
ランプ13に置き換えたものである。従来の問題の解決
は第4図図示の方法の場合と同様であり、更に、ランプ
13は第1図図示の真空室1に窓を設けることによりそ
の外側に配置出来るので成長装置の保守保全が容易にな
る利点がある。
The method shown in FIG. 5 is a method in which the heater 6 in the method shown in FIG. 4 is replaced with a lamp 13. The solution to the conventional problem is the same as that of the method shown in FIG. 4, and furthermore, since the lamp 13 can be placed outside the vacuum chamber 1 shown in FIG. It has the advantage of being easier.

本願の発明者は、直径約50龍φ厚さ約500μmのG
aAs基板4に高融点金属膜12となる厚さ約1μmの
モリブデンをスパック法で被着し、第5図図示のやり方
で、シリコンを不純物にした不純物濃度がI X 10
 ”atm/cJのn形GaAs結晶を厚さ2pmに成
長させたが、成長中の基板4の温度分布はパイロメータ
8の測定で±10℃の範囲に収まって均一に加熱されて
いたこと、成長後の基板4の裏面にはAsの抜けた形跡
がないこと、また、成長した結晶のモビリティは所望の
値であったことを確認した。
The inventor of the present application has discovered that the G
Molybdenum with a thickness of approximately 1 μm, which will become the high-melting point metal film 12, is deposited on the aAs substrate 4 by the spacing method, and the impurity concentration with silicon as an impurity is I x 10 using the method shown in FIG.
``Atm/cJ n-type GaAs crystal was grown to a thickness of 2 pm, and the temperature distribution of the substrate 4 during growth was within a range of ±10°C as measured by the pyrometer 8, indicating that it was heated uniformly. It was confirmed that there was no evidence of As missing on the back surface of the subsequent substrate 4, and that the mobility of the grown crystal was at the desired value.

(gl 発明の効果 以上に説明したように、本発明による構成によれば、成
長後除去を必要とする補助材料を使用せず、然も、基板
が例えばGaAsなどであっても、該基板の成分の抜け
による裏面の荒れが発生せず、且つパイロメータが該基
板の加熱温度を正しく検知することが可能な分子線結晶
成長方法を提供することが出来て、本成長工程に伴う半
導体装置量産の品質上や工程上の問題を除去することを
可能にさせる効果がある。
(gl Effects of the Invention As explained above, the structure according to the present invention does not use auxiliary materials that need to be removed after growth, and even if the substrate is made of GaAs, for example, It is possible to provide a molecular beam crystal growth method that does not cause roughness on the back surface due to removal of components and in which a pyrometer can accurately detect the heating temperature of the substrate, and it is possible to improve the mass production of semiconductor devices associated with this growth process. This has the effect of making it possible to eliminate quality and process problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は分子線結晶成長法の方法を模式的に示した平面
図、第2図はその基板を保持し加熱する従来の方法を模
式的に示した平面図、第3図は同じ(従来の改善方法を
模式的に示した平面図、第4図は同じく本発明による方
法の一実施例を模式的に示した平面図、第5図は同じく
本発明による方法の他の実施例を模式的に示した平面図
である。 図面において、■は真空室、2はるつぼ、3は分子ビー
ム、4は基板、5はシャッタ、6はヒータ、7は熱線、
8はパイロメータ、9はテーブル、10は接合金属、1
1ば保持具、12は高融点金属膜、13はランプをそれ
ぞれ示す。
Fig. 1 is a plan view schematically showing the molecular beam crystal growth method, Fig. 2 is a plan view schematically showing the conventional method of holding and heating the substrate, and Fig. 3 is the same (conventional method). FIG. 4 is a plan view schematically showing an embodiment of the method according to the present invention, and FIG. 5 is a plan view schematically showing another embodiment of the method according to the present invention. In the drawing, ■ is a vacuum chamber, 2 is a crucible, 3 is a molecular beam, 4 is a substrate, 5 is a shutter, 6 is a heater, 7 is a hot wire,
8 is a pyrometer, 9 is a table, 10 is a joining metal, 1
Reference numeral 1 indicates a holder, 12 a high melting point metal film, and 13 a lamp.

Claims (1)

【特許請求の範囲】[Claims] 表面に結晶を成長させる基板の裏面に高融点金属を被着
し、該成長に際する該基板の加熱は該被着した高融点金
属に輻射線を当てて行うことを特徴とする分子線結晶成
長l法。
A molecular beam crystal characterized in that a high melting point metal is deposited on the back side of a substrate on which a crystal is to be grown, and the substrate is heated during the growth by applying radiation to the deposited high melting point metal. Growth l method.
JP9697284A 1984-05-15 1984-05-15 Molecular beam crystal growth Pending JPS60240119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9697284A JPS60240119A (en) 1984-05-15 1984-05-15 Molecular beam crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9697284A JPS60240119A (en) 1984-05-15 1984-05-15 Molecular beam crystal growth

Publications (1)

Publication Number Publication Date
JPS60240119A true JPS60240119A (en) 1985-11-29

Family

ID=14179132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9697284A Pending JPS60240119A (en) 1984-05-15 1984-05-15 Molecular beam crystal growth

Country Status (1)

Country Link
JP (1) JPS60240119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135509A (en) * 1984-07-28 1986-02-20 Anelva Corp Substrate heating method
JPS6142125A (en) * 1984-08-03 1986-02-28 Rohm Co Ltd Mbe substrate and method for measuring temperature thereof
JPS61139021A (en) * 1984-12-10 1986-06-26 Rohm Co Ltd Temperature measurement of mbe base board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135509A (en) * 1984-07-28 1986-02-20 Anelva Corp Substrate heating method
JPS6142125A (en) * 1984-08-03 1986-02-28 Rohm Co Ltd Mbe substrate and method for measuring temperature thereof
JPS61139021A (en) * 1984-12-10 1986-06-26 Rohm Co Ltd Temperature measurement of mbe base board

Similar Documents

Publication Publication Date Title
JPS60240119A (en) Molecular beam crystal growth
JP2967784B2 (en) Method and apparatus for forming deposited film
US4514250A (en) Method of substrate heating for deposition processes
JPH0215520B2 (en)
JPH02233585A (en) Base plate holder
JPS6158892A (en) Molecular beam epitaxial crystal growing method
JPS631747B2 (en)
JPH10259024A (en) Thin film of vanadium oxide and its production
JPH0474794A (en) Substrate holder and method for mounting substrate
Zignani et al. Effects of vacuum deposition conditions on the structure of (111) epitaxial gold films
JPH03295225A (en) Formation of thin film
JPS61263212A (en) Molecular beam epitaxy substrate holder
JPS61198789A (en) Continuous manufacture of optical semiconductor element
JP2778137B2 (en) Thin film forming method and apparatus
JPS6126598A (en) Preparation of germanium thin film crystal
JPH06177038A (en) Formation method for mercury cadmium tellurium thin film based on molecular beam and substrate holder thereof
JPS62196814A (en) Substrate holder for molecular beam epitaxy
JP3139045B2 (en) Molecular beam crystal growth equipment
JPH01305889A (en) Molecular beam cell
JPS6223104A (en) Molecular beam epitaxial growing process
JPS6142125A (en) Mbe substrate and method for measuring temperature thereof
JPH0867596A (en) Molecular beam epitaxy apparatus
JPS61210616A (en) Formation of semiconductor thin film
JPS62207796A (en) Molecular beam epitaxy
JPS62211929A (en) Vacuum evaporation epitaxial growth and its apparatus