JPS61198789A - Continuous manufacture of optical semiconductor element - Google Patents

Continuous manufacture of optical semiconductor element

Info

Publication number
JPS61198789A
JPS61198789A JP60039383A JP3938385A JPS61198789A JP S61198789 A JPS61198789 A JP S61198789A JP 60039383 A JP60039383 A JP 60039383A JP 3938385 A JP3938385 A JP 3938385A JP S61198789 A JPS61198789 A JP S61198789A
Authority
JP
Japan
Prior art keywords
layer
phase
vapor
liquid
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60039383A
Other languages
Japanese (ja)
Inventor
Toru Tejima
透 手島
Minoru Koyama
稔 小山
Ko Takahashi
高橋 香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP60039383A priority Critical patent/JPS61198789A/en
Publication of JPS61198789A publication Critical patent/JPS61198789A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve productivity, by combining a liquid-phase growing method and a vapor-phase growing method into a series system, applying the liquid- phase method in forming a thick epitaxial layer, and applying the vapor-phase method in forming a thin epitaxial layer requesting accuracy. CONSTITUTION:On a GaAs substrate 2, a P1 layer 3 having a thickness of about 100mum is formed. In this case, a vapor-pressure controlled, temperature- difference, continuous liquid-phase growing method 11, whose growing speed is quick, is applied. In order to remove the remaining melt 7 after the liquid- phase growth, the surface of the P1 layer is treated by surface-vapor phase cleaning (including etching) 12. A P2 layer (thickness of about 1mum) 4 is epitaxially grown 8 by a vapor-phase growing method 13 on the surface of the P1 layer. The wafer is transferred to a liquid-phase growing chamber, and an N layer 5 having a thickness of about 50mum is epitaxially grown 9 by the liquid phase method. Thus the productivity is improved.

Description

【発明の詳細な説明】 ■五豆見 本発明は、光半導体素子の連続製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [5] The present invention relates to a continuous manufacturing method for optical semiconductor devices.

鵞J(10桁 従来、光半導体素子を製造する場合は、第2図に示した
如くエピタキシャル成長法によりGaAs基板上に厚み
の異なるP、層、22層、N層を形成することによりダ
ブル・ヘテロ(DH)構造のウェハlを作成し、第3図
に示した如くエツチングにより酸ウェハ1からGaAs
基板(発生した光の吸収層となる)を除去した後両面に
Au電極を形成することによりDH構造のチップ2を製
造するようになっている。ところが、このように厚みの
異なる層を多層にする場合、各層の成長に必要な時間が
著しく異なるため、スライダーの各メルト槽に滞在する
時間を一定にし、連続的にスライダーを移動させただけ
ではエピタキシャル成長を行わせることはできない。即
ち、時系列的に連続してエピタキシャル成長を行わせる
ことはできない。
Ori J (10 digits Conventionally, when manufacturing optical semiconductor devices, a double hetero layer is formed by forming P, 22, and N layers of different thickness on a GaAs substrate by epitaxial growth as shown in Figure 2. (DH) structure wafer 1 was prepared, and GaAs was etched from the acid wafer 1 by etching as shown in FIG.
After removing the substrate (which serves as an absorption layer for the generated light), Au electrodes are formed on both surfaces to manufacture the chip 2 with the DH structure. However, when creating multiple layers with different thicknesses, the time required for each layer to grow is significantly different, so it is not possible to simply set the time the slider spends in each melt tank constant and move the slider continuously. Epitaxial growth cannot be performed. That is, epitaxial growth cannot be performed continuously in time series.

従って、光半導体素子を連続製造する方法としては、第
4図に示した如く生産性の低い方法を採用してDHウェ
ハlの閉じ込め層(22層)を形成セざるを得ない。即
ち、この方法では、連結スライダー、ダミー基板を支持
するスライダー、  DH用用板板支持するスライダー
を繰り返し連続して成るスライダー3を各メルト層4.
5.6.7の下を間欠的に移動せしめるようにしている
が、メルト槽6は90分間過飽和の状態にあるので、G
aAs基板がメルト槽6の下に来た時にエビタキシャル
成長の速度が速すぎ、22層の厚さをlμに制御し難い
。そこで、この現象を避けるためにダミー基板上に90
分間エピタキシャル成長させて成長速度が遅くなった時
点でDH用用板板メルト槽6の下に来るようにする必要
があり、そのため連結スライダー及びダミーの基板骨の
二つが無効なものとなっている。
Therefore, as a method for continuously manufacturing optical semiconductor devices, the confinement layer (22 layers) of the DH wafer 1 must be formed using a method with low productivity as shown in FIG. That is, in this method, a slider 3 consisting of a continuous repeating combination of a connecting slider, a slider supporting a dummy board, and a slider supporting a DH plate is attached to each melt layer 4.
5.6.7 is moved intermittently, but since the melt tank 6 is in a supersaturated state for 90 minutes, the G
When the aAs substrate comes under the melt bath 6, the rate of epitaxial growth is too fast, making it difficult to control the thickness of the 22 layers to lμ. Therefore, in order to avoid this phenomenon, a 90mm
When the growth rate slows down after 5 minutes of epitaxial growth, it is necessary to position it under the DH plate melt tank 6, and therefore the connecting slider and the dummy substrate bone are both ineffective.

又、通常半導体素子の製造において、特に結晶基板上へ
エピタキシャル成長を行う場合、気相法が液相法のいず
れかを単独に使用している。そして、気相成長法によっ
てエピタキシャル成長を行う場合、より完全な良質結晶
を得るためにはその成長速度を1秒間に1原子層(2〜
4人/5ec)というように極めて遅くしている場合も
ある。また、通常のMOCVD (有機金属CVD)法
では、5〜30人/5ec)のオーダーである。従って
、気相成長法は液晶成長法に比較して1〜2折成長速度
が遅く、この事は実際上半導体素子を作る場合に極めて
重要な問題となる。即ち、気相成長法は、良質なエピタ
キシャル膜を形成できる長所とエピタキシャル成長時間
が長いという短所を併せ持つ方法といえる。
Further, in the production of semiconductor devices, either the vapor phase method or the liquid phase method is normally used, particularly when performing epitaxial growth on a crystal substrate. When epitaxial growth is performed using the vapor phase growth method, in order to obtain a more complete and high quality crystal, the growth rate must be reduced to 1 atomic layer (2 to 2 ~
In some cases, it is extremely slow (4 people/5ec). In addition, in the ordinary MOCVD (organometallic CVD) method, it is on the order of 5 to 30 people/5ec). Therefore, the vapor phase growth method has a one- to two-fold growth rate that is slower than that of the liquid crystal growth method, and this fact becomes an extremely important problem when manufacturing semiconductor devices. That is, the vapor phase growth method can be said to be a method that has both the advantage of forming a high-quality epitaxial film and the disadvantage of requiring a long epitaxial growth time.

一方、液相成長法は、成長速度を早くしてもその結晶性
は比較的良質であるという特色を有している。しかし、
液相成長法の場合、1原子層また1分子層を規則正しく
制御してエピタキシャル成長させることは不可能に近い
。従って、この点では気相法よりも劣るといえる。
On the other hand, the liquid phase growth method is characterized in that its crystallinity is relatively good even when the growth rate is increased. but,
In the case of liquid phase growth, it is nearly impossible to regularly control epitaxial growth of one atomic layer or one molecular layer. Therefore, it can be said that it is inferior to the gas phase method in this respect.

一則一」扛 本発明は、蒸気問題点に漏み、複数のエピタキシャル層
の厚みが異っても時系列的に連続したエピタキシャル成
長ができるようにし、生産性が向上するようにした光半
導体素子の連続製造方法を提供せんとするものである。
The present invention addresses the steam problem and provides an optical semiconductor device that enables continuous epitaxial growth in chronological order even if the thickness of multiple epitaxial layers differs, thereby improving productivity. The purpose is to provide a continuous manufacturing method.

本発明による光半導体素子の連続製造方法は、蒸気圧制
m温度差法連続液相成長法(以下液相法と称す)と気相
成長法とを一連の系にて組み合せGaAs基板を連続的
に移送した時厚いエピタキシャル層の形成には液相法が
適用され且つ薄くて精度が要求されるエピタキシャル層
の形成には気相法が適用されるようにして、GaAs基
板の各成長室に滞在する時間が一定になるようにしたも
のである。
The continuous manufacturing method of optical semiconductor devices according to the present invention combines a vapor pressure controlled temperature difference method continuous liquid phase growth method (hereinafter referred to as liquid phase method) and a vapor phase growth method in a series of systems to continuously manufacture a GaAs substrate. When transferred, the liquid phase method is applied to form a thick epitaxial layer, and the vapor phase method is applied to form a thin epitaxial layer that requires precision, and the GaAs substrate remains in each growth chamber. This is to keep the time constant.

災l巖 以下、第1図に示した一実施例に基づき本発明の詳細な
説明すれば、第1図は第2図に示した如きウェハを作る
場合の方法を示しており、11は液相成長室において液
相法によりGaAs基板へ21層を約10’Oμエピタ
キシヤル成長させるP1層エビタキンヤル工程であって
、この厚さはGaAs基板結晶の欠陥を29層でカバー
し且つ第3図に示した如きチップ構造にするために光の
吸収層となるGaAs基板を除去した時ウェハ及びチッ
プのハンドリングができる最低の厚さとなっている。こ
の約100μ厚の21層の形成には成長速度の速い方法
をとることが得策であるから、液相法が採用されている
。12は21層を形成したウェハをゲートパルプ等で隔
離され且つ連続移送が可能なチャンバーに移送して、不
活性気体中又は高真空中でP7層表面に微量存在する液
相成長後のメルト残りを除去するための表面気相クリー
ニング工程であって、P1層表面を気相でエツチングす
ることも可能となっている。13は前述の処理が完了し
たウェハを気相成長室に移送して21層の表面に22層
をエピタキシャル成長させる22層エピタキシャル成長
工程であって、この層の厚さ及び結晶性はデバイスとな
った時の量子効率に大きく関与し、必要厚さは約1μ前
後である。この92層の形成には、MOCVD法、M、
BE(分子線エピタキシャル)法、光励起分子層エピタ
キシャル法等の気相成長法が使用される。14は22層
形成後にウェハを液相成長室に移送し、光の取出し部及
び表面電極を形成し、ポンディング時の歪を考慮に入れ
た厚さ約50μのN層を液相法でエピタキシャル成長さ
せるN層エビタキシャル工程である。そして、上記各工
程は連続的に行われるようになっている。
Hereinafter, the present invention will be described in detail based on an embodiment shown in FIG. 1. FIG. 1 shows a method for making a wafer as shown in FIG. This is a P1 layer epitaxial growth process in which 21 layers are epitaxially grown to about 10'Oμ on a GaAs substrate by a liquid phase method in a phase growth chamber, and this thickness is such that the defects in the GaAs substrate crystal are covered with 29 layers and the thickness is as shown in FIG. When the GaAs substrate serving as the light absorption layer is removed to obtain the chip structure shown, the thickness is the minimum that allows handling of the wafer and chip. In order to form these 21 layers with a thickness of about 100 μm, a liquid phase method is adopted because it is advisable to use a method with a high growth rate. Step 12 is to transfer the wafer on which the 21st layer has been formed to a chamber that is isolated with a gate pulp or the like and capable of continuous transfer, and removes a small amount of melt residue after liquid phase growth that is present on the surface of the P7 layer in an inert gas or high vacuum. This is a surface vapor phase cleaning step for removing the P1 layer, and it is also possible to etch the surface of the P1 layer in a vapor phase. 13 is a 22-layer epitaxial growth step in which the wafer, which has undergone the above-mentioned processing, is transferred to a vapor phase growth chamber and a 22-layer is epitaxially grown on the surface of the 21-layer; the thickness and crystallinity of this layer are determined when the device is formed. The required thickness is approximately 1 μm. For the formation of these 92 layers, MOCVD method, M,
Vapor phase growth methods such as BE (molecular beam epitaxial) method and photoexcited molecular layer epitaxial method are used. In step 14, after forming 22 layers, the wafer is transferred to a liquid phase growth chamber, a light extraction part and a surface electrode are formed, and an N layer with a thickness of approximately 50 μm is epitaxially grown using a liquid phase method, taking into account the strain during bonding. This is an N-layer epitaxial process. Each of the above steps is performed continuously.

尚、本実施例は液相成長法−気相成長法一液相成長法と
いう系に構成されているが、液相成長法−気相成長法−
気相成長法一液相成長法という系も本発明に含まれるの
である。
Note that this example is structured as a system of liquid phase growth method, vapor phase growth method, and liquid phase growth method, but liquid phase growth method - vapor phase growth method -
A system of vapor phase growth and liquid phase growth is also included in the present invention.

l豆亘羞見 上述の如く、本発明による光半導体素子の連続製造方法
によれば、GaAs基板を連続的に移送した時厚いエピ
タキシャル層の形成には液相法が適用され且つ薄くて精
度が要求されるエピタキシャル層の形成には気相法が適
用されるので、GaAs基板の各成長室に滞在する時間
が一定になるようにすることができる。従って、時系列
的に連続したエピタキシャル成長ができ、無効な部分が
なくなるので、生産性が向上する。又、■−v族の基板
となる結晶は未だ完全とはいえないが、その不完全な基
板の上に厚く液相エピタキシャル成長させることで欠陥
を少なくできる。更に基板除去後もハンドリングできる
厚さが確保できる。又、ダブル・ヘテロ構造の要となる
閉じ込め層(22層・・・・ウェル)は良く制御された
精度の高い気相エピタキシャル成長法で行うので、電気
−光変換効率が上昇する。又、閉じ込め層は熱的に低い
温度で成長させ得るので、熱拡散等がなく且つ急峻な組
成にすることができる。又、本発明方法は、結晶の格子
歪を緩和する場合に好都合である。
As mentioned above, according to the continuous manufacturing method of optical semiconductor devices according to the present invention, when a GaAs substrate is continuously transferred, a liquid phase method is applied to form a thick epitaxial layer, and a thin and highly accurate layer is formed. Since a vapor phase method is applied to form the required epitaxial layer, the time that the GaAs substrate stays in each growth chamber can be made constant. Therefore, continuous epitaxial growth can be performed in a time-series manner, and there are no ineffective parts, so that productivity is improved. Furthermore, although the crystals that serve as substrates for the ■-v group are still not perfect, defects can be reduced by growing them thickly by liquid phase epitaxial growth on such imperfect substrates. Furthermore, it is possible to ensure a sufficient thickness for handling even after the substrate is removed. Furthermore, since the confinement layer (22 layers, . . . well), which is the key to the double heterostructure, is formed by a well-controlled and highly accurate vapor phase epitaxial growth method, the electrical-optical conversion efficiency is increased. Further, since the confinement layer can be grown at a thermally low temperature, there is no thermal diffusion and the composition can be made steep. Furthermore, the method of the present invention is advantageous for alleviating lattice strain in crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光半導体素子の連続製造方法の一
実施例を示す系統図、第2図はダブル・ヘテロ構造のウ
ェハの断面図、第3図はダブル・ヘテロ構造のチップの
断面図、第4図は従来の製造方法を示す概略図である。 ■・・・・ウェハ、2・・・・チップ、11・・・・P
1層エビタキシャル工程、12・・・・表面気相クリー
ニング工程、13・・・・P2層エビタキンヤル工程、
14・・・、N層エピタキシャル工程。
Fig. 1 is a system diagram showing an embodiment of the method for continuously manufacturing optical semiconductor devices according to the present invention, Fig. 2 is a cross-sectional view of a wafer with a double heterostructure, and Fig. 3 is a cross-sectional view of a chip with a double heterostructure. , FIG. 4 is a schematic diagram showing a conventional manufacturing method. ■...Wafer, 2...Chip, 11...P
1-layer epitaxial process, 12... surface vapor phase cleaning process, 13... P-2 layer epitaxy process,
14..., N layer epitaxial process.

Claims (1)

【特許請求の範囲】[Claims] 蒸気圧制御温度差法連続液相成長法と気相成長法とを一
連の系にて組み合せ、厚いエピタキシャル層の形成には
前記液相成長法が適用され且つ薄くて精度が要求される
エピタキシャル層の形成には前記気相成長法が適用され
るようにした、光半導体素子の連続製造方法。
The vapor pressure controlled temperature difference method continuous liquid phase growth method and vapor phase growth method are combined in a series of systems, and the liquid phase growth method is applied to form a thick epitaxial layer, and the epitaxial layer is thin and requires precision. A method for continuously manufacturing an optical semiconductor device, wherein the vapor phase growth method described above is applied to the formation of the semiconductor device.
JP60039383A 1985-02-28 1985-02-28 Continuous manufacture of optical semiconductor element Pending JPS61198789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60039383A JPS61198789A (en) 1985-02-28 1985-02-28 Continuous manufacture of optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60039383A JPS61198789A (en) 1985-02-28 1985-02-28 Continuous manufacture of optical semiconductor element

Publications (1)

Publication Number Publication Date
JPS61198789A true JPS61198789A (en) 1986-09-03

Family

ID=12551486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60039383A Pending JPS61198789A (en) 1985-02-28 1985-02-28 Continuous manufacture of optical semiconductor element

Country Status (1)

Country Link
JP (1) JPS61198789A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415913A (en) * 1987-07-09 1989-01-19 Mitsubishi Monsanto Chem Epitaxial growth method of substrate for high-brightness led
JPH01187883A (en) * 1988-01-21 1989-07-27 Mitsubishi Monsanto Chem Co High luminance led epitaxial substrate and its manufacture
US5192710A (en) * 1990-05-02 1993-03-09 Alcatel N.V. Method of making a semiconductor laser with a liquid phase epitaxy layer and a plurality of gas phase or molecular beam epitaxy layers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415913A (en) * 1987-07-09 1989-01-19 Mitsubishi Monsanto Chem Epitaxial growth method of substrate for high-brightness led
JPH01187883A (en) * 1988-01-21 1989-07-27 Mitsubishi Monsanto Chem Co High luminance led epitaxial substrate and its manufacture
US5192710A (en) * 1990-05-02 1993-03-09 Alcatel N.V. Method of making a semiconductor laser with a liquid phase epitaxy layer and a plurality of gas phase or molecular beam epitaxy layers

Similar Documents

Publication Publication Date Title
McClelland et al. A technique for producing epitaxial films on reuseable substrates
US4561916A (en) Method of growth of compound semiconductor
JPS61198789A (en) Continuous manufacture of optical semiconductor element
JPH03132016A (en) Method of forming crystal
JPH05251339A (en) Semiconductor substrate and its manufacture
JPH0752713B2 (en) Method for growing compound semiconductor
JPH04182386A (en) Substrate susceptor for epitaxial growth
JPH01107515A (en) Manufacture of semiconductor element
JPH02152221A (en) Manufacture of soi substrate
JPS6398120A (en) Crystal growth method
JPS62219614A (en) Method for growth of compound semiconductor
JP2696928B2 (en) Heteroepitaxial growth method
JPH0682621B2 (en) GaAs selective epitaxial growth method
JPS62189720A (en) Manufacture of semiconductor device
JPH02105517A (en) Manufacture of semiconductor device
JPS61220321A (en) Selective vapor growth method
SU1705425A1 (en) Method of producing epitaxial layers of gallium nitride
JP2790492B2 (en) Semiconductor thin film growth method
JPS6020509A (en) Liquid phase epitaxial growth method
JPH05190476A (en) Manufacture of semiconductor layer
JPS6126598A (en) Preparation of germanium thin film crystal
JPS6229398B2 (en)
JPS63239922A (en) Epitaxial growth crystal
JPS6325295A (en) Semiconductor epitaxial wafer
JPH0573335B2 (en)