JPS6020509A - Liquid phase epitaxial growth method - Google Patents

Liquid phase epitaxial growth method

Info

Publication number
JPS6020509A
JPS6020509A JP12840983A JP12840983A JPS6020509A JP S6020509 A JPS6020509 A JP S6020509A JP 12840983 A JP12840983 A JP 12840983A JP 12840983 A JP12840983 A JP 12840983A JP S6020509 A JPS6020509 A JP S6020509A
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
solution
epitaxial growth
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12840983A
Other languages
Japanese (ja)
Inventor
Yasuo Shinohara
篠原 庸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12840983A priority Critical patent/JPS6020509A/en
Publication of JPS6020509A publication Critical patent/JPS6020509A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To form a thin epitaxial growth layer at low cost by uniformly forming a polycrystalline layer having the same quality of material as an epitaxial growth substrate or the same quality of material as a semiconductor growing solution on the surface of a blank substrate not dissolved to the semiconductor growing solution and using the polycrystalline layer as a seed crystal. CONSTITUTION:A seed crystal board 10 is set at the predetermined position of a carbon board 3. Gallium arsenide and aluminum and a dopant are dissolved into gallium, and a semiconductor solution 4 is creeped under the seed crystal substrate 10 with a polycrystalline layer 12 consisting of gallium arsenide when the temperature of the semiconductor solution 4 is dropped to the saturation point or lower of a solute to a solvent. Consequently, the surface of the polycrystalline layer 12 has the same composition as the semiconductor solution. Since the deposition of aluminum gallium arsenide is generated to the polycrystalline layer 12 from the semiconductor solution 4 by slowly dropping the temperature of a furnace and the thickness of the deposition is thin, the semiconductor solution is equalized rapidly, and the degree of supersaturation is kept at a fixed value at all times. The thickness of a thin growth layer can be controlled by bringing a substrate 5 for epitaxial growth into contact with the semiconductor solution 4 under said state.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は液相エピタキシャル成長方法に関し、特に液相
エピタキシャル成長に改良された種基板を使用した液相
エピタキシャル成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a liquid phase epitaxial growth method, and more particularly to a liquid phase epitaxial growth method using an improved seed substrate for liquid phase epitaxial growth.

〔従来技術〕[Prior art]

従来、光半導体素子の製造には液相エピタキシャル成長
方法によりエピタキシャル層の形成された半導体基板が
用いられる。これらの液相エピタキシャル成長において
は、0.1μm程度の薄い層を再現性よく成長する必要
がある。すなわちエピタキシャル成長の成長速度を再現
性よく制御しなければならない。
Conventionally, a semiconductor substrate on which an epitaxial layer is formed by a liquid phase epitaxial growth method is used for manufacturing optical semiconductor devices. In these liquid phase epitaxial growths, it is necessary to grow a thin layer of about 0.1 μm with good reproducibility. That is, the growth rate of epitaxial growth must be controlled with good reproducibility.

液相エピタキシャル成長において、その成長速度は溶質
の溶媒に対する過飽オロ度に大さく依存するっ この過飽和度の制御をする一つの方法としては、溶媒に
溶込む量を超える量の溶質を仕込んでおき、液の上に常
に種結晶が浮いている状態に保って成長を行う方法があ
るが、過飽和度が大さくなり、エピタキシャル層の初期
の成長速度がはやく、かつ溶液の均一性が得られ難く、
薄く均一なエピタキシャル層の形成は困難である。
In liquid phase epitaxial growth, the growth rate largely depends on the degree of supersaturation of the solute with respect to the solvent. One way to control the degree of supersaturation is to charge an amount of solute that exceeds the amount that dissolves in the solvent. There is a method of growing by keeping the seed crystal floating above the liquid, but this increases the degree of supersaturation, increases the initial growth rate of the epitaxial layer, and makes it difficult to obtain uniformity of the solution. ,
Forming thin and uniform epitaxial layers is difficult.

壕だ、他の方法としては、初期の過飽和度緩和のため成
長基板を半導体溶液に接触する直前に種結晶を半導体溶
液に接触する方法があるが組成の均一な薄いエピタキシ
ャル層は得られがたい。
Another method is to contact the seed crystal with the semiconductor solution immediately before contacting the growth substrate with the semiconductor solution to reduce the initial supersaturation level, but it is difficult to obtain a thin epitaxial layer with a uniform composition. .

これらの問題点を改良した第3の方法として薄く形成し
た半導体溶液の上に種結晶を配置して半導体溶液を制御
する方法が用いられるようになった。
As a third method that has improved these problems, a method has been used in which a seed crystal is placed on top of a thin semiconductor solution to control the semiconductor solution.

第1図乃至第3図は第3の方法を説明するだめの説明図
である。第1図はこの方法で用いられる種結晶基板lを
示し通常成長用基板と同一組成の単結晶基板が用しられ
る。
1 to 3 are explanatory diagrams for explaining the third method. FIG. 1 shows a seed crystal substrate l used in this method, and a single crystal substrate having the same composition as the normal growth substrate is used.

第2図に示すように、カーボンボート3の所定の位置に
形成するエピタキシャル層の組成を有する半導体溶液4
が配Ifれ、その半導体溶液に接して上部に種結晶基板
1が配置される。その結果、一定時間後に半導体装1夜
4の過飽和度は一定値となる。次に炉の己度を徐徐に下
げ、一定時間後にカーボンボート3をスライドさせ、エ
ピタキシャル成長用基板5を第3図に示すように半導体
溶液4の下に持ってきて、炉の温度を徐徐に下げて行く
ことにより、半導体溶液4から種結晶基板lに向けて過
飽和なエピタキシャル組成分が析出し、半導体溶液4の
過飽和度は常に一定値に保たれるので、このエピタキシ
ャル成長用基板5に半導体溶液4を接触させることによ
!70.1μm程度の薄い成長層の層厚を制御すること
ができる。
As shown in FIG. 2, a semiconductor solution 4 having the composition of an epitaxial layer to be formed at a predetermined position of the carbon boat 3
If is disposed, and the seed crystal substrate 1 is disposed above in contact with the semiconductor solution. As a result, the degree of supersaturation of the semiconductor device 4 becomes a constant value after a certain period of time. Next, the temperature of the furnace is gradually lowered, and after a certain period of time, the carbon boat 3 is slid, the epitaxial growth substrate 5 is brought under the semiconductor solution 4 as shown in FIG. 3, and the temperature of the furnace is gradually lowered. As a result, a supersaturated epitaxial component is precipitated from the semiconductor solution 4 toward the seed crystal substrate l, and the degree of supersaturation of the semiconductor solution 4 is always kept at a constant value. By contacting! The thickness of the grown layer can be controlled as thin as about 70.1 μm.

しかしながら本成長方法に用いられる種結晶基板は前記
したように成長用基板と同一の単結晶基板が用いられる
。この種結晶基板は一回エビタキシャルをすると表面を
研摩し清浄化して使用するが数回が限度である。しかも
半導体装置に必要なエピタキシャル層は通常は多層形成
する必要があるので1枚の生長基板を製作するには多数
板の単結晶基板が必要となり、しかも単結晶基板は非常
に高価であるため光半導体素子に使われるエピタキシャ
ル成長層を形成した基板の単価が非常に高いものになる
という欠点がある。
However, as described above, the seed crystal substrate used in this growth method is the same single crystal substrate as the growth substrate. Once this seed crystal substrate has been subjected to the epitaxial process, it can be used only a few times after polishing and cleaning the surface. Moreover, since the epitaxial layers required for semiconductor devices usually need to be formed in multiple layers, many single-crystal substrates are required to manufacture one growth substrate, and since single-crystal substrates are very expensive, A drawback is that the unit cost of the substrate on which the epitaxially grown layer used for semiconductor devices is formed is extremely high.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記欠点を除去し、安価で薄いエピタ
キシャル成長層を形成することのできる液相エピタキシ
ャル成長方法を提供することにある。
An object of the present invention is to provide a liquid phase epitaxial growth method that eliminates the above-mentioned drawbacks and can form a thin epitaxial growth layer at low cost.

〔発明の構成」 本発明のエピタキシャル成長方法は、溶融した半導体成
長溶液に種結晶板を接触させることにより組成が制御さ
れた前記半導体成長溶液にエピタキシャル成長用基板を
接触させてエピタキシャル層を形成する液相エピタキシ
ャル成長方法において、前記半導体成長溶液に溶解しな
い素材基板表面に前記エピタキシャル成長用基板と同一
材質ある囚は前記半導体成長溶液夜と同一材質の多結晶
層を均一に形成せしめ、該多結晶WJを種結晶として用
いることにょすi’/f成珀れる。
[Structure of the Invention] The epitaxial growth method of the present invention includes a liquid phase method in which an epitaxial growth substrate is brought into contact with a semiconductor growth solution whose composition is controlled by bringing a seed crystal plate into contact with a molten semiconductor growth solution to form an epitaxial layer. In the epitaxial growth method, if the surface of the substrate is made of the same material as the epitaxial growth substrate and is not dissolved in the semiconductor growth solution, a polycrystalline layer made of the same material as the semiconductor growth solution is uniformly formed, and the polycrystalline WJ is used as a seed crystal. It can be used as i'/f.

〔実施例の説明〕[Explanation of Examples]

次に、不発明の実施例について、図面全参照しための工
程順に示した断面図である。なお本実施例ではガリウム
砒素を成長基板としアルミニウムガリウム砒素を成長さ
せる場合につき説明する。
Next, there are cross-sectional views showing the non-inventive embodiment in the order of steps for reference to all the drawings. In this embodiment, a case will be described in which aluminum gallium arsenide is grown using gallium arsenide as a growth substrate.

第4図は本発明に使用する種結晶板の断面図である。素
材基板11は半導体溶液に溶解しない素材、例えばシリ
コンカーバイトで約1y+mの厚さに作られた板である
つCの素材基板11の片方の表面にエピタキシャル成長
用基板と同一材質のガリウム砒素の多結晶層12を形成
するうこの多結晶層は例えばML) CV D (Me
tal Qrganic ChemicalVapor
 Depositi’ff )法等を用いることにより
比較的容易に均一に再現性よく形成することができる。
FIG. 4 is a sectional view of a seed crystal plate used in the present invention. The material substrate 11 is a plate made of a material that does not dissolve in a semiconductor solution, for example silicon carbide, and has a thickness of approximately 1y+m.One surface of the material substrate 11 of C is made of a gallium arsenide film made of the same material as the epitaxial growth substrate. The polycrystalline layer forming the crystal layer 12 is, for example, ML) CV D (Me
tal Qrganic Chemical Vapor
By using a deposition method or the like, it can be formed relatively easily and uniformly with good reproducibility.

多結晶層12はエピタキシャル成長させる半導体溶液と
同一材質、この実施例ではアルミニウムガリウム砒素で
形成しても良い。
The polycrystalline layer 12 may be formed of the same material as the semiconductor solution used for epitaxial growth, in this embodiment aluminum gallium arsenide.

次に、第5図に示すように、種結晶板1oをカーボンボ
ート3の所定の位置にセットする。ガリウムにガリウム
砒素とアルミニウム及びドーパントを溶かし込み、溶媒
に対する溶質の飽和点以下に下げた所で半導体溶液4を
このガリウム砒素の多結晶層12を有する種結晶基板1
0の下にもぐり込ませる。その結果、薄く形成された半
導体溶液4の上部に種結晶板10が接触した構成になろ
うこの時点で半導体溶液4はわずかに過飽和の状態にな
っているので種結晶基板lOから多結晶ガリウム砒素が
溶は出すことはなく、逆に半導体溶液4から多結晶ガリ
ウム砒素1曽12に対しアルミニウムガリウム砒素が析
出する。すなわち多結晶ガリウム砒素層12の表面は半
導体溶液と同じ組成となる。このような状態で一定時間
保つと半導体溶94の過飽和度は一定の値となる。
Next, as shown in FIG. 5, the seed crystal plate 1o is set at a predetermined position on the carbon boat 3. After dissolving gallium arsenide, aluminum, and a dopant into gallium and lowering the temperature to below the saturation point of the solute in the solvent, the semiconductor solution 4 is applied to a seed crystal substrate 1 having a polycrystalline layer 12 of gallium arsenide.
Slip it under 0. As a result, the seed crystal plate 10 will be in contact with the top of the thinly formed semiconductor solution 4. At this point, the semiconductor solution 4 is slightly supersaturated, so the polycrystalline gallium arsenide is transferred from the seed crystal substrate lO. However, no solution is released, and on the contrary, aluminum gallium arsenide is precipitated from the semiconductor solution 4 for each polycrystalline gallium arsenide 1 and 12. That is, the surface of the polycrystalline gallium arsenide layer 12 has the same composition as the semiconductor solution. If this state is maintained for a certain period of time, the degree of supersaturation of the semiconductor solution 94 becomes a constant value.

次に、第6図に示すように、炉の温度を徐徐に下げ、一
定時間後にカーボンボート3をスライドさせ、エピタキ
シャル成長用基板5を半導体溶液4の下に移動させる。
Next, as shown in FIG. 6, the temperature of the furnace is gradually lowered, and after a certain period of time, the carbon boat 3 is slid to move the epitaxial growth substrate 5 under the semiconductor solution 4.

その間炉の温度を徐徐に下げて行くことにより、半導体
溶液4から多結晶ガリウム砒素層12に対し、アルミニ
ウムガリウム砒素の析出が起り、シかも半導体溶液4の
厚さは薄いので半導体溶液の均一化は早急に進むため、
半導体溶液4の過飽和度は常に一定の値に保たれるよう
になる。この状態でエピタキシャル成長用基板5を半導
体溶液4に接触させることにより0.1μm程度の薄い
成長層の層厚を!lI脚することができる。
During this time, by gradually lowering the temperature of the furnace, aluminum gallium arsenide is precipitated from the semiconductor solution 4 to the polycrystalline gallium arsenide layer 12, and since the thickness of the semiconductor solution 4 is thin, the semiconductor solution may be made uniform. To proceed quickly,
The degree of supersaturation of the semiconductor solution 4 is always maintained at a constant value. By bringing the epitaxial growth substrate 5 into contact with the semiconductor solution 4 in this state, a thin growth layer of about 0.1 μm can be grown! lI can be legged.

なお、本実施例に使用した種結晶板の素材基板は一般に
使われているガリウム砒素基板にくらべ機械的に強く、
また寸法も自由に選定でさ、その上本実施例に使用した
種結晶板は1回成長に使用した後はエツチングにより多
結晶層を容易に除去できる。また素材基板に対する多結
晶層の付着は一度に大量に付着形成することが可能であ
る。
The material substrate of the seed crystal plate used in this example is mechanically stronger than the commonly used gallium arsenide substrate.
Further, the dimensions can be freely selected, and the polycrystalline layer can be easily removed by etching after the seed crystal plate used in this embodiment has been used for one growth. Furthermore, it is possible to deposit a large amount of polycrystalline layers on the material substrate at one time.

従って、上記の種結晶板を用いることにより低コストで
制御性のよい液相エピタキシャル成長を行うことができ
る。
Therefore, by using the above seed crystal plate, liquid phase epitaxial growth can be performed at low cost and with good controllability.

以上の実施例ではガリウム砒素基の材料について説明し
たが、fnP系の材料を用いた場合も同様の効果を得る
ことができる。
In the above embodiments, a gallium arsenide-based material has been described, but similar effects can be obtained when an fnP-based material is used.

一方、溶媒に溶解しない素材としては、シリコンカーバ
イトを用いたが、カーボン、アルミナ。
On the other hand, silicon carbide was used as a material that does not dissolve in solvents, but carbon and alumina were also used.

シリコンナイトライド等を用いることもでさる。It is also possible to use silicon nitride or the like.

また、基板物質または成長物質の多結晶層の何着は先に
のべたMUCVD 法の他にMBE(Mole−cul
ar Beam Epi taxy)、蒸着等の方法に
より形成した場合も同様の効果が得られることは明らか
である。
In addition to the above-mentioned MUCVD method, the polycrystalline layer of the substrate material or the growth material can be formed using MBE (Mole-cul-de-coupling method).
It is clear that the same effect can be obtained when the film is formed by a method such as ar beam epitaxy) or vapor deposition.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり1本発明によれば、エピタキシャル
成長半導体溶液の過飽和度の制御が容易で、生産性が優
れ、生産価格の安い光半導体素子用のエビタキクヤル層
を形成した基板を容易に製造するCとができる。
As explained above, according to the present invention, the degree of supersaturation of an epitaxially grown semiconductor solution can be easily controlled, the productivity is excellent, and a substrate on which an epitaxial layer is formed for an optical semiconductor device can be easily produced at a low production cost. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

本発明の詳細な説明のための工程順に示した断面図であ
るっ 1・・・・・・種結晶板、3・・・・・・ガリウム砒素
種結晶板、4・・・・・・半導体成畏溶FE、5・・・
・・・エピタキシャル成長用基板、10・・・・・・種
結晶板、11・・・・・・素材基板’1−12・・・・
・・多結晶層、 A 察1函 と を′2−口 讐4−別 半l
They are sectional views shown in the order of steps for detailed explanation of the present invention. 1... Seed crystal plate, 3... Gallium arsenide seed crystal plate, 4... Semiconductor. Seikai FE, 5...
...Substrate for epitaxial growth, 10...Seed crystal plate, 11...Material substrate '1-12...
...polycrystalline layer, A

Claims (1)

【特許請求の範囲】[Claims] 溶融した半導体成長溶液に種結晶板を接触させるにより
組成が制御された前記半導体成長溶液にエピタキシャル
成長用基板を接触させてエピタキシャル層を形成する液
相エピタキシャル成長方法において、前記半導体成長溶
液に溶解しない素材基板表面に前記エピタキシャル成長
用基板と同一材質あるいは前記半導体成長溶液と同一材
質の多結晶層を均一に形成せしめ、該多結晶層を種結晶
板として用いることを特徴とする液相エピタキシャル成
長方法。
In a liquid phase epitaxial growth method in which an epitaxial growth substrate is brought into contact with a semiconductor growth solution whose composition is controlled by contacting a seed crystal plate with a molten semiconductor growth solution to form an epitaxial layer, a material substrate that does not dissolve in the semiconductor growth solution. A liquid phase epitaxial growth method, characterized in that a polycrystalline layer made of the same material as the epitaxial growth substrate or the semiconductor growth solution is uniformly formed on the surface, and the polycrystalline layer is used as a seed crystal plate.
JP12840983A 1983-07-14 1983-07-14 Liquid phase epitaxial growth method Pending JPS6020509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12840983A JPS6020509A (en) 1983-07-14 1983-07-14 Liquid phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12840983A JPS6020509A (en) 1983-07-14 1983-07-14 Liquid phase epitaxial growth method

Publications (1)

Publication Number Publication Date
JPS6020509A true JPS6020509A (en) 1985-02-01

Family

ID=14984063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12840983A Pending JPS6020509A (en) 1983-07-14 1983-07-14 Liquid phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPS6020509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532203A (en) * 2004-04-19 2007-11-15 ザ プロクター アンド ギャンブル カンパニー Disposable absorbent article with printed wetness indicator
JP4777340B2 (en) * 2004-04-19 2011-09-21 ザ プロクター アンド ギャンブル カンパニー Disposable absorbent article having a figure showing wetness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532203A (en) * 2004-04-19 2007-11-15 ザ プロクター アンド ギャンブル カンパニー Disposable absorbent article with printed wetness indicator
JP4777340B2 (en) * 2004-04-19 2011-09-21 ザ プロクター アンド ギャンブル カンパニー Disposable absorbent article having a figure showing wetness

Similar Documents

Publication Publication Date Title
US4477308A (en) Heteroepitaxy of multiconstituent material by means of a _template layer
JPS6020509A (en) Liquid phase epitaxial growth method
JP2687445B2 (en) Heteroepitaxial growth method
GB2045639A (en) Process for the production of epitaxial layers of semiconductor material on monocrystalline substrates
JPH01144620A (en) Semiconductor growth device
JP2696928B2 (en) Heteroepitaxial growth method
JPS61198789A (en) Continuous manufacture of optical semiconductor element
JPH03256324A (en) Manufacture of semiconductor crystalline substrate
JP2804959B2 (en) Method for epitaxial growth of Ш-V compound semiconductor
JPH0684796A (en) Method for growing semiconductor crystal
JP3151277B2 (en) Liquid phase epitaxial growth method
JPS63190795A (en) Liquid phase epitaxy
JPS59123221A (en) Semiconductor crystal growth method
JPS63156337A (en) Manufacture of semiconductor device
JPS63281420A (en) Manufacture of compound semiconductor substrate
JPS5834929B2 (en) Hand-painted Thai Hakumakuexousou Seichiyouhouhouhououoyobi Souchi
JPS63256599A (en) Gaalas epitaxial wafer and its production
JPH04100217A (en) Semiconductor device
JPS61101496A (en) Crystal growth process
JPS626336B2 (en)
JPH0114199B2 (en)
JPH0457340A (en) Manufacture of semiconductor substrate
JPS63151698A (en) Method for liquid epitaxy
JPH0210799B2 (en)
JPH0687459B2 (en) Vapor phase growth equipment