JPS5834929B2 - Hand-painted Thai Hakumakuexousou Seichiyouhouhouhououoyobi Souchi - Google Patents

Hand-painted Thai Hakumakuexousou Seichiyouhouhouhououoyobi Souchi

Info

Publication number
JPS5834929B2
JPS5834929B2 JP50084862A JP8486275A JPS5834929B2 JP S5834929 B2 JPS5834929 B2 JP S5834929B2 JP 50084862 A JP50084862 A JP 50084862A JP 8486275 A JP8486275 A JP 8486275A JP S5834929 B2 JPS5834929 B2 JP S5834929B2
Authority
JP
Japan
Prior art keywords
solution
gallium arsenide
crystal substrate
compound semiconductor
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50084862A
Other languages
Japanese (ja)
Other versions
JPS528770A (en
Inventor
徹 原
稔 三原
信行 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP50084862A priority Critical patent/JPS5834929B2/en
Publication of JPS528770A publication Critical patent/JPS528770A/en
Publication of JPS5834929B2 publication Critical patent/JPS5834929B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はI−V族化合物半導体の液相成長方法及びその
製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for liquid phase growth of a group IV compound semiconductor and an apparatus for producing the same.

ガリウム砒素(以下GaAsと記す。Gallium arsenide (hereinafter referred to as GaAs).

)、ガリウムアルミニウム砒素(以下Ga 1−xA
1xAsと記す。
), gallium aluminum arsenide (hereinafter Ga 1-xA
It is written as 1xAs.

)などの薄い膜をエピタキシャル成長することは、半導
体レーザ、超格子負性抵抗素子、Ga A s F
ET、バラクタダイオードなどを作製するために必要で
あるが、現在までに充分な成長技術が確立されていない
) can be grown epitaxially on thin films such as semiconductor lasers, superlattice negative resistance elements, GaAsF
Although it is necessary for manufacturing ETs, varactor diodes, etc., no sufficient growth technology has been established to date.

特に厚さ1.0μ以下の薄い膜を液相成長法によって成
長することは特に困難とされている。
It is particularly difficult to grow a thin film with a thickness of 1.0 μm or less by liquid phase growth.

従来用いられている液相成長法の概要を以下に述べる。An overview of conventionally used liquid phase growth methods is described below.

第1図は従来多く用いられている液相成長装置のボート
の構造の一例である。
FIG. 1 shows an example of the structure of a boat in a conventional liquid phase growth apparatus.

ここで1および2はグラファイトボートで、1はウェー
ハ保持ボート、2はガリウム溶液だめである。
Here, 1 and 2 are graphite boats, 1 is a wafer holding boat, and 2 is a gallium solution reservoir.

3はG a A s単結晶基板、4はガリウム溶液、5
はGaAs ソースである。
3 is a GaAs single crystal substrate, 4 is a gallium solution, 5 is
is a GaAs source.

このボートを800℃の均熱に保たれた反応管内で水素
キャリアガス中で成長を行なう。
Growth is carried out in a hydrogen carrier gas in a reaction tube maintained at a constant temperature of 800° C. in this boat.

詳細に述べると、温度は830℃でGa A sソース
5(こよって飽和したガリウム砒素溶液4を800°C
まで降温し30分以上保ったのら、ガリウム砒素溶液4
を結晶基板3と接触させ結晶基板3上(こガリウム砒素
溶液4を停止させた状態で直ちに系を2℃/分の冷却速
度で冷却する。
In detail, the temperature was 830°C and the GaAs source 5 (thus the saturated gallium arsenide solution 4 was heated to 800°C).
After lowering the temperature to 30 minutes or more, add gallium arsenide solution
is brought into contact with the crystal substrate 3, and the system is immediately cooled at a cooling rate of 2° C./min while the gallium arsenide solution 4 is stopped.

780℃に温度が到達した際ウェーハ保持ボート1をス
ライドし、ガリウム砒素溶液4と結晶基板3を離すと成
長は停止する。
When the temperature reaches 780° C., the wafer holding boat 1 is slid to separate the gallium arsenide solution 4 and the crystal substrate 3, and the growth is stopped.

この様な方法によって成長じたGaAsエピタキシャル
膜は表面に波状の凹凸が見られるばかりでなく成長膜の
膜厚、不純物の制御性、再現性が悪く、特に1μ以下の
膜厚の制御性は悪く、設定値の±100%以上の誤差を
見込まねばならない等の問題点があった。
GaAs epitaxial films grown by this method not only have wavy irregularities on the surface, but also have poor controllability and reproducibility of the film thickness, impurities, and especially poor controllability for film thicknesses of 1 μm or less. There were problems such as having to allow for an error of ±100% or more of the set value.

本発明はかかる問題点を解決し、液相成長法によって0
.1μまたは0.1μ以下の薄いエピタキシャル膜を再
現性よく成長する方法及びその製造装置を提供すること
を目的とする。
The present invention solves these problems and uses a liquid phase growth method to
.. It is an object of the present invention to provide a method for growing a thin epitaxial film of 1μ or 0.1μ or less with good reproducibility, and an apparatus for manufacturing the same.

第2図aに本発明に係る液相成長用グラファイトボート
の構造を示す。
FIG. 2a shows the structure of a graphite boat for liquid phase growth according to the present invention.

ここで1はウェーハ保持ボート、2はガリウム溶液だめ
、3は結晶基板、4はガリウム砒素溶液であり、6はソ
ース用ガリウム砒素結晶である。
Here, 1 is a wafer holding boat, 2 is a gallium solution reservoir, 3 is a crystal substrate, 4 is a gallium arsenide solution, and 6 is a gallium arsenide crystal for a source.

本発明の最大の特徴は、ガリウム砒素溶液4を従来法の
如く結晶基板3上に停止させることなく、連続的に移動
させながら結晶基板3上に薄いエピタキシャル層を形成
するものである。
The most important feature of the present invention is that a thin epitaxial layer is formed on the crystal substrate 3 by continuously moving the gallium arsenide solution 4 without stopping it on the crystal substrate 3 as in the conventional method.

第2図aの状態で800℃の均熱に保たれた電気炉内で
反応管に水素ガスを流しながらガリウム溶液の上にGa
Asソースを置き溶融させてガリウム砒素溶液4をつく
る。
In the state shown in Figure 2a, hydrogen gas is poured onto the gallium solution in an electric furnace maintained at 800°C, and hydrogen gas is poured into the reaction tube.
A gallium arsenide solution 4 is prepared by placing an As source and melting it.

この場合ガリウム溶液のうえに置<GaAsの量は80
0℃における溶解度より5〜b ればその量はあまり正確である必要はない。
In this case, the amount of GaAs is 80
If the solubility at 0°C is 5~b, the amount does not need to be very accurate.

次にガリウム溶液だめ2をスライドさせ、ガリウム砒素
溶液4とソース用ガリウム砒素結晶6を800°Cにお
いて接触させる(第2図b)。
Next, the gallium solution reservoir 2 is slid to bring the gallium arsenide solution 4 into contact with the source gallium arsenide crystal 6 at 800°C (FIG. 2b).

この接触によりガリウム砒素溶液4の中にガリウム砒素
が少量とけこみ、ガリウム砒素溶液4は800℃におけ
る飽和溶液となる。
Due to this contact, a small amount of gallium arsenide dissolves into the gallium arsenide solution 4, and the gallium arsenide solution 4 becomes a saturated solution at 800°C.

次に再びガリウム溶液だめ2を移動し、第2図Cのよう
にガリウム砒素溶液4を結晶基板3とソース用ガリウム
砒素結晶6の中間に移動させる。
Next, the gallium solution reservoir 2 is moved again, and the gallium arsenide solution 4 is moved between the crystal substrate 3 and the source gallium arsenide crystal 6 as shown in FIG. 2C.

次にこの系の温度をTo=800℃から6°C/分の急
速な冷却温度で冷却し、時間t。
The temperature of this system was then cooled from To=800°C with a rapid cooling temperature of 6°C/min for a time t.

時に温度T1=795℃とし、この温度で一定時間保つ
At the same time, the temperature T1 is set to 795°C, and this temperature is maintained for a certain period of time.

この操作によりガリウム砒素溶液4は、過冷却状態にな
りGaAsの析出のない過飽和溶液となる。
Through this operation, the gallium arsenide solution 4 becomes supercooled and becomes a supersaturated solution without precipitation of GaAs.

この過程は第3図に示す様な温度プログラムで行なわれ
る。
This process is carried out using a temperature program as shown in FIG.

時間T1において外部からの駆動装置によりガリウム溶
液だめ2を定められた速度で第2図Cに示す矢印の方向
に移動させる。
At time T1, the gallium solution reservoir 2 is moved at a predetermined speed in the direction of the arrow shown in FIG. 2C by an external drive device.

ここで移動はガリウム砒素溶液4の過冷却状態をくずさ
ない様、振動を与えずスムーズに行なう。
The movement is carried out smoothly without vibration so as not to destroy the supercooled state of the gallium arsenide solution 4.

移動速度は所望のエピタキシャル膜厚によって決まるが
、必らずしも定速とは限らない。
The moving speed is determined by the desired epitaxial film thickness, but is not necessarily constant.

この移動により第2図dに示す様にガリウム砒素溶液4
は次第に結晶基板3に接触する様になりガリウム砒素溶
液4が第2図eの如く結晶基板3上を通過した時点で成
長は停止する。
As a result of this movement, the gallium arsenide solution 4
gradually comes into contact with the crystal substrate 3, and the growth stops when the gallium arsenide solution 4 passes over the crystal substrate 3 as shown in FIG. 2e.

この時、ガリウム砒素溶液4の長さlと駆動速度Vにつ
いてはl/v<30秒の関係を満足するように、ガリウ
ム砒素溶液4の長さと駆動速度を選べば、均二性の良い
エピタキシャル膜が得られる。
At this time, if the length l of the gallium arsenide solution 4 and the driving speed V satisfy the relationship l/v<30 seconds, the epitaxial layer with good uniformity can be obtained. A membrane is obtained.

従がってガリウム砒素溶液4の長さは従来法の如く結晶
基板3の寸法より大きくする必要は必らずしもなく、む
しろガリウム砒素溶液4の長さを小さくした方が、駆動
速度が遅くてよいから振動等による過飽和状態を乱す要
因が軽減されるのでより優れている。
Therefore, the length of the gallium arsenide solution 4 does not necessarily need to be larger than the dimension of the crystal substrate 3 as in the conventional method, but rather the driving speed can be increased by making the length of the gallium arsenide solution 4 smaller. It is better because it is slower and the factors that disturb the supersaturation state such as vibrations are reduced.

本発明は表面状態の良いエピタキシャル薄膜の成長が可
能で、膜厚を移動速度で制御するので薄い膜を制御性、
再現性良く成長できる利点がある。
The present invention enables the growth of epitaxial thin films with good surface conditions, and since the film thickness is controlled by the moving speed, thin films can be easily grown.
It has the advantage of being able to grow with good reproducibility.

以上は一枚の結晶基板3の場合(こついて述べたが連続
的に複数枚の結晶基板を処理することも可能で、その場
合は第4図に示す様なグラファイトボートを用いる。
The above is for the case of one crystal substrate 3 (although I have mentioned this in detail, it is also possible to process a plurality of crystal substrates continuously, in which case a graphite boat as shown in FIG. 4 is used).

ここで3−1 、3−2 、・・・・・・・・・・・・
3nは結晶基板である。
Here 3-1, 3-2,...
3n is a crystal substrate.

この方法によると基板の数は20枚まで可能である。According to this method, the number of substrates can be up to 20.

この場合ガリウム溶液だめ2の駆動速度は一定速度でも
充分均一なエピタキシャル層が得られるが、さらに精度
を上げるためには駆動速度Vは、最初に接触するウェー
ハからの距離Xの関数として v=Kx ’(Kは定数) の様に選ぶとよい。
In this case, a sufficiently uniform epitaxial layer can be obtained even if the driving speed of the gallium solution reservoir 2 is constant, but in order to further improve the accuracy, the driving speed V should be set as a function of the distance X from the first wafer that comes into contact with v=Kx '(K is a constant).

また第5図に示す様に結晶基板間の距離をガリウム砒素
溶液4の幅よりも大きくした構造のグラファイトボート
を使用し、最初の基板にエビを成長後、結晶基板間領域
Tにガリウム砒素溶液4を停止し2分間保持し再び成長
を行なうことにより、連続的な処理が可能である。
In addition, as shown in Figure 5, a graphite boat with a structure in which the distance between the crystal substrates is larger than the width of the gallium arsenide solution 4 is used, and after growing shrimp on the first substrate, the gallium arsenide solution is placed in the region T between the crystal substrates. Continuous processing is possible by stopping step 4, holding it for 2 minutes, and growing again.

連続的に複数枚の結晶基板を処理する場合、第6図に示
す様にウェーハ保持ボート1を回転させることにより可
能である。
If a plurality of crystal substrates are to be processed continuously, this can be done by rotating the wafer holding boat 1 as shown in FIG.

第6図aは装置の主要部の平面図、第6図すはその断面
図を示す。
FIG. 6a shows a plan view of the main part of the device, and FIG. 6a shows a sectional view thereof.

第6図a及びbにおいて、1はウェーハ保持ボートであ
り軸I−1’を中心に回転する機能を備えている。
In FIGS. 6a and 6b, 1 is a wafer holding boat which has a function of rotating around an axis I-1'.

このウェーハ保持ボート1には10枚のウェーハ保持用
凹部8−1.〜8−10が形成されている。
This wafer holding boat 1 has ten wafer holding recesses 8-1. ~8-10 are formed.

2はガリウム溶液だめであり、軸n−n’を中心にして
回転する。
2 is a gallium solution reservoir, which rotates around axis n-n'.

この溶液だめ2には溶液用凹部9−1〜9−4が4個所
設けである。
This solution reservoir 2 is provided with four solution recesses 9-1 to 9-4.

溶液用凹部9〜1〜9−4の断面は第6図aに示す様な
回転双曲面状であり、角柱に比して膜厚の均−性及び表
面状態がよくなる。
The cross section of each of the solution recesses 9-1 to 9-4 is a hyperboloid of revolution as shown in FIG. 6a, and the uniformity of the film thickness and surface condition are better than that of a prism.

溶液用凹部9−1がウェーハ保持用凹部8−2に接して
いる時、溶液用凹部9−3は、ソース用ガリウム砒素結
晶6と液接触し飽和溶液をつくる。
When the solution recess 9-1 is in contact with the wafer holding recess 8-2, the solution recess 9-3 comes into liquid contact with the source gallium arsenide crystal 6 to create a saturated solution.

6′は交換用のソース用ガリウム砒素結晶で保持ボート
1′をl−111’軸を中心に回転して交換を行なう。
Reference numeral 6' denotes a gallium arsenide crystal for a source for replacement, which is replaced by rotating the holding boat 1' around the l-111' axis.

本装置の操作手順を詳細に述べる。The operating procedure of this device will be described in detail.

ウェーハ保持ボート1のウェーハ保持用凹部8−1〜8
−10に対応して結晶基板3−1〜3−10が連続的に
並べられる。
Wafer holding recesses 8-1 to 8 of wafer holding boat 1
-10, crystal substrates 3-1 to 3-10 are successively arranged.

第6図aで破線で囲まれた領域Aは加熱され溶液用凹部
9−1〜94に蓄わえられたガリウム砒素溶液4−1〜
4−4のうちガリウム砒素溶液4−1及び4−3は、8
00℃、4−2.4−4は795°Cに保たれる。
The region A surrounded by the broken line in FIG.
Among 4-4, gallium arsenide solutions 4-1 and 4-3 are 8
00°C, 4-2.4-4 is kept at 795°C.

また結晶基板3−1〜3−10は795℃の均熱を正確
に保っている。
Further, the crystal substrates 3-1 to 3-10 accurately maintain uniform heating at 795°C.

加熱方法はホットプレイド方式、全体加熱方式のいずれ
でもよい。
The heating method may be either a hot-play method or an entire heating method.

ウェーハ保持ボート1を回転軸I−I’を中心とし毎分
0.4回転の速度で連続的に回転することにより、溶液
4−1と接した部分で約0.15μのエピタキシャル膜
が連続的に成長する。
By continuously rotating the wafer holding boat 1 around the rotation axis I-I' at a speed of 0.4 revolutions per minute, an epitaxial film of approximately 0.15 μm is continuously formed in the area in contact with the solution 4-1. grow to.

ここで結晶基板3−7付近はエアカーテンを通してはゾ
室温に保たれているので、成長じた結晶は直ちに取出さ
れ新らしい結晶に置き換えられる。
Here, since the area near the crystal substrate 3-7 is kept at room temperature through the air curtain, the grown crystal is immediately taken out and replaced with a new crystal.

ここでガリウム砒素溶液4−2はすでに使用した溶液で
、砒素が飽和量より少なくなっており、ガリウム砒素溶
液4−3はソース用ガリウム砒素結晶6と接触し800
°Cにおける飽和溶液を形成している。
Here, the gallium arsenide solution 4-2 is a solution that has already been used, and the amount of arsenic is less than the saturation amount, and the gallium arsenide solution 4-3 is in contact with the gallium arsenide crystal 6 for the source,
Forming a saturated solution at °C.

またガリウム砒素溶液4−4は、過飽和溶液で次の成長
に使用される。
Further, the gallium arsenide solution 4-4 is a supersaturated solution and is used for the next growth.

このガリウム溶液だめ2は、ガリウム砒素溶液中の砒素
が不足して来た時、間欠的にn−n’軸を中心として9
0度回転することにより一方でエピタキシャル成長を行
ないながら一方でガリウム砒素溶液の補充を行なうこと
ができ、常に理想的な過飽和溶液が得られ、大量生産を
容易ならしめるものである。
When arsenic in the gallium arsenide solution becomes insufficient, the gallium solution reservoir 2
By rotating by 0 degrees, it is possible to perform epitaxial growth on the one hand and replenish the gallium arsenide solution on the other hand, thereby always obtaining an ideal supersaturated solution and facilitating mass production.

次Oこ本発明の一実施例について述べる。Next, one embodiment of the present invention will be described.

この実施例は第4図に示した構造の場合(こついてであ
る。
This example is based on the structure shown in FIG.

すなわち結晶基板3として20朋×207ft7IL1
厚さ250μの表面を研磨した。
In other words, the crystal substrate 3 is 20 mm x 207 ft7 IL1
The surface was polished to a thickness of 250μ.

クロム添加のG a A s半絶縁性単結晶を用い、ソ
ース用ガリウム砒素結晶6として20mm×20mm1
厚さ400μの無添加の単結晶を用いる。
Using a chromium-added GaAs semi-insulating single crystal, the gallium arsenide crystal 6 for the source has a size of 20 mm x 20 mm1.
An additive-free single crystal with a thickness of 400 μm is used.

ガリウム2.2gと100■のGaAs多結晶を加えた
ものを800℃で溶融しガリウム砒素溶液4をつくるが
、この場合ガリウム砒素溶液4は薄いので表面張力のた
め、結晶基板3とのぬれ′力S悪くなる心配があるので
、この段階でガリウム砒素溶液4の表面にグラファイト
または石英等のブロックを置く。
A gallium arsenide solution 4 is prepared by melting 2.2 g of gallium and 100 μm of GaAs polycrystal at 800°C, but in this case, the gallium arsenide solution 4 is thin and does not wet the crystal substrate 3 due to surface tension. Since there is a concern that the force S may deteriorate, a block of graphite or quartz is placed on the surface of the gallium arsenide solution 4 at this stage.

第3図に示した温度プログラムにおいて、温度Toとし
て800℃、成長を行なう温度T1として795℃を用
いた。
In the temperature program shown in FIG. 3, 800° C. was used as the temperature To, and 795° C. was used as the growth temperature T1.

また冷却速度は5℃/分で行ないt。1.0分、t1=
2.0分とし、tl−io=l、Q分経過後ガリウム溶
液だめ2を20mm/秒の駆動速度で、結晶基板3上を
移動させ0.2μ厚のGaAsエピタキシャル膜が成長
した。
The cooling rate was 5°C/min. 1.0 minutes, t1=
After 2.0 minutes, tl-io=l, and Q minutes, the gallium solution reservoir 2 was moved over the crystal substrate 3 at a driving speed of 20 mm/sec, and a GaAs epitaxial film with a thickness of 0.2 μm was grown.

この膜は表面が理想的な鏡面状態で凹凸の高低差は50
0人より小さい。
This film has an ideal mirror surface with a height difference of 50
Less than 0 people.

この時のガリウム砒素溶液の長さは、10間のものを使
用した。
The length of the gallium arsenide solution used at this time was 10 minutes.

駆動速度を更に高め40mg/秒の場合エピタキシャル
膜厚は0.1μとなり表面状態は良い。
When the driving speed was further increased to 40 mg/sec, the epitaxial film thickness was 0.1 μm and the surface condition was good.

しかしながら駆動速度を極端Gこ下げ、10mrn7秒
以下で成長を行なうと成長した結晶の表面は凹凸が生じ
易くなった。
However, when the driving speed was extremely reduced to G and the growth was performed at 10 mrn for 7 seconds or less, the surface of the grown crystal was likely to have irregularities.

本発明はGaAsのみならず、Ga1−xAlxAs及
びAl、In GaとP、As、Sb との化合物に
関しても適用が可能である。
The present invention is applicable not only to GaAs but also to compounds of Ga1-xAlxAs and Al, InGa, and P, As, and Sb.

以上述べてきた様に、本発明は過冷却のガリウム砒素溶
解4を結晶基板3上を連続的に移動させることにより薄
いエピタキシャル膜を形成する方法及びその装置を提供
するものであり、表面状態の良いエピタキシャル膜が、
制御性、再現性よく形成される利点と同時に量産性に優
れている特徴がある。
As described above, the present invention provides a method and an apparatus for forming a thin epitaxial film by continuously moving supercooled gallium arsenide melt 4 over a crystal substrate 3, and the present invention provides a method and an apparatus for forming a thin epitaxial film by continuously moving supercooled gallium arsenide melt 4 over a crystal substrate 3. A good epitaxial film is
It has the advantage of being able to be formed with good controllability and reproducibility, as well as being excellent in mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来用いられている液相薄膜成長装置のボート
の断面図、第2図a、b、c、d、eは本発明の液相薄
膜成長方法を順に示す工程図、第3図は本発明に使用す
る温度プログラム、第4図及び第5図は本発明に係る液
相薄膜成長装置のボート部の断面図、第6図a、bはそ
れぞれ本発明に係る他の液相薄膜成長装置の主要部の平
面図とその断面図である。 1・・・・・・ウェーハ保持ボー1−12・・・・・・
ガリウム溶液だめ、3,3−1〜3−10・・・・・・
結晶基板、4・・・・・・ガリウム砒素溶液、6,6’
・・・・・・ソース用ガリウム砒素結晶、9−1〜9−
4・・・・・・溶液用凹部。
FIG. 1 is a cross-sectional view of a boat of a conventional liquid-phase thin film growth apparatus, FIG. 2 a, b, c, d, and e are process diagrams sequentially showing the liquid-phase thin film growth method of the present invention, and FIG. 3 4 and 5 are cross-sectional views of the boat part of the liquid phase thin film growth apparatus according to the present invention, and FIGS. 6 a and 6 b are diagrams showing other liquid phase thin films according to the present invention, respectively. FIG. 2 is a plan view and a sectional view of the main parts of the growth apparatus. 1...Wafer holding board 1-12...
Gallium solution reservoir, 3,3-1 to 3-10...
Crystal substrate, 4...Gallium arsenide solution, 6,6'
...Gallium arsenide crystal for source, 9-1 to 9-
4... Concavity for solution.

Claims (1)

【特許請求の範囲】 1 溶解度未満の化合物半導体溶液と化合物半導体源と
を接触して飽和溶液を形成する工程と、かかる飽和溶液
を過冷却させる工程と、前記飽和溶液を結晶基板上に停
止させることなく移動させながら成長を行う工程とから
なる半導体薄膜液相成長方法。 2 結晶基板と化合物半導体源とを保持する凹部を有し
た保持用ボートと、化合物半導体溶液を保持する溶液だ
めと、前記溶液だめを前記保持用ボート上で移動させる
手段と、前記溶液だめ中の化合物半導体溶液が化合物半
導体源に接触後結晶基板に接触する前に化合物半導体溶
液の温度を冷却し一定時間保持する手段と、前記溶液だ
め中の溶液を前記結晶基板上を速度制御自在にかつ停止
させることなく移動させる手段とを具備した半導体薄膜
液相成長装置。
[Claims] 1. A step of contacting a compound semiconductor solution with a lower solubility with a compound semiconductor source to form a saturated solution, supercooling the saturated solution, and stopping the saturated solution on a crystal substrate. A semiconductor thin film liquid phase growth method consisting of a step of growing while moving the semiconductor thin film. 2. A holding boat having a recess for holding a crystal substrate and a compound semiconductor source, a solution reservoir for holding a compound semiconductor solution, means for moving said solution reservoir on said holding boat, and a means for moving said solution reservoir on said solution reservoir. means for cooling and maintaining the temperature of the compound semiconductor solution for a certain period of time after the compound semiconductor solution contacts the compound semiconductor source and before the compound semiconductor solution contacts the crystal substrate; and a means for controlling the speed of the solution in the solution reservoir over the crystal substrate and stopping the solution. A semiconductor thin film liquid phase growth apparatus comprising means for moving without moving the semiconductor thin film.
JP50084862A 1975-07-09 1975-07-09 Hand-painted Thai Hakumakuexousou Seichiyouhouhouhououoyobi Souchi Expired JPS5834929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50084862A JPS5834929B2 (en) 1975-07-09 1975-07-09 Hand-painted Thai Hakumakuexousou Seichiyouhouhouhououoyobi Souchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50084862A JPS5834929B2 (en) 1975-07-09 1975-07-09 Hand-painted Thai Hakumakuexousou Seichiyouhouhouhououoyobi Souchi

Publications (2)

Publication Number Publication Date
JPS528770A JPS528770A (en) 1977-01-22
JPS5834929B2 true JPS5834929B2 (en) 1983-07-29

Family

ID=13842607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50084862A Expired JPS5834929B2 (en) 1975-07-09 1975-07-09 Hand-painted Thai Hakumakuexousou Seichiyouhouhouhououoyobi Souchi

Country Status (1)

Country Link
JP (1) JPS5834929B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932581A (en) * 1972-07-22 1974-03-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932581A (en) * 1972-07-22 1974-03-25

Also Published As

Publication number Publication date
JPS528770A (en) 1977-01-22

Similar Documents

Publication Publication Date Title
US4052252A (en) Liquid phase epitaxial growth with interfacial temperature difference
JPS5834929B2 (en) Hand-painted Thai Hakumakuexousou Seichiyouhouhouhououoyobi Souchi
JPS6235260B2 (en)
JP4211897B2 (en) Liquid phase epitaxial growth method
JPS5853826A (en) Liquid epitaxial growing method
JPS6020509A (en) Liquid phase epitaxial growth method
JPS63215589A (en) Device for liquid-phase epitaxial growth
JPS589794B2 (en) Semiconductor liquid phase multilayer thin film growth method and growth equipment
JP3151277B2 (en) Liquid phase epitaxial growth method
JPH01149418A (en) Substrate for electronic element and manufacture thereof
JPS63205912A (en) Manufacture of semiconductor
JPH0547683A (en) Manufacture of fused liquid for liquid-phase epitaxy
JP2508726B2 (en) Liquid phase epitaxial growth method
JPH0697098A (en) Growing method for semiconductor crystal
JPS61116829A (en) Manufacture of epitaxial layer
JPH08274038A (en) Liquid phase epitaxial growth method and growth device for the method
JPH0687459B2 (en) Vapor phase growth equipment
JPH01294336A (en) Manufacture of electron emitting element
JPS6311596A (en) Liquid phase epitaxy for multiple element compound semiconductor by two-phase melt method
JPS60215593A (en) Method for growing single crystal film
JPH029444B2 (en)
JPS5961126A (en) Method for liquid-phase epitaxial growth
JPS622453B2 (en)
JPS6024079B2 (en) Liquid phase epitaxial growth equipment
JPS62176985A (en) Liquid phase epitaxy