JPS61220321A - Selective vapor growth method - Google Patents
Selective vapor growth methodInfo
- Publication number
- JPS61220321A JPS61220321A JP6147485A JP6147485A JPS61220321A JP S61220321 A JPS61220321 A JP S61220321A JP 6147485 A JP6147485 A JP 6147485A JP 6147485 A JP6147485 A JP 6147485A JP S61220321 A JPS61220321 A JP S61220321A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- mask
- crystal growth
- raw material
- selective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02395—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、気相成長方法に係わり、特に化合物半導体結
晶を選択的に成長する選択気相成長方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a vapor phase growth method, and particularly to a selective vapor phase growth method for selectively growing compound semiconductor crystals.
化合物半導体基板上に選択的にエピタキシャル成長を行
う技術は、半導体レーザ、光導波路といった半導体光デ
バイス、及びそれらを集積化した集積化光デバイスを製
造する上で極めて重要な技術である。特に、大面積基板
上に均質な結晶成長の実現可能な気相成長方法において
選択的な結晶成長を行う技術が、量産性に優れる点で有
用である。BACKGROUND ART A technique for selectively performing epitaxial growth on a compound semiconductor substrate is an extremely important technique for manufacturing semiconductor optical devices such as semiconductor lasers and optical waveguides, and integrated optical devices that integrate these devices. In particular, a technique for selectively growing crystals in a vapor phase growth method that can realize homogeneous crystal growth on a large-area substrate is useful because it is excellent in mass productivity.
従来、気相成長方法における選択結晶成長法としては、
まず第3図(a)に示す如く、半導°体基板31上にS
iO2,SiN等の誘電体[132を形成してマスクと
し、結晶成長を行う部分のみ誘電体膜マスクを選択除去
して窓33を開ける。その後、半導体基板全面に結晶成
長を行い、M3図(b)に示す如く半導体結晶34を成
長形成する。Traditionally, the selective crystal growth method in the vapor phase growth method is
First, as shown in FIG. 3(a), S is placed on the semiconductor substrate 31.
A dielectric film 132 such as iO2 or SiN is formed as a mask, and a window 33 is opened by selectively removing the dielectric film mask only in the area where crystal growth is to be performed. Thereafter, crystal growth is performed on the entire surface of the semiconductor substrate, and a semiconductor crystal 34 is grown as shown in FIG. M3 (b).
このとき、誘電体膜マスク32上にも半導体結晶層35
が成長する。次いで、誘電体膜マスク32上に成長した
結晶35及びyh電体躾マスク32をエツチング除去す
るという方法が行われてきた。At this time, the semiconductor crystal layer 35 is also formed on the dielectric film mask 32.
grows. Next, a method has been used in which the crystal 35 grown on the dielectric film mask 32 and the yh electric mask 32 are removed by etching.
しかしながら、この種の方法にあっては次のような問題
があった。即ち、前記第3図(b)に示した如く結晶成
長の際に誘電体膜マスク32上にも半導体結晶35が成
長する。この部分は多結晶であるため、誘電体膜マスク
32の窓部の半導体基板31上にエピタキシャル成長し
た単結晶部分34よりもエツチング速度が大きいことを
利用して、これを選択除去している。しかし、この時本
来残されるべき単結晶部分34もエツチングされてしま
うと云う欠点がある。However, this type of method has the following problems. That is, as shown in FIG. 3(b), the semiconductor crystal 35 also grows on the dielectric film mask 32 during crystal growth. Since this portion is polycrystalline, it is selectively removed by utilizing the fact that the etching rate is higher than that of the single crystal portion 34 epitaxially grown on the semiconductor substrate 31 in the window portion of the dielectric film mask 32. However, at this time, there is a drawback that the single crystal portion 34 that should originally be left is also etched away.
また、一般にマスク部と窓部との境界部分では、所謂異
常成長が起こる。第3図(b)に示す如く、この異常成
長部分36は、通常厚さ方向へのせり上がりと、マスク
部分に向かってのオーバーハングという形で現われる。Furthermore, so-called abnormal growth generally occurs at the boundary between the mask portion and the window portion. As shown in FIG. 3(b), this abnormally grown portion 36 usually appears in the form of a rise in the thickness direction and an overhang toward the mask portion.
このよ゛うな異常成長部分36が存在すると、選択結晶
成長後のフォトリソグラフィ一工程や、この境界部分を
横切って表面電極や配線を形成することが極めて困難に
なり、素子化プロセスに大きな制約を受ける。さらに・
選択成長マスクとして用いた誘電体膜は、結晶成長に伴
う高部熱処理効果によって緻密化したり、結晶成長の原
料である反応性ガスと反応して膜質が変化する。このた
め、選択結晶成長後のエツチング除去が困難となる場合
があり、これも従来方法の欠点であった。If such an abnormally grown portion 36 exists, it becomes extremely difficult to perform a photolithography step after selective crystal growth or to form surface electrodes and wiring across this boundary portion, which greatly restricts the device fabrication process. receive. moreover·
The dielectric film used as a selective growth mask becomes densified due to the heat treatment effect in the upper part associated with crystal growth, or changes in film quality due to reaction with reactive gas that is a raw material for crystal growth. For this reason, etching removal after selective crystal growth may be difficult, which is also a drawback of the conventional method.
本発明は上記事情を考慮してなされたもので、その目的
とするところは、結晶成長を行うべき半導体基板上に誘
電体膜マスクを形成することなく選択結晶成長を行うこ
とができ、マスク上の結晶成長、マスク・エツジ部の異
常成長及びマスクの変質といった従来のマスクを用いた
選択結晶成長方法の欠点の全くない、良好な選択結晶成
長を実現し得る選択気相成長方法を提供することにある
。The present invention has been made in consideration of the above circumstances, and an object of the present invention is to enable selective crystal growth without forming a dielectric film mask on a semiconductor substrate on which crystal growth is to be performed; To provide a selective vapor phase growth method capable of realizing good selective crystal growth without any of the drawbacks of the conventional selective crystal growth method using a mask, such as crystal growth, abnormal growth at mask edges, and deterioration of the mask. It is in.
〔発明の概要〕。[Summary of the invention].
本発明の骨子は、気相成長原料としてマスクをバターニ
ングした固体原料を用い、これを選択結晶成長を行おう
とする基板と密着・対向させて配置し、後者の方が濃度
が低くなるように濃度勾配を設−けることにより、基板
側には選択結晶成長マスクを形成することなく選択結晶
成長を可能にしたことにある。The gist of the present invention is to use a solid raw material obtained by patterning a mask as a vapor phase growth raw material, and to place this in close contact with and facing the substrate on which selective crystal growth is to be performed, so that the latter has a lower concentration. By providing a concentration gradient, selective crystal growth is made possible without forming a selective crystal growth mask on the substrate side.
半導体の気相成長方法として、平坦な表面を有する固体
原料と数[#]径程度距離を隔てて基板を対向させて配
置し、キャリアとなる反応性ガスを流しながら、基板側
が低温になるように濃度勾配を形成して基板上に結晶成
長を行なう方法が、近接法として知られている。本発明
者等は、固体原料表面と基板表面を鏡面研暦し、両者を
密着接触させて基板側が低温になるように濃度勾配をか
けると、特に反応性キャリアガスを流さなくても基板上
に結晶成長が起こることを見い出した。さらに、固体原
料表面上に誘電体膜等のマスクを形成すると、マスク部
分と対向した基板上には結晶成長が起こらず、マスクさ
れていない部分と対向した基板上にのみ選択的に結晶成
長が起こることを見出した。In the vapor phase growth method for semiconductors, a solid source material with a flat surface is placed facing a substrate at a distance of several [#] diameters, and while a reactive gas serving as a carrier is flowing, the substrate side is kept at a low temperature. A method of growing crystals on a substrate by forming a concentration gradient is known as the proximity method. The present inventors have discovered that by mirror-polishing the surface of the solid raw material and the surface of the substrate, bringing them into close contact, and applying a concentration gradient so that the substrate side is at a lower temperature, the surface of the solid material can be polished onto the substrate without flowing a particularly reactive carrier gas. It was discovered that crystal growth occurs. Furthermore, when a mask such as a dielectric film is formed on the surface of the solid raw material, crystal growth does not occur on the substrate facing the masked portion, and crystal growth occurs selectively only on the substrate facing the unmasked portion. I found out what happens.
本発明はこのような点に着目し、半導体基板上に半導体
結晶を選択的に成長する選択気相成長方法において、固
体原料表面上に誘導体膜等のマスクを選択的に形成し、
これを半導体基板表面と密着対向させて配置し、両者の
間に半導体基板側が低温となるように濃度勾配を設けて
熱処理するようにした方法である。The present invention focuses on such points, and in a selective vapor phase growth method for selectively growing semiconductor crystals on a semiconductor substrate, selectively forming a mask such as a dielectric film on the surface of a solid raw material,
In this method, this is placed in close contact with the surface of a semiconductor substrate, and a concentration gradient is provided between the two so that the semiconductor substrate side is at a lower temperature, and heat treatment is performed.
本発明によれば、結晶成長を行うべき半導体基板上に誘
電体膜等のマスクを形成することなく選択結晶成長が可
能になるため、マスク上の結晶成長、マスク・エツジ部
の異常成長及びマスクの変質といった問題が全く生じな
い。このため、選択結晶成長を含む素子化プロセスが容
易・簡略となり、プロセスの歩留りが向上する。この結
果、選択結晶成長を必要とする半導体素子のコスト低減
に有効である。また、マスク・エツジ部の異常成長が起
きないことから、この部分を横切っての電極配線が可能
となるため、デバイス設計の自由度を広げることができ
、デバイス特性の向上にも極めて有効である。According to the present invention, selective crystal growth is possible without forming a mask such as a dielectric film on a semiconductor substrate on which crystal growth is to be performed. There are no problems such as deterioration of quality. Therefore, the device fabrication process including selective crystal growth becomes easy and simple, and the yield of the process is improved. As a result, it is effective in reducing the cost of semiconductor devices that require selective crystal growth. In addition, since abnormal growth does not occur at the mask edge, it is possible to wire electrodes across this area, which increases the degree of freedom in device design and is extremely effective in improving device characteristics. .
以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.
第1図(a)〜(d)は本発明の一実施例に係わる選択
気相成長方法を説明するためのもので、光導波路製造工
程を示す断面図である。まず、第1図(a)に示す如く
鏡面研磨したGaAS単結晶原料(固体原料)11の表
面上に、SiN!からなるマスク12をプラズマCvD
法により800[人]形成した後、フォトリソグラフィ
ー法によって、幅10[μTrL]のストライブ状窓1
3を形成する。FIGS. 1(a) to 1(d) are cross-sectional views showing an optical waveguide manufacturing process for explaining a selective vapor growth method according to an embodiment of the present invention. First, as shown in FIG. 1(a), SiN! A mask 12 consisting of
After forming 800 [μTrL] striped windows 1 by photolithography method, striped windows 1 with a width of 10 [μTrL] were formed.
form 3.
次いで、第1図(b)に示す如く、鏡面研磨したGaA
s単結晶基板(半導体基板)14上にG ao、a6A
j2o、ss A Sクラッド層15を3〔μ77
L]形成し、これを上記マスク12を形成した単結晶原
料11と密着して対向配置する。なお、クラッド層15
の形成は、平坦な表面の得やすい有機金属気相成長法(
MOCVD法)或いは分子線エピタキシー法(MBE法
)を用いるのが望ましい。Next, as shown in FIG. 1(b), mirror-polished GaA
Gao, a6A on s single crystal substrate (semiconductor substrate) 14
j2o, ss A S cladding layer 15 to 3 [μ77
L] is formed and placed in close contact with and facing the single crystal raw material 11 on which the mask 12 is formed. Note that the cladding layer 15
The formation of the metal-organic vapor phase epitaxy method (
It is desirable to use the MOCVD method (MOCVD method) or the molecular beam epitaxy method (MBE method).
次いで、上記のように密着対向して配置されたGaAS
原料11及びGaAS基板14を、第2図に示す如くグ
ラファイトホルダー20.21中に保持し、900 [
”C]の水素雰囲気中で2時間保持する。このとき、G
aAs基板14の濃度がGaAs原料11の濃度よりも
低くなるような濃度勾配を実現する。ここでは、2[℃
/α]とした。なお、基板14の保持濃度、保持時間及
び濃度勾配の大きさによって結晶成長速度を制御するこ
とができる。Next, as described above, GaAS are placed in close contact with each other.
The raw material 11 and the GaAS substrate 14 are held in a graphite holder 20, 21 as shown in FIG.
"C" is held in a hydrogen atmosphere for 2 hours. At this time, G
A concentration gradient is realized such that the concentration of the aAs substrate 14 is lower than the concentration of the GaAs raw material 11. Here, 2[℃
/α]. Note that the crystal growth rate can be controlled by the retention concentration of the substrate 14, the retention time, and the magnitude of the concentration gradient.
上記の熱処理により、第1図(C)に示す如く単結晶原
料11の一部が消費され、GaAS基板14上にGaA
S光導波路層16が選択的に成長された。即ち、GaA
S単結晶原料11の表面に形成したSiNマスク12の
パターンに対応して、GaAnASクラッド層15上に
層幅5上[μm]、高さ3[μm]のストライブ状のG
aAS光導波路16が形成された。このストライブ状光
導波路16の両側面には、従来の選択結晶成長方法に見
られるような異常成長はなく、光導波路として好ましい
形状であった。Through the above heat treatment, a part of the single crystal raw material 11 is consumed as shown in FIG.
An S optical waveguide layer 16 was selectively grown. That is, GaA
Corresponding to the pattern of the SiN mask 12 formed on the surface of the S single-crystal raw material 11, a striped G layer with a layer width of 5 [μm] and a height of 3 [μm] is formed on the GaAnAS cladding layer 15.
An aAS optical waveguide 16 was formed. On both sides of this striped optical waveguide 16, there was no abnormal growth as seen in conventional selective crystal growth methods, and the striped optical waveguide 16 had a favorable shape as an optical waveguide.
かくして本実施例方法によれば、GaAS基板14(実
際にはGaAβAsクラッド層15)上に1111体マ
スク等を形成することなく、GaAS光導波路1116
を選択的に成長させることができる。このため、マスク
上に結晶成長、マスク・エツジ部の異常成長及びマスク
の変質といった問題を招くことなく、良好な結晶成長を
行うことができる。また、誘電体膜マスクが基板14上
にないため、選択結晶成長後にマスクの変質が生じても
それを除去するプロセスの必要性はなく、先導波路製造
のプロセスが簡略になると同時に歩留りの向上をはかり
得る。Thus, according to the method of this embodiment, the GaAS optical waveguide 1116 can be formed without forming a 1111 mask or the like on the GaAS substrate 14 (actually, the GaAβAs cladding layer 15).
can be grown selectively. Therefore, good crystal growth can be performed without causing problems such as crystal growth on the mask, abnormal growth at the mask edge, and deterioration of the mask. In addition, since the dielectric film mask is not on the substrate 14, there is no need for a process to remove any deterioration of the mask that occurs after selective crystal growth, which simplifies the process of manufacturing the guided waveguide and improves yield. It can be measured.
なお、本発明は上述した実施例方法に限定されるもので
はない。例えば、結晶成長高温熱処理時の各種条件は、
成長すべき半導体層その他の仕様により適宜変更可能で
ある。この時の雰囲気は水素以外のガスであっても、真
空中であってもがまわない。また、用いる材料は、Ga
As/GaAnAs系に限るものでな(、InP/In
GaAsp系等■−v族化合物半導体、zns、zns
e等■−■族化合物半導体、その他の材料に適用するこ
とも可能である。さらに、結晶成長原料を組成の異なる
多層構造としてお(ことにより、多層構造の選択結晶成
長を行うことが可能である。Note that the present invention is not limited to the method of the embodiment described above. For example, various conditions during crystal growth high temperature heat treatment are as follows:
It can be changed as appropriate depending on the semiconductor layer to be grown and other specifications. The atmosphere at this time may be a gas other than hydrogen or a vacuum. In addition, the material used is Ga
It is not limited to the As/GaAnAs system (, InP/In
GaAsp type ■-v group compound semiconductor, zns, zns
It is also possible to apply to ■-■ group compound semiconductors such as e, and other materials. Furthermore, by forming the crystal growth raw material into a multilayer structure with different compositions, selective crystal growth of a multilayer structure can be performed.
また、固体原料の表面に形成するマスクはSiNに何等
限定されるものではなく、SiO2゜Affi20:+
等の誘電体を用いることができる。さらに、誘電体に限
らず、蒸気圧の十分低いもので、半導体基板や固体原料
を汚染しないものであれば用いることが可能である。そ
の他、本発明の要旨を逸脱しない範囲で、種々変形して
実施することができる。Furthermore, the mask formed on the surface of the solid raw material is not limited to SiN, but is SiO2゜Affi20:+
A dielectric material such as the following can be used. Furthermore, it is not limited to dielectric materials, and any material can be used as long as it has a sufficiently low vapor pressure and does not contaminate the semiconductor substrate or solid raw material. In addition, various modifications can be made without departing from the gist of the present invention.
第1図(a)〜(C)は本発明の一実施例に係わる選択
気相成長方法を説明するためのもので光導波m製造工程
を示す断面図、第2図は上記実施例方法に使用したグラ
ファイトホルダーの二側を示す断面図、第3図(a>(
b)は従来の選択気相成長方法を説明するための断面図
である。
11・・・GaAS単結晶原料(固体原料)、12・・
・SiN膜マスク、13・・・選択結晶成長窓、14・
G a A S基板、15 ・” G ao、as A
Qo、ss A Sクラッド層、16−G a A
s光導波路、20.21・・・グラフ7イト・ホルダー
、31・・・基板、32・・・誘電体膜マスク、33・
・・選択結晶成長窓、34・・・選択結晶成長層、35
・・・多結晶層、36・・・異常成長部分。
出願人代理人 弁理士 鈴江武彦
!A410FIGS. 1(a) to (C) are cross-sectional views showing the optical waveguide manufacturing process for explaining a selective vapor deposition method according to an embodiment of the present invention, and FIG. Cross-sectional view showing the two sides of the graphite holder used, Figure 3 (a>(
b) is a cross-sectional view for explaining a conventional selective vapor growth method. 11...GaAS single crystal raw material (solid raw material), 12...
・SiN film mask, 13... selective crystal growth window, 14.
G a A S board, 15 ・” G ao, as A
Qo, ss A S cladding layer, 16-G a A
s optical waveguide, 20. 21... graphite holder, 31... substrate, 32... dielectric film mask, 33.
...Selective crystal growth window, 34...Selective crystal growth layer, 35
...Polycrystalline layer, 36...Abnormal growth part. Applicant's representative Patent attorney Takehiko Suzue! A410
Claims (4)
上記固体原料をその表面を半導体基板表面と密着対向さ
せて配置する工程と、前記半導体基板が前記固体原料に
対して低温になるように濃度勾配を設けて熱処理する工
程とを含むことを特徴とする選択気相成長方法。(1) selectively forming a mask on the surface of the solid raw material;
The method includes the steps of arranging the solid raw material so that its surface closely faces the surface of the semiconductor substrate, and heat-treating the semiconductor substrate by providing a concentration gradient so that the temperature is lower than that of the solid raw material. Choose a vapor phase growth method.
る特許請求の範囲第1項記載の選択気相成長方法。(2) The selective vapor phase growth method according to claim 1, wherein the solid raw material has a multilayer structure.
ことを特徴とする特許請求の範囲第1項記載の選択気相
成長方法。(3) The selective vapor phase growth method according to claim 1, wherein the solid source material is a III-V group compound semiconductor.
ぞれ鏡面研磨されていることを特徴とする特許請求の範
囲第1項記載の選択気相成長方法。(4) The selective vapor phase growth method according to claim 1, wherein the opposing surfaces of the solid raw material and the semiconductor substrate are each mirror-polished.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6147485A JPS61220321A (en) | 1985-03-26 | 1985-03-26 | Selective vapor growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6147485A JPS61220321A (en) | 1985-03-26 | 1985-03-26 | Selective vapor growth method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61220321A true JPS61220321A (en) | 1986-09-30 |
Family
ID=13172091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6147485A Pending JPS61220321A (en) | 1985-03-26 | 1985-03-26 | Selective vapor growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61220321A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6481233A (en) * | 1987-09-22 | 1989-03-27 | Seiko Epson Corp | Selective growing method of selectively growing thin film of ii-vi compound semiconductor |
-
1985
- 1985-03-26 JP JP6147485A patent/JPS61220321A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6481233A (en) * | 1987-09-22 | 1989-03-27 | Seiko Epson Corp | Selective growing method of selectively growing thin film of ii-vi compound semiconductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4837182A (en) | Method of producing sheets of crystalline material | |
EP0331467B1 (en) | Method of forming semiconductor thin film | |
EP1045431B1 (en) | Method for producing a group III nitride compound semiconductor substrate | |
JPH076950A (en) | Manufacture of structural parts for electron, lightning and optical constituent | |
JP3127624B2 (en) | Method for growing heteroepitaxial layer | |
JPH06140346A (en) | Manufacture of heteroepitaxial thin layer and of electronic device | |
US5328549A (en) | Method of producing sheets of crystalline material and devices made therefrom | |
EP0241204B1 (en) | Method for forming crystalline deposited film | |
JP3602443B2 (en) | Semiconductor element manufacturing method | |
JPH05251339A (en) | Semiconductor substrate and its manufacture | |
KR19990016925A (en) | Baline single crystal manufacturing method | |
JPS61188927A (en) | Compound semiconductor device | |
JPS61220321A (en) | Selective vapor growth method | |
JPH06291058A (en) | Manufacture of semiconductor substrate | |
JPS60145625A (en) | Manufacture of semiconductor device | |
JPH0419700B2 (en) | ||
JPH02105517A (en) | Manufacture of semiconductor device | |
JPS6398120A (en) | Crystal growth method | |
JPH01107515A (en) | Manufacture of semiconductor element | |
JPH02152221A (en) | Manufacture of soi substrate | |
JPS61198789A (en) | Continuous manufacture of optical semiconductor element | |
JPS61241911A (en) | Compound semiconductor device | |
JPS62119939A (en) | Insulating substrate for semiconductor | |
JPH06232045A (en) | Manufacture of crystalline substrate | |
JPS6229398B2 (en) |