JPH0952792A - Substrate holder of apparatus for growing semiconductor - Google Patents
Substrate holder of apparatus for growing semiconductorInfo
- Publication number
- JPH0952792A JPH0952792A JP20552995A JP20552995A JPH0952792A JP H0952792 A JPH0952792 A JP H0952792A JP 20552995 A JP20552995 A JP 20552995A JP 20552995 A JP20552995 A JP 20552995A JP H0952792 A JPH0952792 A JP H0952792A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- substrate holder
- placing part
- contact
- mounting portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体成長装置の
成長室内の所定位置に処理対象の基板を保持するための
基板ホルダに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate holder for holding a substrate to be processed at a predetermined position in a growth chamber of a semiconductor growth apparatus.
【0002】[0002]
【従来の技術】砒化ガリウム等の化合物半導体を用いた
半導体素子の製造には、分子線エピタキシャル法(MB
E法)や有機金属気相成長(MOVPE)法等を用いた
結晶成長工程を必要とする場合が多い。図8はMBE半
導体成長装置の一例を示す構成図である。2. Description of the Related Art A semiconductor device using a compound semiconductor such as gallium arsenide is manufactured by molecular beam epitaxy (MB
In many cases, a crystal growth step using the E method) or the metal organic chemical vapor deposition (MOVPE) method is required. FIG. 8 is a block diagram showing an example of an MBE semiconductor growth apparatus.
【0003】成長室101は中空のタンク状の構造を有
し、内面には余分なガスを吸着するための冷却を行う液
体窒素シュラウド102が配設され、下部には蒸発源で
あるクヌードセンセル103が設けられ、その上部には
クヌードセンセルシャッター104が設けられている。
また、クヌードセンセル103の下部には成長室101
内を高真空にするための真空ポンプ105が設置されて
いる。更に、成長室101の側壁の一部には、ゲートバ
ルブ106が設けられている。The growth chamber 101 has a hollow tank-like structure, a liquid nitrogen shroud 102 for cooling to adsorb excess gas is provided on the inner surface, and a knudsen, which is an evaporation source, is provided at the lower part. A cell 103 is provided, and a Knudsen cell shutter 104 is provided above the cell 103.
The growth chamber 101 is provided below the Knudsen cell 103.
A vacuum pump 105 is installed to create a high vacuum inside. Further, a gate valve 106 is provided on a part of the side wall of the growth chamber 101.
【0004】成長室101の中央部には、成長に用いら
れる砒化ガリウム基板107を保持する基板ホルダ10
8、及び基板ホルダ108上の砒化ガリウム基板107
を裏面側から加熱するためのヒータ109が配設されて
いる。基板ホルダ108はタングステン(W)、モリブ
デン(Mo)、タンタル(Ta)等を用いて作られ、駆
動装置108aによって回転させることができる。At the center of the growth chamber 101, a substrate holder 10 holding a gallium arsenide substrate 107 used for growth.
8 and the gallium arsenide substrate 107 on the substrate holder 108
A heater 109 is provided to heat the back side of the sheet. The substrate holder 108 is made of tungsten (W), molybdenum (Mo), tantalum (Ta), or the like, and can be rotated by the driving device 108a.
【0005】ゲートバルブ106には、砒化ガリウム基
板107を搬入/搬出するための通路及び退避場所とな
る中空構造の搬送室110が連結され、この搬送室11
0には搬送室真空ポンプ111が連結されている。更
に、ゲートバルブ112を介して中空構造の導入室11
3が連結され、この導入室113には導入室真空ポンプ
114が連結されている。また、導入室113の中心線
上には円板状の基板導入用フランジ115が着脱自在に
取り付けられ、この中心部にはトランスファロッド11
6が水平移動可能に配設されており、その先端部に砒化
ガリウム基板107を装着することができる。The gate valve 106 is connected to a transfer chamber 110 having a hollow structure, which serves as a passage and an evacuation place for loading / unloading the gallium arsenide substrate 107.
A vacuum pump 111 for the transfer chamber is connected to 0. Further, the introduction chamber 11 having a hollow structure is provided through the gate valve 112.
3 is connected, and an introduction chamber vacuum pump 114 is connected to the introduction chamber 113. A disk-shaped substrate introduction flange 115 is detachably attached to the center line of the introduction chamber 113, and the transfer rod 11 is attached to the center of the flange 115.
6 is arranged so as to be horizontally movable, and a gallium arsenide substrate 107 can be mounted on the tip portion thereof.
【0006】このような半導体成長装置にあっては、真
空ポンプ105によって成長室101内を超高度の真空
にし、また、成長室101内に不純物が入り込まないよ
うにする必要がある。そこで、外部から基板を搬入又は
搬出する場合には、搬送室110及び導入室113を真
空にし、砒化ガリウム基板107を段階的に搬送するよ
うにしている。In such a semiconductor growth apparatus, it is necessary to make the inside of the growth chamber 101 a very high vacuum by the vacuum pump 105 and to prevent impurities from entering the growth chamber 101. Therefore, when the substrate is loaded or unloaded from the outside, the transfer chamber 110 and the introduction chamber 113 are evacuated, and the gallium arsenide substrate 107 is transferred stepwise.
【0007】外部から砒化ガリウム基板107を挿入す
る場合、まず、基板導入用フランジ115を外し、トラ
ンスファロッド116の先端部に砒化ガリウム基板10
7を装着した後、基板導入用フランジ115を閉じる。
ついで導入室113内を導入室真空ポンプ114によっ
て真空にし、また、搬送室110を搬送室真空ポンプ1
11で真空にする。この状態でゲートバルブ112を開
けて搬送室110まで砒化ガリウム基板107を搬入
し、ゲートバルブ112を閉める。更に、ゲートバルブ
106を開け、トランスファロッド116を移動させ、
砒化ガリウム基板107を成長室101内の基板ホルダ
108の直下まで搬入する。ここで、砒化ガリウム基板
107を基板ホルダ108に移し替え、トランスファロ
ッド116を後退させ、ゲートバルブ106を閉じる。When the gallium arsenide substrate 107 is inserted from the outside, first, the substrate introducing flange 115 is removed, and the gallium arsenide substrate 10 is attached to the tip of the transfer rod 116.
After mounting 7, the substrate introducing flange 115 is closed.
Then, the introduction chamber 113 is evacuated by the introduction chamber vacuum pump 114, and the transfer chamber 110 is evacuated.
Apply a vacuum at 11. In this state, the gate valve 112 is opened, the gallium arsenide substrate 107 is loaded into the transfer chamber 110, and the gate valve 112 is closed. Further, the gate valve 106 is opened, the transfer rod 116 is moved,
The gallium arsenide substrate 107 is carried into the growth chamber 101 just below the substrate holder 108. Here, the gallium arsenide substrate 107 is transferred to the substrate holder 108, the transfer rod 116 is retracted, and the gate valve 106 is closed.
【0008】更に、真空ポンプ105によって成長室1
01内を1010Torr 程度の高真空に保ち、ヒータ10
9に通電して輻射熱により砒化ガリウム基板107を加
熱する。ここでクヌードセンセルシャッター104を開
け、クヌードセンセル103からGaとAsを個別に蒸
発させ、加熱した砒化ガリウム基板107の表面に堆積
させ、エピタキシャル成長を行う。すなわち、砒化ガリ
ウム基板107にGa原子とAs分子が到達すると、最
初にGa原子が吸着し、その後にAs4 分子が付着し、
砒化ガリウム基板107の表面にGaAs層が形成され
る。基板の搬出については、搬入時と逆の手順により行
われる。Further, the growth chamber 1 is driven by the vacuum pump 105.
The inside of 01 is kept at a high vacuum of about 10 10 Torr, and the heater 10
9 is energized to heat the gallium arsenide substrate 107 by radiant heat. Here, the Knudsen cell shutter 104 is opened, Ga and As are evaporated from the Knudsen cell 103 separately, and deposited on the surface of the heated gallium arsenide substrate 107 to perform epitaxial growth. That is, when Ga atoms and As molecules reach the gallium arsenide substrate 107, Ga atoms are first adsorbed and then As 4 molecules are attached,
A GaAs layer is formed on the surface of the gallium arsenide substrate 107. The unloading of the substrate is performed in the reverse order of the loading.
【0009】図9は基板ホルダ108の周辺構成を示す
断面図である。また、図10は基板ホルダ108の拡大
断面図を示している。“L”字形の断面形状を有する基
板ホルダ108の底部には、円板状の基板ホルダ支持具
117が取り付けられ、この基板ホルダ支持具117の
周辺の下面の複数箇所には、凹部118及びこの凹部1
18より小径の貫通孔119が形成されている。この貫
通孔119にはモリブデン製のねじ120が下側から挿
通され、基板ホルダ支持具117の上側に立設された基
板ホルダ支持具用支柱121を固定している。FIG. 9 is a sectional view showing the peripheral structure of the substrate holder 108. Further, FIG. 10 shows an enlarged sectional view of the substrate holder 108. A disk-shaped substrate holder support 117 is attached to the bottom of the substrate holder 108 having an “L” -shaped cross-sectional shape, and the recesses 118 and the recesses 118 are formed at a plurality of locations on the lower surface around the substrate holder support 117. Recess 1
A through hole 119 having a smaller diameter than 18 is formed. A screw 120 made of molybdenum is inserted from the lower side into the through hole 119, and a column 121 for the substrate holder supporting tool which is erected on the upper side of the substrate holder supporting tool 117 is fixed.
【0010】[0010]
【発明が解決しようとする課題】しかし、上記した従来
技術にあっては、図10に示す様に、砒化ガリウム等の
化合物半導体結晶では、基板結晶と基板ホルダ材料(例
えば、モリブデン等)との熱膨張率が大きく異なるた
め、成長終了後、搬送温度まで降温するに際し、100
℃/min程度の高速で冷却すると、基板周囲にスリッ
プラインが生じやすい。このスリップラインは、基板表
面の〔110〕方向に発生しやすい。そして、スリップ
ラインが生じると、基板が割れやすくなり、後のプロセ
ス工程が通らなくなり、歩留りを低下させる。However, in the above-mentioned conventional technique, as shown in FIG. 10, in the case of a compound semiconductor crystal such as gallium arsenide, a substrate crystal and a substrate holder material (for example, molybdenum) are used. Since the coefficient of thermal expansion is greatly different, when the temperature is lowered to the transfer temperature after the growth is completed,
When cooled at a high speed of about ° C / min, slip lines are likely to occur around the substrate. This slip line is likely to occur in the [110] direction on the substrate surface. Then, when the slip line is generated, the substrate is easily cracked, the subsequent process steps cannot be performed, and the yield is reduced.
【0011】なお、気相成長やエピタキシャル成長にお
ける基板又はウェハの保持に関する技術には、例えば、
特開平3−126875号公報、特開平3−19919
6号公報、特開平4−50195号公報、特開平4−1
82386号公報、特開平5−238882号公報等が
ある。特開平3−126875号公報には、リング状の
載置台にウェハを処理面を下にして載せ、下部から反応
ガスを供給する技術が示されている。しかし、ウェハの
周辺が面接触で支持されるため、上記した問題が残され
る。Techniques for holding a substrate or wafer in vapor phase growth or epitaxial growth include, for example,
JP-A-3-126875, JP-A-3-19919
6, JP-A-4-50195, JP-A-4-1-1.
No. 82386, JP-A-5-238882, and the like. Japanese Unexamined Patent Publication No. 3-126875 discloses a technique in which a wafer is placed on a ring-shaped mounting table with the processing surface facing down, and a reaction gas is supplied from below. However, since the periphery of the wafer is supported by surface contact, the above problem remains.
【0012】特開平3−199196号公報には、サセ
プタに半球状に形成された座ぐり部の傾斜面にウェハを
当接させ、ピンホールの発生を防止する技術が示されて
いるが、下側から反応ガスを供給することができないた
め、図8の様な構成の半導体成長装置に用いることはで
きない。特開平4−50195号公報には、基板ホルダ
をウェハ押さえと、このウェハ押さえに装着されるL字
形の複数のピンから構成し、このピンの先端部でウェハ
を支持してウェハを下向きに保持できるようにした技術
が示されている。しかし、ウェハの周縁部がサセプタに
よって面接触で支持されるため、上記した問題が残され
る。Japanese Unexamined Patent Publication (Kokai) No. 3-199196 discloses a technique in which a wafer is brought into contact with an inclined surface of a spot facing portion formed in a hemispherical shape on a susceptor to prevent generation of pinholes. Since the reaction gas cannot be supplied from the side, it cannot be used in the semiconductor growth apparatus having the configuration shown in FIG. In Japanese Patent Laid-Open No. 4-50195, a substrate holder is composed of a wafer holder and a plurality of L-shaped pins mounted on the wafer holder. The tip of the pin supports the wafer to hold the wafer downward. The technology that made it possible is shown. However, since the peripheral portion of the wafer is supported by the susceptor in surface contact, the above problem remains.
【0013】特開平4−182386号公報には、基板
の周縁部に対応する位置に溝を形成し、基板の周縁部に
サセプタが接触しないようにし、周縁部からのクラック
の発生を防止する技術が示されている。しかし、図10
の様な構造の基板ホルダによって基板を支持する構成に
は適用できない。特開平5−238882号公報には、
サセプタにウェハの厚み以上の深さのザグリを形成し、
このザグリ面にリング状の突起部を設け、この突起部に
よりウェハを支持し、スリップの発生を防止する技術が
示されている。しかし、図8の様に基板を下向きにし、
下側から反応ガスを供給する構成には適用できない。Japanese Unexamined Patent Publication No. 4-182386 discloses a technique in which a groove is formed at a position corresponding to the peripheral edge of a substrate so that the susceptor does not contact the peripheral edge of the substrate and cracks are prevented from being generated from the peripheral edge. It is shown. However, FIG.
It cannot be applied to the structure in which the substrate is supported by the substrate holder having the above structure. Japanese Unexamined Patent Publication No. 5-238882 discloses that
Form a counterbore with a depth greater than the thickness of the wafer on the susceptor,
A technique is disclosed in which a ring-shaped protrusion is provided on the countersink surface, and the wafer is supported by the protrusion to prevent the occurrence of slip. However, as shown in FIG.
It cannot be applied to the structure in which the reaction gas is supplied from the lower side.
【0014】本発明の目的は、基板の周縁部にスリップ
ラインが生じないようにすることのできる半導体成長装
置における基板ホルダを提供することにある。An object of the present invention is to provide a substrate holder in a semiconductor growth apparatus capable of preventing a slip line from being generated on the peripheral edge of the substrate.
【0015】[0015]
【課題を解決するための手段】上記の目的を達成するた
めに、この発明は、成長室内に設置され、結晶成長のた
めの基板が処理面を下にして載置される基板ホルダにお
いて、前記基板を点接触又は線接触によって載置する載
置部を備えるようにしている。この構成によれば、基板
と基板ホルダが、相互に面接触する部分はなくなり、基
板と基板ホルダの熱膨張率の相違に起因する影響を排除
することができる。したがって、基板の周縁部にスリッ
プラインを生じさせる機会を低減することができる。In order to achieve the above object, the present invention provides a substrate holder which is installed in a growth chamber and in which a substrate for crystal growth is placed with a processing surface facing down. A mounting portion for mounting the substrate by point contact or line contact is provided. According to this configuration, there is no portion where the substrate and the substrate holder are in surface contact with each other, and the influence due to the difference in the coefficient of thermal expansion between the substrate and the substrate holder can be eliminated. Therefore, it is possible to reduce the chance of producing a slip line on the peripheral portion of the substrate.
【0016】この場合の載置部は、基板に対して傾斜面
を有する構成、基板に対して曲面を有する構成にするこ
とができる。これにより、載置部は基板に対して線接触
により接触し、基板の周縁部にスリップラインを生じさ
せることがない。また、載置部は、横又は縦置きの円柱
状、半円球状、蒲鉾形、円錐形又は角錐形で前記基板側
に突出する突起を備える構成にすることができ、これに
より、載置部は基板に対して点接触又は線接触により接
触し、基板の周縁部にスリップラインを生じさせること
がない。In this case, the mounting portion may have an inclined surface with respect to the substrate or a curved surface with respect to the substrate. As a result, the mounting portion comes into line contact with the substrate and does not cause a slip line at the peripheral edge of the substrate. Further, the mounting portion can be configured to have a protrusion protruding toward the substrate side in a columnar shape, a semi-spherical shape, a semi-cylindrical shape, a semi-cylindrical shape, a conical shape, or a pyramid shape that is horizontally or vertically placed. Contacts the substrate by point contact or line contact, and does not cause a slip line at the peripheral edge of the substrate.
【0017】更に、載置部の点接触又は線接触する部分
は、前記基板の〔110〕±3度の範囲(方向)を避け
ることが良く、これによりスリップラインが最も発生し
易い領域を避けることができる。この結果、スリップラ
インの発生を更に低減することができる。Further, it is preferable to avoid the point contact or line contact of the mounting portion within the range (direction) of [110] ± 3 degrees of the substrate, thereby avoiding the region where the slip line is most likely to occur. be able to. As a result, the occurrence of slip lines can be further reduced.
【0018】[0018]
【発明の実施の形態】以下、本発明の第1の実施の形態
を図面に基づいて説明する。図1は本発明による基板ホ
ルダの第1実施例を示す断面図である。図1に示すよう
に、本発明の基板ホルダ10においては、砒化ガリウム
基板107の載置部11に傾斜面11aを持たせ、載置
部11と砒化ガリウム基板107との接触が点接触又は
線接触になるようにしたところに特徴がある。ここでは
平坦な傾斜部にしたが、図2に示す様に、傾斜面が曲面
12aを有してもよい(第2の実施の形態)。或いは、
図3に示す様に、図1とは逆向きの傾斜面13aを有す
る構造であってもよい(第3の実施の形態)。DETAILED DESCRIPTION OF THE INVENTION A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a first embodiment of a substrate holder according to the present invention. As shown in FIG. 1, in the substrate holder 10 of the present invention, the mounting portion 11 of the gallium arsenide substrate 107 is provided with an inclined surface 11a, and the mounting portion 11 and the gallium arsenide substrate 107 are brought into contact with each other by point contact or line contact. The feature is that they are in contact with each other. Although the flat inclined portion is used here, the inclined surface may have a curved surface 12a as shown in FIG. 2 (second embodiment). Alternatively,
As shown in FIG. 3, a structure having an inclined surface 13a in the opposite direction to that of FIG. 1 may be used (third embodiment).
【0019】更に、図4に示す様に、載置部14の上面
は水平とし、この面に半円球状又は蒲鉾形、円柱状の突
起15を載置部14に一体化して設け、点接触又は線接
触の構造にしてもよい(第4の実施の形態)。なお、図
4の構成においては、突起15を円錐形、三角形等に変
えることもできる。また、図5に示す様に、突起15に
代えて球状又は円柱状の突状部材16を別部品で配設す
る構成にしてもよい(第5の実施の形態)。Further, as shown in FIG. 4, the upper surface of the mounting portion 14 is horizontal, and a semi-spherical, semi-cylindrical, or columnar projection 15 is integrally provided on the mounting portion 14 for point contact. Alternatively, a line contact structure may be used (fourth embodiment). In addition, in the configuration of FIG. 4, the protrusion 15 may be changed to a conical shape, a triangular shape, or the like. Further, as shown in FIG. 5, instead of the projection 15, a spherical or cylindrical projecting member 16 may be provided as a separate component (fifth embodiment).
【0020】以上のように、基板ホルダ10の載置部と
の接触が線接触になるようにしたので、搬送温度まで降
温を急速に行っても、熱膨張率の影響が極めて小さくな
り、スリップラインを生じる恐れはない。したがって、
歩留り向上が可能になる。図6は図4の実施例の平面図
を示している。載置部14上に点々の半円弧状に示した
ものが突起15であり、この突起15上に基板が載置さ
れる。突起15は、1周を複数に分割し、その分割部1
7は〔110〕±3度の位置であり、この分割部17に
突起を設けないことにより、スリップラインが生じ易い
〔110〕方向の基板には接触物が存在しないので、ス
リップラインの発生を確実に防止することができる。As described above, since the contact with the mounting portion of the substrate holder 10 is made to be a linear contact, the influence of the coefficient of thermal expansion becomes extremely small even if the temperature is rapidly lowered to the carrying temperature, and the slip occurs. There is no fear of creating lines. Therefore,
Yield can be improved. FIG. 6 shows a plan view of the embodiment of FIG. The projections 15 are shown on the mounting portion 14 in a dotted semi-circular shape, and the substrate is mounted on the projections 15. The projection 15 divides one circumference into a plurality of parts, and the divided part 1
7 is a position of [110] ± 3 degrees, and by not providing a protrusion on the dividing portion 17, there is no contact object on the substrate in the [110] direction where a slip line is likely to occur, so that a slip line is not generated. It can be surely prevented.
【0021】図7は図1、図2又は図3の構成におい
て、載置部11(或いは載置部12又は13)を1周さ
せずに、図6と同様に分割部17を設けた構成にしてい
る。この場合も、分割部17は〔110〕±3度の位置
に設けられる。FIG. 7 shows a configuration in which the mounting portion 11 (or the mounting portion 12 or 13) is not rotated once in the configuration of FIG. 1, FIG. 2 or FIG. I have to. Also in this case, the dividing portion 17 is provided at a position of [110] ± 3 degrees.
【0022】[0022]
【実施例】本発明者らは、図1の構成の基板ホルダ10
を用い、MBE半導体成長装置によりFET用エピタキ
シャル結晶成長を行った。基板温度は、表面荒れを防止
するため、搬入時には400℃以下にし、ついで駆動装
置108aで回転させながら100℃/分により750
℃まで加熱し、RHEED( Reflective High Energy
Electron Diffraction:反射高速電子線回折法)により
表面サーマルクリーニングを行い、650℃に温度を下
げてアンドープGaAsバッファ層を500nm成長さ
せた。続けてキャップ層として、iドープ(ドーピング
濃度2×1017/cm3)のn型GaAs層を200n
m、アンドープGaAs層を5nm、順次エピタキシャ
ル成長させ、成長終了後、100℃/分で400℃まで
冷却し、成長室101→搬送室110→導入室113の
経路で取り出した。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Was used to perform epitaxial crystal growth for FETs using an MBE semiconductor growth apparatus. In order to prevent the surface from becoming rough, the substrate temperature is set to 400 ° C. or lower at the time of loading and then 750 at 100 ° C./min while rotating by the driving device 108a.
RHEED (Reflective High Energy
Electron Diffraction (reflection high-energy electron diffraction) was used to perform surface thermal cleaning, and the temperature was lowered to 650 ° C. to grow an undoped GaAs buffer layer to a thickness of 500 nm. Subsequently, as a cap layer, 200 n of an i-doped (doping concentration 2 × 10 17 / cm 3) n-type GaAs layer is formed.
m and an undoped GaAs layer were sequentially epitaxially grown to a thickness of 5 nm, and after the growth was completed, they were cooled to 400 ° C. at 100 ° C./min and taken out through a path of growth chamber 101 → transport chamber 110 → introduction chamber 113.
【0023】このようにして形成したFET構造の半導
体結晶の表面状態は、100℃/分と非常に高速に昇温
及び降温したにもかかわらず、スリップラインの発生は
殆ど生じなかった。また、電気的特性その他の諸特性に
も変化は見られなかった。なお、上記においてはMBE
法による成長について説明したが、本発明者らはMOV
PE法で行っても同様の確認を行っており、高速な昇降
温を行ってもスリップラインの発生を低減できることが
確かめられた。In the surface state of the semiconductor crystal of the FET structure thus formed, the slip line was hardly generated even though the temperature was raised and lowered at a very high rate of 100 ° C./min. In addition, no change was observed in the electrical characteristics and other characteristics. In the above, MBE
Although the growth by the method was described, the present inventors
The same confirmation was performed by the PE method, and it was confirmed that the occurrence of the slip line can be reduced even if the temperature is raised and lowered at high speed.
【0024】[0024]
【発明の効果】以上より明らかなように、本発明によれ
ば、成長室内に基板を位置決めするための基板ホルダ
が、点接触又は線接触する載置部を備えるようにしたの
で、基板の周縁部にスリップラインを生じさせない様に
することができ、スループットの向上、すなわち製品歩
留りを向上させることができる。As is apparent from the above, according to the present invention, since the substrate holder for positioning the substrate in the growth chamber is provided with the placing portion that makes point contact or line contact, the peripheral edge of the substrate is obtained. It is possible to prevent a slip line from being generated in a part, so that throughput can be improved, that is, product yield can be improved.
【図1】本発明による基板ホルダの第1の実施の形態を
示す断面図である。FIG. 1 is a sectional view showing a first embodiment of a substrate holder according to the present invention.
【図2】本発明による基板ホルダの第2の実施の形態を
示す断面図である。FIG. 2 is a sectional view showing a second embodiment of a substrate holder according to the present invention.
【図3】本発明による基板ホルダの第3の実施の形態を
示す断面図である。FIG. 3 is a sectional view showing a third embodiment of a substrate holder according to the present invention.
【図4】本発明による基板ホルダの第4の実施の形態を
示す断面図である。FIG. 4 is a sectional view showing a fourth embodiment of a substrate holder according to the present invention.
【図5】本発明による基板ホルダの第5の実施の形態を
示す断面図である。FIG. 5 is a sectional view showing a fifth embodiment of the substrate holder according to the present invention.
【図6】図4の実施の形態を示す平面図である。FIG. 6 is a plan view showing the embodiment of FIG.
【図7】図1、図2又は図3の構成において基板ホルダ
の載置部を分割した構成を示す平面図である。FIG. 7 is a plan view showing a configuration in which the mounting portion of the substrate holder is divided in the configuration of FIG. 1, FIG. 2 or FIG.
【図8】MBE半導体成長装置の一例を示す構成図であ
る。FIG. 8 is a configuration diagram showing an example of an MBE semiconductor growth apparatus.
【図9】図8に示す基板ホルダの周辺構成を示す断面図
である。9 is a cross-sectional view showing a peripheral configuration of the substrate holder shown in FIG.
【図10】図8に示す基板ホルダの拡大断面図を示して
いる。10 shows an enlarged cross-sectional view of the substrate holder shown in FIG.
10 基板ホルダ 11,12,13,14 載置部 15 突起 16 突状部材 17 分割部 100 成長室 10 Substrate holder 11, 12, 13, 14 Mounting part 15 Projection 16 Projecting member 17 Dividing part 100 Growth chamber
Claims (5)
基板が処理面を下にして載置される基板ホルダにおい
て、 前記基板を点接触又は線接触によって載置する載置部を
備えることを特徴とする半導体成長装置における基板ホ
ルダ。1. A substrate holder, which is placed in a growth chamber and on which a substrate for crystal growth is placed with a processing surface facing down, comprises a placing part for placing the substrate by point contact or line contact. A substrate holder for a semiconductor growth apparatus.
る傾斜面を有することを特徴とする請求項1記載の半導
体成長装置における基板ホルダ。2. The substrate holder in a semiconductor growth apparatus according to claim 1, wherein the mounting portion has an inclined surface that horizontally supports the substrate.
る曲面を有することを特徴とする請求項1記載の半導体
成長装置における基板ホルダ。3. The substrate holder in a semiconductor growth apparatus according to claim 1, wherein the mounting portion has a curved surface that horizontally supports the substrate.
半円球状、蒲鉾形、円錐形又は角錐形で前記基板側に突
出する突起を備えることを特徴とする請求項1記載の半
導体成長装置における基板ホルダ。4. The mounting portion is a columnar shape that is placed horizontally or vertically,
2. The substrate holder in a semiconductor growth apparatus according to claim 1, wherein the substrate holder has a semi-spherical shape, a semi-cylindrical shape, a conical shape, or a pyramidal shape and has a protrusion protruding toward the substrate.
3度の範囲を避けた部分を支持する構成を有することを
特徴とする請求項1記載の半導体成長装置における基板
ホルダ。5. The mounting portion is [110] ± of the substrate.
The substrate holder in a semiconductor growth apparatus according to claim 1, wherein the substrate holder has a structure for supporting a portion avoiding a range of 3 degrees.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20552995A JPH0952792A (en) | 1995-08-11 | 1995-08-11 | Substrate holder of apparatus for growing semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20552995A JPH0952792A (en) | 1995-08-11 | 1995-08-11 | Substrate holder of apparatus for growing semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0952792A true JPH0952792A (en) | 1997-02-25 |
Family
ID=16508403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20552995A Pending JPH0952792A (en) | 1995-08-11 | 1995-08-11 | Substrate holder of apparatus for growing semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0952792A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003168717A (en) * | 2001-12-03 | 2003-06-13 | Yaskawa Electric Corp | Wafer transport fork |
WO2007131547A1 (en) * | 2006-05-15 | 2007-11-22 | Aixtron Ag | Semiconductor control device for a cvd or rtp process |
JP2009016567A (en) * | 2007-07-04 | 2009-01-22 | Nuflare Technology Inc | Vapor deposition apparatus, and vapor deposition method |
WO2009060912A1 (en) * | 2007-11-08 | 2009-05-14 | Sumco Corporation | Epitaxial film growing method, wafer supporting structure and susceptor |
US20140265091A1 (en) * | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Susceptors for enhanced process uniformity and reduced substrate slippage |
JP2016122837A (en) * | 2014-12-12 | 2016-07-07 | ラム リサーチ コーポレーションLam Research Corporation | Carrier ring structure and chamber systems including the same |
JP2019119896A (en) * | 2017-12-28 | 2019-07-22 | トヨタ自動車株式会社 | Plasma treatment apparatus |
-
1995
- 1995-08-11 JP JP20552995A patent/JPH0952792A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003168717A (en) * | 2001-12-03 | 2003-06-13 | Yaskawa Electric Corp | Wafer transport fork |
WO2007131547A1 (en) * | 2006-05-15 | 2007-11-22 | Aixtron Ag | Semiconductor control device for a cvd or rtp process |
JP2009016567A (en) * | 2007-07-04 | 2009-01-22 | Nuflare Technology Inc | Vapor deposition apparatus, and vapor deposition method |
WO2009060912A1 (en) * | 2007-11-08 | 2009-05-14 | Sumco Corporation | Epitaxial film growing method, wafer supporting structure and susceptor |
US8324063B2 (en) | 2007-11-08 | 2012-12-04 | Sumco Corporation | Epitaxial film growing method, wafer supporting structure and susceptor |
CN105009272A (en) * | 2013-03-15 | 2015-10-28 | 应用材料公司 | Susceptors for enhanced process uniformity and reduced substrate slippage |
US20140265091A1 (en) * | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Susceptors for enhanced process uniformity and reduced substrate slippage |
JP2016518699A (en) * | 2013-03-15 | 2016-06-23 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Susceptor for enhanced process uniformity and reduced substrate slip |
US9799548B2 (en) | 2013-03-15 | 2017-10-24 | Applied Materials, Inc. | Susceptors for enhanced process uniformity and reduced substrate slippage |
TWI631660B (en) * | 2013-03-15 | 2018-08-01 | 應用材料股份有限公司 | Susceptors for enhanced process uniformity and reduced substrate slippage |
CN112201594A (en) * | 2013-03-15 | 2021-01-08 | 应用材料公司 | Susceptor for enhanced process uniformity and reduced substrate slip |
JP2016122837A (en) * | 2014-12-12 | 2016-07-07 | ラム リサーチ コーポレーションLam Research Corporation | Carrier ring structure and chamber systems including the same |
KR20200022414A (en) * | 2014-12-12 | 2020-03-03 | 램 리써치 코포레이션 | Carrier ring structure and chamber systems including same |
JP2019119896A (en) * | 2017-12-28 | 2019-07-22 | トヨタ自動車株式会社 | Plasma treatment apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6311834B2 (en) | Manufacturing method of nitride semiconductor substrate | |
US4681773A (en) | Apparatus for simultaneous molecular beam deposition on a plurality of substrates | |
US4599069A (en) | Substrate holder for molecular beam epitaxy apparatus | |
US11081347B2 (en) | Method for manufacturing silicon-carbide semiconductor element | |
US4592308A (en) | Solderless MBE system | |
JPH10163114A (en) | Semiconductor device and manufacturing method thereof | |
US9029219B2 (en) | Semiconductor wafer manufacturing method, and semiconductor wafer | |
JP3741283B2 (en) | Heat treatment apparatus and heat treatment method using the same | |
JPH0952792A (en) | Substrate holder of apparatus for growing semiconductor | |
GB2095704A (en) | Molecular beam deposition on a plurality of substrates | |
JPH10324599A (en) | Production of silicon carbide single crystal | |
JP3895410B2 (en) | Device comprising group III-V nitride crystal film and method for manufacturing the same | |
JP3779831B2 (en) | Method of crystal growth of nitride III-V compound semiconductor and laminated structure of semiconductor obtained by the method | |
JP2607239B2 (en) | Molecular beam epitaxy equipment | |
Chow | Molecular beam epitaxy | |
US10354868B2 (en) | Method for formation of a transition metal dichalcogenide (TMDC) material layer | |
US20230399767A1 (en) | Systems and methods for pulsed beam deposition of epitaxial crystal layers | |
JP3385228B2 (en) | Crystal growth apparatus and crystal growth method | |
JPH10242053A (en) | Gallium nitride semiconductor device and method of manufacturing gallium nitride semiconductor device | |
JPH0697071A (en) | Method of forming quantum line and quantum box by the growth of atomic layer | |
JPS62182196A (en) | Vapor growth apparatus | |
JPH07201747A (en) | Formation of compound semiconductor layer | |
JPS61210616A (en) | Formation of semiconductor thin film | |
JPS6273618A (en) | Vapor growth device | |
JPH06188164A (en) | Substrate for epitaxial growth and epitaxial growth method |