JPH0697071A - Method of forming quantum line and quantum box by the growth of atomic layer - Google Patents

Method of forming quantum line and quantum box by the growth of atomic layer

Info

Publication number
JPH0697071A
JPH0697071A JP24371192A JP24371192A JPH0697071A JP H0697071 A JPH0697071 A JP H0697071A JP 24371192 A JP24371192 A JP 24371192A JP 24371192 A JP24371192 A JP 24371192A JP H0697071 A JPH0697071 A JP H0697071A
Authority
JP
Japan
Prior art keywords
quantum
growth
forming
atomic layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24371192A
Other languages
Japanese (ja)
Other versions
JP3335671B2 (en
Inventor
Hideo Isshiki
秀夫 一色
Sohachi Iwai
荘八 岩井
Katsunobu Aoyanagi
克信 青柳
Takuo Sugano
卓雄 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP24371192A priority Critical patent/JP3335671B2/en
Publication of JPH0697071A publication Critical patent/JPH0697071A/en
Application granted granted Critical
Publication of JP3335671B2 publication Critical patent/JP3335671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method of forming a quantum box and quantum line by the growth of atomic layer being capable of forming good-shaped quantum lines and quantum box, capable of making a greater difference in growth speed due to plane azimuth without the occurrence of abnormal growth and capable of improving shape controllability compared to the conventional one. CONSTITUTION:A recessed portion is formed by etching on a substrate 3, this substrate 3 is placed on a susceptor 2 in a vacuum container 1, and this substrate 3 is heated to a predetermined temperature by a lamp 6. And valves 7 are opened and closed for alternately supplying raw materials, and the quantum fine line and quantum box are formed inside the recessed portion of the substrate 3 by the growth of the atomic layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子層成長を選択的に
実施することにより、半導体デバイス等を構成する量子
細線および量子箱を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming quantum wires and quantum boxes constituting a semiconductor device or the like by selectively performing atomic layer growth.

【0002】[0002]

【従来の技術】半導体結晶中の電子の波長以下の大きさ
(数十nm程度)を有する微細構造いわゆる量子細線お
よび量子箱では、内部に閉じ込められた電子による量子
効果が現れることが知られており、このような現象を利
用した半導体デバイス等の開発が行われている。
2. Description of the Related Art It is known that quantum effects due to the electrons confined inside appear in a fine structure so-called quantum wire and quantum box having a size (about several tens nm) less than the wavelength of electrons in a semiconductor crystal. Therefore, development of semiconductor devices and the like utilizing such a phenomenon is under way.

【0003】このような量子細線および量子箱を形成す
る方法としては、成長速度の面方位依存性を用いて結晶
成長を行うMOVPE(有機金属気相成長法)による方
法が知られている。この方法では、化学的エッチング等
の基板加工によって基板上にV字状の凹部を形成するこ
と等により、結晶成長前に基板面に複数の面方位を出
し、この後MOVPE成長によって所望の面に選択的に
薄膜を形成する。なお、MOVPE成長では、例えばG
aAs膜を形成する場合、Gaを含む原料ガスとAsを
含む原料ガスを同時に供給して気相中で反応を生じさせ
る。
As a method of forming such quantum wires and quantum boxes, there is known a method using MOVPE (Metal Organic Chemical Vapor Deposition) in which crystals are grown by using the plane orientation dependence of the growth rate. In this method, by forming a V-shaped concave portion on the substrate by substrate processing such as chemical etching, a plurality of plane orientations are created on the substrate surface before crystal growth, and then a desired surface is formed by MOVPE growth. A thin film is selectively formed. In the MOVPE growth, for example, G
When forming an aAs film, a source gas containing Ga and a source gas containing As are simultaneously supplied to cause a reaction in the gas phase.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た従来のMOVPEによる方法では、面方位に対する成
長速度の差をあまり大きくすることができず、理想的な
量子細線および量子箱を作成するような形状制御を行う
ことが困難であるという問題があった。また、MOVP
Eによる方法では、非結晶成長部位から結晶成長部位に
未反応の原料ガスが流れてくるため、特にこれらの部位
の境界部分において異常成長が生じ易く、その制御が困
難であるという問題もある。
However, in the above-mentioned conventional MOVPE method, the difference in the growth rate with respect to the plane orientation cannot be increased so much that the ideal quantum wires and quantum boxes are formed. There is a problem that it is difficult to control. Also, MOVP
In the method according to E, since the unreacted source gas flows from the non-crystal growth site to the crystal growth site, there is a problem that abnormal growth is likely to occur especially at the boundary between these sites and its control is difficult.

【0005】本発明は、かかる従来の事情に対処してな
されたもので、面方位による成長速度の差を大きくする
ことができるとともに異常成長の発生等がなく、従来に
較べて形状制御性を向上させることができ、良好な形状
の量子細線および量子箱を形成することのできる原子層
成長による量子細線および量子箱の形成方法を提供しよ
うとするものである。
The present invention has been made in response to such a conventional situation, and it is possible to increase the difference in the growth rate depending on the plane orientation and to prevent the occurrence of abnormal growth. An object of the present invention is to provide a method for forming a quantum wire and a quantum box by atomic layer growth that can be improved and can form a quantum wire and a quantum box having a good shape.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明の原子
層成長による量子細線および量子箱の形成方法は、面方
位を有する基板の結晶面に選択的に薄膜を形成し、量子
細線および量子箱を形成するにあたり、それぞれ薄膜を
構成する異なった原料物質を含む少なくとも2種類の原
料ガスを所定の時間間隔を設けて交互に供給するととも
に、成長温度を所望の結晶面にのみ選択的に原子層成長
が行われる温度に設定して、所望の結晶面にのみ原子層
成長により選択的に薄膜を形成することを特徴とする。
That is, a method of forming a quantum wire and a quantum box by atomic layer growth according to the present invention is to form a thin film selectively on a crystal plane of a substrate having a plane orientation, and to form a quantum wire and a quantum box. In forming the film, at least two kinds of raw material gases each containing different raw material forming a thin film are alternately supplied at a predetermined time interval, and the growth temperature is selectively changed only on a desired crystal plane to form an atomic layer. It is characterized by setting a temperature at which the growth is performed and selectively forming a thin film by atomic layer growth only on a desired crystal plane.

【0007】[0007]

【作用】本発明者等は、例えば、GaAs膜を形成する
場合、Gaを含む原料ガスとAsを含む原料ガスとを交
互に供給し、1原子層単位で薄膜を形成する原子層成長
(ALE)に係る技術の研究を従来から行っており、こ
の結果次のような知見を得ることができた。
For example, when forming a GaAs film, the present inventors alternately supply a source gas containing Ga and a source gas containing As to form a thin film on an atomic layer basis (ALE). We have been conducting research on technology related to), and as a result, we have obtained the following findings.

【0008】すなわち、原子層成長においては、面方位
による化学結合手の数の違いに起因して、原子吸着(ま
たは吸着後の離脱)の面方位依存性があり、これを利用
することにより面方位に対する成長速度の差を大きくす
ることができ、結晶の面方位選択成長が可能となる。
That is, in atomic layer growth, there is a plane orientation dependence of atom adsorption (or desorption after adsorption) due to the difference in the number of chemical bonds depending on the plane orientation. The difference in the growth rate with respect to the orientation can be increased, and the plane orientation selective growth of the crystal becomes possible.

【0009】ここで、縦軸を結晶成長速度、横軸を成長
温度とした図2のグラフは、GaAs−ALE成長にお
ける成長温度に対する成長速度の面方位依存性を示した
ものである。同図に示すように、GaAs(100)面
で原子層成長が実現されている温度領域530〜570
℃において、560℃以上の温度では(111)A面お
よび(110)面の成長速度がゼロになる。
Here, the graph of FIG. 2 in which the vertical axis represents the crystal growth rate and the horizontal axis represents the growth temperature shows the plane orientation dependence of the growth rate with respect to the growth temperature in GaAs-ALE growth. As shown in the figure, temperature regions 530 to 570 in which atomic layer growth is realized on the GaAs (100) surface.
At a temperature of 560 ° C. or higher, the growth rates of the (111) A face and the (110) face become zero.

【0010】そこで、本発明方法では、原子層成長が選
択的に行われる成長温度、例えば、GaAs膜の場合上
述した560℃以上、で原子層成長を行い、所望の結晶
面、例えば(100)面に選択的に薄膜を形成し、これ
によって量子細線および量子箱を形成する。
Therefore, in the method of the present invention, atomic layer growth is performed at a growth temperature at which atomic layer growth is selectively performed, for example, at 560 ° C. or higher in the case of a GaAs film, and a desired crystal plane, for example, (100). A thin film is selectively formed on the surface, thereby forming a quantum wire and a quantum box.

【0011】本発明方法では、成長温度のみでなく、例
えば、原料ガス供給と原料ガス供給との間の時間間隔を
長くすれば、この間に原子吸着後の離脱が進み、面方位
に対する成長速度の差を大きくすることができる。
In the method of the present invention, if not only the growth temperature but also the time interval between the supply of the source gas and the supply of the source gas is lengthened, desorption after atom adsorption progresses during this time, and the growth rate with respect to the plane orientation is The difference can be large.

【0012】また、原子層成長では、例えば、Gaを含
む原料ガスとAsを含む原料ガス等を交互に供給すると
1回の原料供給サイクル当たり、1原子層だけ薄膜が形
成されるため、未反応の原料ガスが薄膜形成部位に余分
に供給されても異常成長が起きない。このため、MOV
PEによる方法では異常成長によって形状制御が困難で
あった形、例えば、矩形状の凹部内へ成膜して量子細線
および量子箱を形成することができる。
In atomic layer growth, for example, if a source gas containing Ga and a source gas containing As are alternately supplied, a thin film of only one atomic layer is formed per one source supply cycle, so that unreacted. Even if the above source gas is excessively supplied to the thin film formation site, abnormal growth does not occur. Therefore, MOV
With the method using PE, it is possible to form quantum wires and quantum boxes by forming a film in a shape whose shape is difficult to control due to abnormal growth, for example, in a rectangular recess.

【0013】[0013]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は、本実施例に用いた装置の構成を示
すもので、同図において符号1は2重管構造の真空容器
を示している。この真空容器1内には、カーボン製のサ
セプタ2が設けられており、このサセプタ2上に基板3
を載置し、真空容器1の外部に設けられたランプ4によ
ってサセプタ2の裏面側から基板3を所定温度に加熱す
ることができるよう構成されている。
FIG. 1 shows the structure of the apparatus used in this embodiment. In FIG. 1, reference numeral 1 indicates a vacuum container having a double tube structure. A carbon susceptor 2 is provided in the vacuum container 1, and a substrate 3 is provided on the susceptor 2.
Is mounted and the substrate 3 can be heated to a predetermined temperature from the back surface side of the susceptor 2 by a lamp 4 provided outside the vacuum container 1.

【0015】また、真空容器1の一端には、それぞれ図
示しない所定の原料ガス供給源から原料ガスを供給する
原料ガス供給配管5が、真空容器1の他端近傍には排気
配管6が接続されており、これらの原料ガス供給配管5
および排気配管6によって、真空容器1内に所望の原料
ガスを流通させることができるよう構成されている。な
お、各原料ガス供給配管5には、バルブ7が介挿されて
おり、所望のタイミングで原料ガスの切り替えを行うこ
とができるようになっている。
A raw material gas supply pipe 5 for supplying a raw material gas from a predetermined raw material gas supply source (not shown) is connected to one end of the vacuum container 1, and an exhaust pipe 6 is connected near the other end of the vacuum container 1. And these raw material gas supply pipes 5
Further, the exhaust pipe 6 is configured to allow a desired raw material gas to flow in the vacuum container 1. A valve 7 is inserted in each source gas supply pipe 5 so that the source gas can be switched at a desired timing.

【0016】本実施例では、図3に示すように、予め化
学エッチングにより基板(GaAs基板)3上に断面V
字状の凹部を形成し、基板表面に(111)A面(図中
傾斜面)を出し、この基板3を真空容器1内のサセプタ
2上に載置し、ランプ6でこの基板3を560℃に加熱
しつつバルブ7を開閉し、以下のようにして基板3の凹
部内に、原子層成長によってAlGaAs膜とGaAs
膜を交互に形成し、量子細線構造を形成した。
In this embodiment, as shown in FIG. 3, a cross section V is formed on the substrate (GaAs substrate) 3 by chemical etching in advance.
A letter-shaped concave portion is formed, a (111) A surface (inclined surface in the figure) is exposed on the substrate surface, the substrate 3 is placed on the susceptor 2 in the vacuum container 1, and the substrate 6 is moved to 560 by the lamp 6. The valve 7 is opened and closed while heating to ℃, and the AlGaAs film and the GaAs are formed in the recess of the substrate 3 by atomic layer growth as follows.
The films were alternately formed to form a quantum wire structure.

【0017】各原料ガスは、Alの原料ガスがDMAH
(ジメチルアルミハイドライド)、Gaの原料ガスがT
MG(トリメチルガリウム)、Asの原料ガスがAsH
3 であり、キャリアガスとしてH2 ガスを用いた。各原
料ガスの供給は、図4に示すように、DMAHおよびT
MGの1回の供給時間が2秒、AsH3 の1回の供給時
間が1秒、ガス供給とガス供給との間の間隔が1秒とな
るようバルブ7を開閉して行った。この時のガス供給量
は、DMAHおよびTMGの場合が10-7mol/cycle 、
AsH3 の場合が10-5mol/cycle である。
The source gas of Al is DMAH.
(Dimethyl aluminum hydride), Ga source gas is T
The source gas of MG (trimethylgallium) and As is AsH.
3 , and H 2 gas was used as a carrier gas. As shown in FIG. 4, each source gas is supplied by DMAH and T
The valve 7 was opened and closed so that the MG supply time was 2 seconds, the AsH 3 supply time was 1 second, and the interval between the gas supply was 1 second. The gas supply rate at this time is 10 -7 mol / cycle in the case of DMAH and TMG,
In the case of AsH 3 , it is 10 −5 mol / cycle.

【0018】このようにして原子層成長を行った基板3
を電子顕微鏡で観察したところ、図5に示すように、
(100)面に対して、高い選択性で成膜を行うことが
でき、量子細線構造を得ることができた。
Substrate 3 thus obtained by atomic layer growth
When observed with an electron microscope, as shown in FIG.
The (100) plane could be deposited with high selectivity, and a quantum wire structure could be obtained.

【0019】なお上記実施例において、例えば、原料ガ
ス供給と原料ガス供給との間の時間間隔を長くすれば、
この間に原子吸着後の離脱が進み、面方位に対する成長
速度の差をさらに大きくすることができる。
In the above embodiment, for example, if the time interval between the source gas supply is increased,
During this period, desorption after atom adsorption progresses, and the difference in growth rate with respect to the plane orientation can be further increased.

【0020】また、上記実施例では、断面V字状の凹部
内に量子細線構造を形成したが、図6に示すように、断
面矩形上の凹部内に量子細線構造を形成することもでき
る。この場合、例えば電子ビームリソグラフィー等によ
っても、幅50nm程度の溝しか形成することができな
いので、まず、電子ビームリソグラフィー等によって基
板20に幅50nm程度の矩形状の溝21を形成する
(a)。
Further, in the above embodiment, the quantum wire structure was formed in the recess having a V-shaped cross section, but as shown in FIG. 6, the quantum wire structure may be formed in the recess having a rectangular cross section. In this case, only a groove having a width of about 50 nm can be formed by, for example, electron beam lithography, so first, a rectangular groove 21 having a width of about 50 nm is formed on the substrate 20 by electron beam lithography or the like (a).

【0021】次に、比較的低温(530℃程度)で、主
として横方向(110)面に、原子層成長によってAl
GaAs膜22等を形成して溝21の幅を、量子細線と
なる10nm程度にまで狭める(b)。
Next, at a relatively low temperature (about 530 ° C.), Al is mainly grown on the lateral (110) plane by atomic layer growth.
A GaAs film 22 or the like is formed to narrow the width of the groove 21 to about 10 nm which is a quantum wire (b).

【0022】この後、上述した実施例と同様に、高温
(560℃程度)で(100)面に選択的にGaAs膜
23、AlGaAs膜22等を形成して量子細線構造を
形成することができる(c)。
Thereafter, similarly to the above-mentioned embodiment, the quantum wire structure can be formed by selectively forming the GaAs film 23, the AlGaAs film 22 and the like on the (100) plane at a high temperature (about 560 ° C.). (C).

【0023】また、このようにして、断面矩形状の井戸
型の凹部内に、量子箱構造を形成することもできる。な
お、このような矩形溝内に量子細線等を形成する場合、
従来のMOVPEによる方法では異常成長が生じてしま
い、その形状制御が困難であった。
In this way, the quantum box structure can be formed in the well-shaped recess having a rectangular cross section. When forming a quantum wire or the like in such a rectangular groove,
In the conventional method using MOVPE, abnormal growth occurs, and it is difficult to control the shape.

【0024】[0024]

【発明の効果】以上説明したように、本発明の原子層成
長による量子細線および量子箱の形成方法によれば、面
方位による成長速度の差を大きくすることができるとと
もに異常成長の発生等がなく、従来に較べて形状制御性
を向上させることができ、良好な形状の量子細線および
量子箱を形成することができる。
As described above, according to the method of forming a quantum wire and a quantum box by atomic layer growth of the present invention, it is possible to increase the difference in growth rate depending on the plane orientation and to prevent abnormal growth. In addition, the shape controllability can be improved as compared with the related art, and a quantum wire and a quantum box having a good shape can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に用いた装置の構成を示す
図。
FIG. 1 is a diagram showing a configuration of an apparatus used in an embodiment of the present invention.

【図2】成長温度に対する成長速度の面方位依存性を示
す図。
FIG. 2 is a diagram showing the plane orientation dependence of the growth rate with respect to the growth temperature.

【図3】基板面の状態を拡大して示す図。FIG. 3 is an enlarged view showing a state of a substrate surface.

【図4】原料ガス供給のタイミングを説明するための
図。
FIG. 4 is a diagram for explaining a timing of supplying a raw material gas.

【図5】実施例における原子層成長の結果を模式的に示
す図。
FIG. 5 is a diagram schematically showing the result of atomic layer growth in Examples.

【図6】断面矩形状の凹部内に量子細線を形成する手順
を説明するための図。
FIG. 6 is a diagram for explaining a procedure for forming a quantum wire in a recess having a rectangular cross section.

【符号の説明】[Explanation of symbols]

1 真空容器 2 サセプタ 3 基板 4 ランプ 5 原料ガス供給配管 6 排気配管 7 バルブ 1 vacuum container 2 susceptor 3 substrate 4 lamp 5 raw material gas supply pipe 6 exhaust pipe 7 valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 面方位を有する基板の結晶面に選択的に
薄膜を形成し、量子細線および量子箱を形成するにあた
り、 それぞれ薄膜を構成する異なった原料物質を含む少なく
とも2種類の原料ガスを所定の時間間隔を設けて交互に
供給するとともに、成長温度を所望の結晶面にのみ選択
的に原子層成長が行われる温度に設定して、所望の結晶
面にのみ原子層成長により選択的に薄膜を形成すること
を特徴とする原子層成長による量子細線および量子箱の
形成方法。
1. When selectively forming a thin film on a crystal plane of a substrate having a plane orientation to form a quantum wire and a quantum box, at least two kinds of raw material gases containing different raw materials constituting each thin film are used. While alternately supplying at a predetermined time interval, the growth temperature is set to a temperature at which atomic layer growth is selectively performed only on a desired crystal plane, and the atomic layer growth is selectively performed on only the desired crystal plane. A method for forming a quantum wire and a quantum box by atomic layer growth, which comprises forming a thin film.
【請求項2】 請求項1記載の原子層成長による量子細
線および量子箱の形成方法において、 基板に縦断面ほぼ矩形状の凹部を穿設して面方位を出
し、この後前記凹部内に原子層成長によって所望厚さの
薄膜を形成してこの凹部の内径を所望の大きさに設定す
ることを特徴とする原子層成長による量子細線および量
子箱の形成方法。
2. The method of forming a quantum wire and a quantum box by atomic layer growth according to claim 1, wherein a recess having a substantially rectangular cross section is bored in the substrate to form a plane orientation, and thereafter, atoms are deposited in the recess. A method for forming a quantum wire and a quantum box by atomic layer growth, which comprises forming a thin film having a desired thickness by layer growth and setting an inner diameter of the recess to a desired size.
【請求項3】 請求項1〜2記載の原子層成長による量
子細線および量子箱の形成方法において、 前記薄膜はGaAs膜およびAlGaAs膜であること
を特徴とする原子層成長による量子細線および量子箱の
形成方法。
3. The method for forming a quantum wire and a quantum box by atomic layer growth according to claim 1, wherein the thin film is a GaAs film and an AlGaAs film. Forming method.
JP24371192A 1992-09-11 1992-09-11 Method of forming quantum wires and quantum boxes by atomic layer growth Expired - Fee Related JP3335671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24371192A JP3335671B2 (en) 1992-09-11 1992-09-11 Method of forming quantum wires and quantum boxes by atomic layer growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24371192A JP3335671B2 (en) 1992-09-11 1992-09-11 Method of forming quantum wires and quantum boxes by atomic layer growth

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002187362A Division JP3668802B2 (en) 2002-06-27 2002-06-27 Thin film formation method by atomic layer growth

Publications (2)

Publication Number Publication Date
JPH0697071A true JPH0697071A (en) 1994-04-08
JP3335671B2 JP3335671B2 (en) 2002-10-21

Family

ID=17107851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24371192A Expired - Fee Related JP3335671B2 (en) 1992-09-11 1992-09-11 Method of forming quantum wires and quantum boxes by atomic layer growth

Country Status (1)

Country Link
JP (1) JP3335671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283145A (en) * 1994-04-11 1995-10-27 Nec Corp Compound semiconductor selective growth method and selective burying growth method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283145A (en) * 1994-04-11 1995-10-27 Nec Corp Compound semiconductor selective growth method and selective burying growth method

Also Published As

Publication number Publication date
JP3335671B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
US5250148A (en) Process for growing GaAs monocrystal film
JPH0697071A (en) Method of forming quantum line and quantum box by the growth of atomic layer
JP3668802B2 (en) Thin film formation method by atomic layer growth
JPH06132236A (en) Manufacture of semiconductor device
JP2743443B2 (en) Compound semiconductor vapor growth method and apparatus
JPH0574724A (en) Method for growth of atomic layer of aluminum compound
JPH0952792A (en) Substrate holder of apparatus for growing semiconductor
JP2577544B2 (en) Method for manufacturing semiconductor device
JPH05186295A (en) Method for growing crystal
JPH01290221A (en) Semiconductor vapor growth method
JPH01245512A (en) Formation of iii-v compound semiconductor by epitaxial growth
JP3052269B2 (en) Vapor phase growth apparatus and growth method thereof
JP2753009B2 (en) Compound semiconductor growth method
JPS61260622A (en) Growth for gaas single crystal thin film
JP2577543B2 (en) Single crystal thin film growth equipment
JP3006776B2 (en) Vapor growth method
JPH01313927A (en) Compound-semiconductor crystal growth method
JP2567228B2 (en) Epitaxial growth method for semiconductor crystals
JPH07120625B2 (en) Method for forming compound semiconductor single crystal thin film
JPS6134987A (en) Manufacture of semiconductor laser
JPS6134930A (en) Growing process of selective type crystal
JPH01290222A (en) Semiconductor vapor growth method
JP2661216B2 (en) Method for manufacturing compound semiconductor thin film
JPH04306821A (en) Compound semiconductor crystal growth method
JPH09260634A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020723

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees