JPS6134930A - Growing process of selective type crystal - Google Patents

Growing process of selective type crystal

Info

Publication number
JPS6134930A
JPS6134930A JP15398084A JP15398084A JPS6134930A JP S6134930 A JPS6134930 A JP S6134930A JP 15398084 A JP15398084 A JP 15398084A JP 15398084 A JP15398084 A JP 15398084A JP S6134930 A JPS6134930 A JP S6134930A
Authority
JP
Japan
Prior art keywords
substrate
growth
growing
gaas
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15398084A
Other languages
Japanese (ja)
Other versions
JPH0715884B2 (en
Inventor
Junichi Nishizawa
潤一 西澤
Hitoshi Abe
仁志 阿部
Soubee Suzuki
鈴木 壮兵衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP59153980A priority Critical patent/JPH0715884B2/en
Priority to GB08518834A priority patent/GB2162862B/en
Priority to DE19853526824 priority patent/DE3526824A1/en
Priority to FR8511517A priority patent/FR2578680B1/en
Publication of JPS6134930A publication Critical patent/JPS6134930A/en
Priority to US08/077,119 priority patent/US5693139A/en
Publication of JPH0715884B2 publication Critical patent/JPH0715884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make it feasible to selectively grow the single crystal of three dimensional structure by a method wherein gaseous molecule containing crystal component is introduced into an ultrahigh vacuum vessel to make the single crystal grow subject to the dimensional precision of monomolecular layer order utilizing the chemical reaction on the surface of substrate. CONSTITUTION:After etching a GaAs substrate 12, an Si3N4 film 16 is formed and then a resist pattern of photoresist 17 is formed to be etched while a mask pattern of film 16 is formed. The substrate 12 so far formed is mounted in a growing vessel 1 to be vacuumed by an ultrahigh vacuum pump 3 for introducing TMG8 while being heated by a heater 10. When, after vacuuming the gas inside growing vessel 1, AsH3 9 is introduced, single crystal of GaAs may be grown at least as monomolecular layer and then monomolecular layers may be grown one after another on a substrate 12 of no mask only without growing GaAs at all while a GaAs single crystal growing layer 18 may be grown subject to the dimensional precision of monomolecular layer by means of repeating said procedures.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は選択的に結晶層を形成する選択型結晶の成長方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a selective crystal growth method for selectively forming a crystal layer.

[先行技術とその問題点コ 近年1通信や制御の高速化に伴い、マイクロ波からミリ
波帯で高性能を発揮する三端子素子、各種ダイオード等
々および光波帯での半導体装置(レーザー、発光、受光
素子等)への要望が強まり、厚さ方向に対しては単分子
層オーダーの寸法精度で、三次元構造を有する選択エピ
タキシャル法が切望されている。
[Prior technologies and their problems] In recent years 1 With the increase in speed of communication and control, three-terminal elements, various diodes, etc. that exhibit high performance in the microwave to millimeter wave band, and semiconductor devices in the light wave band (laser, light emitting, There is an increasing demand for photodetectors (e.g., photodetectors), and a selective epitaxial method that has a three-dimensional structure with dimensional accuracy on the order of a monomolecular layer in the thickness direction is strongly desired.

■−■族の化合物半導体の薄膜結晶を得るための気相エ
ピタキシー技術に、有機金属気相成長法(以下、MO−
CVD法と呼ぶ)、分子線エピタキシー法(以下、MB
E法と呼ぶ)、フィンランドで発明された原子層エピタ
キシー法(以下+ ALE法と呼ぶ)などがある。しか
し、MO−CVD法はソースとしてIII族、V族化合
物を水素ガス等をキャリアとして同時に反応室へ導入し
、熱分解によって成長させるため、成長層の品質が悪い
。また、単分子層オーダーの制御は困難である。更に、
基板上にマスクパターンに応じた選択的なエピタキシャ
ル成長層を形成しようと思っても、マスク材にまで結晶
成長するため、選択エピタキシーは困難である。
Metal-organic vapor phase epitaxy (hereinafter referred to as MO-
CVD method), molecular beam epitaxy method (hereinafter referred to as MB
These include the atomic layer epitaxy method (hereinafter referred to as the +ALE method) invented in Finland. However, in the MO-CVD method, a group III or V compound as a source is simultaneously introduced into a reaction chamber using hydrogen gas or the like as a carrier, and the growth is caused by thermal decomposition, so that the quality of the grown layer is poor. Furthermore, it is difficult to control the monolayer order. Furthermore,
Even if an attempt is made to form a selective epitaxial growth layer on a substrate according to a mask pattern, selective epitaxy is difficult because crystals grow even on the mask material.

一方、超高真空を利用した結晶成長法としてよく知られ
るMBE法は、物理吸着を第一段階とするために、結晶
の品質が化学反応を利用した気相成長法に劣る。また、
GaAsのような■−■族間の化合物半導体を成長する
時には、III族、V族元素をソースとして用い、ソー
ス源自体を成長室の中に設置している。そのため、ソー
ス源を加熱することによる放出ガスおよび蒸発量の制御
、ソースの補給が困難であり、成長速度を長時間一定に
保つことができない。更に、蒸発物の排気など真空装置
が複雑になる。また、化合物半導体の化学量的組成(ス
トイキオメトリ−)を精密に制御することが困難で、結
局、高品質の結晶を得ることができない。更には、MO
−CVD法と同様基板上に基板と異なる材料からなるマ
スクパターン上にも結晶成長するため、選択エピタキシ
ーが困難である。
On the other hand, the MBE method, which is well known as a crystal growth method using an ultra-high vacuum, uses physical adsorption as the first step, so the quality of the crystal is inferior to the vapor phase growth method using a chemical reaction. Also,
When growing a compound semiconductor between groups 1 and 2, such as GaAs, a group III or group V element is used as a source, and the source itself is placed in a growth chamber. Therefore, it is difficult to control the amount of emitted gas and evaporation by heating the source, and to replenish the source, making it impossible to keep the growth rate constant for a long time. Furthermore, vacuum equipment such as evacuation of evaporated matter becomes complicated. Furthermore, it is difficult to precisely control the stoichiometric composition (stoichiometry) of the compound semiconductor, and as a result, it is impossible to obtain high-quality crystals. Furthermore, M.O.
- Similar to the CVD method, selective epitaxy is difficult because crystals grow on a mask pattern made of a material different from that of the substrate on the substrate.

更にALE法は、T、Sur+tolaらが[1,S、
P、NQ4058430(1977)で説明しているよ
うに、MBE法を改良し半導体元素のそれぞれをパルス
状に交互に供給し、単原子層を基板に交互に付着させ、
薄膜を原子層ずつ成長させるもので、原子層の精度で膜
厚を制御できる利点があるが、MBE法の延長でありM
BEと同様に結晶性が良くない。また成長した薄膜もC
dTe、 ZnTe等のII−IV族化合物半導体に限
られ、現在超LSI等の半導体装置の主力であるSiや
GaAsに関しては成功していない。ALEを改良して
分子層を吸着し、表面での化学反応を利用した成長も試
みられてはいるがZnSの多結晶Ta 20 sのアモ
ルファスの薄膜の成長であり単結晶成長技術とはなって
いない。従って、絶縁物等をマスク材料として半導体基
板上にのみ選択エピタキシーを行なうのは極めて困難で
ある。
Furthermore, the ALE method was developed by T, Sur+tola et al. [1,S,
P, NQ4058430 (1977), the MBE method is modified to alternately supply each of the semiconductor elements in a pulsed manner to deposit monoatomic layers alternately on the substrate.
It grows a thin film atomic layer by atomic layer, and has the advantage of being able to control the film thickness with atomic layer precision, but it is an extension of the MBE method.
Like BE, it has poor crystallinity. Also, the grown thin film is C
It is limited to II-IV group compound semiconductors such as dTe and ZnTe, and has not been successful with Si and GaAs, which are currently the mainstay of semiconductor devices such as VLSI. Attempts have been made to improve ALE to adsorb a molecular layer and use chemical reactions on the surface for growth, but this is a growth of an amorphous thin film of polycrystalline Ta 20 s of ZnS and is not a single-crystal growth technique. do not have. Therefore, it is extremely difficult to perform selective epitaxy only on a semiconductor substrate using an insulator or the like as a mask material.

このように、上述した従来方法ではいずれも選択エピタ
キシーが得られない上、MO−CVD法やMBE法では
化学量論的組成を満足する高品質の結晶を単分子層オー
ダーで形成することが困菫な一方、ALE法では単結晶
が得られない欠点があった。
As described above, none of the conventional methods described above can achieve selective epitaxy, and it is difficult to form high-quality crystals that satisfy the stoichiometric composition on the order of a monomolecular layer using the MO-CVD method or MBE method. On the other hand, the ALE method has the drawback that a single crystal cannot be obtained.

[発明の目的コ 本発明は上記従来技術の欠点を除き、厚さ方向に対して
は単分子層オーダーの寸法精度で制御できる三次元構造
の単結晶の選択成長が可能な選択型結晶の成長方法を提
供することを目的とする。
[Purpose of the Invention] The present invention eliminates the drawbacks of the above-mentioned prior art and provides selective crystal growth that enables selective growth of a single crystal with a three-dimensional structure that can be controlled with dimensional accuracy on the order of a monolayer in the thickness direction. The purpose is to provide a method.

[発明の概要コ このため本発明は、結晶成分元素を含むガス状分子を超
高真空槽に導入し、場合によっては光を照射しながら加
熱した基板表面での化学反応を用いて単結晶を単分子層
オーダーの寸法精度で成長させることにより、選択成長
を得るようにしたことを特徴としている。
[Summary of the Invention] Therefore, the present invention introduces gaseous molecules containing crystal component elements into an ultra-high vacuum chamber, and in some cases generates a single crystal by using a chemical reaction on the heated substrate surface while irradiating it with light. It is characterized by achieving selective growth by growing with dimensional accuracy on the order of a monomolecular layer.

[発明の実施例コ 第1図は本発明の一実施例に係る選択型結晶成長装置の
構成図を示したもので、1は成長槽で材質はステンレス
等の金属、2はゲートバルブ、3は成長槽1内を超高真
空に排気するための排気装置。
[Embodiment of the Invention] Figure 1 shows a configuration diagram of a selective crystal growth apparatus according to an embodiment of the present invention, in which 1 is a growth tank made of metal such as stainless steel, 2 is a gate valve, and 3 is a growth tank made of metal such as stainless steel. is an exhaust device for evacuating the inside of the growth tank 1 to an ultra-high vacuum.

4.5は■−■族化合物半導体のmg、v族の成分元素
のガス状の化合物を導入するノズル、6,7はノズル4
,5を開閉するバルブ、8は■族の成分元素を含むガス
状の化合物、9は■族の成分元素を含むガス状の化合物
、10は基板加熱用のヒーターで石英ガラスに封入した
タングステン(W)線であり、電線等は図示省略してい
る。11は測温用の熱電対、12は半導体の基板、13
は成長槽内の真空度を測るための圧力計である。また、
14は光源、15は光源からの光を基板12に導くため
の窓である。
4.5 is a nozzle that introduces mg of the ■-■ group compound semiconductor and a gaseous compound of a component element of the V group; 6 and 7 are nozzles 4;
, 5 is a valve that opens and closes, 8 is a gaseous compound containing a component element of the group ■, 9 is a gaseous compound containing a component element of the group ■, 10 is a heater for heating the substrate, and tungsten ( W) wire, and electric wires and the like are not shown. 11 is a thermocouple for temperature measurement, 12 is a semiconductor substrate, 13
is a pressure gauge to measure the degree of vacuum inside the growth tank. Also,
14 is a light source, and 15 is a window for guiding light from the light source to the substrate 12.

以上の構成で、GaAs基板12上にGaAs単結晶を
選択成長させる方法は、以下のように実施する。即ち、
先ず、鏡面研磨したGaAs基板12を通常のエッチン
グ法で約1〜2μmエツチングした後、第2図(a)に
示すように、前記GaAs基板上12に一様なSi s
 N a膜16をプラズマCvD法ニヨッテ約2000
 A(200nm)の厚さ形成し、更にホトレジスト1
7を塗布する。次に、通常のホトエツチング法により、
第2図(b)に示すようにレジストパターンを形成する
。その後、バッファーエッチャントHF:H20=1:
5を用いて、Si s N 4膜16をエツチングした
後、レジスト17を除去して第2図(c)に示すように
基板12上にSi 3N 4膜16のマスクパターンを
形成する。
With the above configuration, a method for selectively growing a GaAs single crystal on the GaAs substrate 12 is carried out as follows. That is,
First, a mirror-polished GaAs substrate 12 is etched by about 1 to 2 μm using a normal etching method, and then a uniform Si s layer is etched on the GaAs substrate 12 as shown in FIG.
The Na film 16 was deposited using the plasma CVD method to approximately 2,000 ni.
A (200 nm) thickness is formed, and then photoresist 1 is formed.
Apply 7. Next, by the usual photoetching method,
A resist pattern is formed as shown in FIG. 2(b). After that, buffer etchant HF:H20=1:
After etching the Si 3 N 4 film 16 using etching film 5, the resist 17 is removed to form a mask pattern of the Si 3 N 4 film 16 on the substrate 12 as shown in FIG. 2(c).

更に1表面を洗浄し、有機アルカリのTHAH(トリア
ルキ2−1ヒドロキシアルキルアンモニウムハイドロキ
サイド)を含むGaAaエツチング液により、GaAs
基板12の表面を約10OA程エツチングしたのち、洗
浄乾燥する。
The first surface was further cleaned, and the GaAs was etched using a GaAa etching solution containing an organic alkali, THAH (trialky-2-1 hydroxyalkylammonium hydroxide).
After etching the surface of the substrate 12 by about 10 OA, it is washed and dried.

このようにしてマスクパターンの形成された基板12を
第1図に示した成長槽1内のヒーター10上に設置した
のち、ゲートバルブ2を開けて超高真空排気装置3によ
り、成長槽1内を10−7〜10−@Pagcal(以
下、Paと略す)程度に排出する。次に、GaAs基板
12を例えば300〜800℃程度ヒーター10により
加熱し、 Gaを含むガスとしてTMG()−リメチル
ガリウム)8を成長槽1内の圧力が、10−1〜10’
Paになる範囲で、0.5〜10秒間バルブ6を開けて
導入する。その後、バルブ6を閉じて成長槽1内のガス
を排出後、今度はAsを含むガスとしてAsH39を成
長槽1内の圧力が10″″1〜1O−7Paとなる範囲
で2〜200秒間バルブ7を開けて導入する。
After the substrate 12 on which the mask pattern has been formed is placed on the heater 10 in the growth tank 1 shown in FIG. is discharged to about 10-7 to 10-@Pagcal (hereinafter abbreviated as Pa). Next, the GaAs substrate 12 is heated, for example, to about 300 to 800° C. by the heater 10, and TMG()-limethylgallium) 8 is added as the Ga-containing gas at a pressure in the growth tank 1 of 10-1 to 10'.
The valve 6 is opened for 0.5 to 10 seconds and the water is introduced within the range of Pa. After that, after closing the valve 6 and discharging the gas in the growth tank 1, this time, AsH39 is added as a gas containing As for 2 to 200 seconds in a range where the pressure in the growth tank 1 is 10''1 to 1O-7Pa. Open 7 and install.

これにより、マスクのない部分のみに選択的にGaAs
単結晶を少なくとも単分子層成長させることができる。
As a result, GaAs is selectively applied only to the areas without a mask.
A single crystal can be grown to at least a monolayer.

更に、以上の操作を繰り返すことにより、第2図(d)
に示すように、Si s N 4膜16上にはGaAs
を全く成長させることなしに、マスクのない基板12上
にのみ単分子層を次々と成長させ、所望の厚さのGaA
s単結晶成長層を単分子層の寸法精度で成長させること
ができる。
Furthermore, by repeating the above operation, the image shown in Fig. 2(d) is obtained.
As shown in FIG.
By growing monolayers one after the other only on the maskless substrate 12 without growing any GaA
s Single crystal growth layer can be grown with the dimensional accuracy of a monomolecular layer.

次いで、バッファーエッチャントにより、Si s N
 4膜16を除去すると、第2図(e)に示すように、
基板12上にはマスクパターンに従った所望の領域に所
望の厚さのGaAs単結晶の選択成長層が得られる。
Then, with a buffer etchant, Si s N
When the four films 16 are removed, as shown in FIG. 2(e),
A selectively grown layer of GaAs single crystal having a desired thickness is obtained on the substrate 12 in a desired region according to the mask pattern.

この過程において、基板12上の加熱と共に、光源14
から紫外線を基板12に照射するようにすれば、成長温
度を400℃以下に低下させることができ、結晶品質を
改善することができる。
In this process, as well as heating the substrate 12, the light source 14
By irradiating the substrate 12 with ultraviolet rays from above, the growth temperature can be lowered to 400° C. or less, and the crystal quality can be improved.

以上の選択成長法は、理論的には未だ十分解明されてい
ないが実験結果に基づき得られたものである。
The selective growth method described above has not yet been fully elucidated theoretically, but was obtained based on experimental results.

第3図はその実験例を示したもので、導入ガスとして、
TMGとAsHsを用いた時の成長温度600℃でのT
MGとAsH3を交互に導入する回数と、GaAsエピ
タキシャル成長層の膜厚の関係図である。例えば、ガス
8,9を400回交互に導入したときの成長層膜厚は2
000人で、2000回および4000回の導入では1
μmおよび2μlであった。このように、ガス導入回数
と成長膜厚との関係は非常によい直線性を示し、ガス導
入回数を制御することにより、成長層膜厚を制御するこ
とができることが確認できた。
Figure 3 shows an example of this experiment, where the introduced gas was
T at a growth temperature of 600°C when using TMG and AsHs
FIG. 3 is a diagram showing the relationship between the number of times MG and AsH3 are alternately introduced and the thickness of the GaAs epitaxial growth layer. For example, when gases 8 and 9 are introduced alternately 400 times, the thickness of the growth layer is 2.
000 people, 1 for 2000 and 4000 deployments
μm and 2 μl. In this way, the relationship between the number of gas introductions and the grown film thickness showed very good linearity, and it was confirmed that the growth layer thickness could be controlled by controlling the number of gas introductions.

第4図は本発明の別の実施例を示したものであり、選択
成長層に不純物添加をするためのものである。 20.
21は例えば不純物添加に用いるガス状化合物を導入す
るノズル、22.23はノズル20.21を開閉するバ
ルブ、24は■族の成分元素を含むガス状の化合物、2
5は■族の成分元素を含むガス状の化合物である。不純
物を添加する以外の部分は第1図の実施例と同一である
ので説明は省略する。
FIG. 4 shows another embodiment of the present invention, which is for doping impurities into a selectively grown layer. 20.
21 is a nozzle for introducing a gaseous compound used for adding impurities, 22.23 is a valve that opens and closes the nozzle 20.21, 24 is a gaseous compound containing a component element of the group (2);
5 is a gaseous compound containing a component element of group (1). Since the parts other than the addition of impurities are the same as the embodiment shown in FIG. 1, their explanation will be omitted.

この構成で、P型の選択成長層を形成する場合は、導入
ガスとしてTM[;、()リメチルガリウム)8、As
Hs、 (アルシン)9と添加する不純物ガスとしてZ
MZn (ジメチル亜鉛)24の3つのガスを循環式に
導入する。また、別の方法としてはTMG8とZMZn
24を同時にAsHa 9とは交互に導入するか、As
H39とZMZn24を同時にTMG8とは交互に導入
することによって不純物添加ができる。
When forming a P-type selective growth layer with this configuration, the introduced gas is TM[;, ()limethylgallium)8, As
Hs, (arsine)9 and Z as an added impurity gas
Three gases, MZn (dimethylzinc) 24, are introduced in a circulating manner. Also, as another method, TMG8 and ZMZn
24 at the same time and alternately with AsHa 9, or AsHa
Impurities can be added by simultaneously introducing H39 and ZMZn24 alternately with TMG8.

尚、不純物ガスとしてはZMCd (ジメチルカドミウ
ム)、 ZMMg(ジメチルマグネシウム)、5it(
a(モノシラン)、GeH4(ゲルマン)などでもよい
In addition, the impurity gases include ZMCd (dimethyl cadmium), ZMMg (dimethyl magnesium), and 5it (
a (monosilane), GeH4 (germane), etc. may also be used.

次に、n型の選択成長層の形成は、添加する不純物ガス
としてZMSo21(ジメチルセレン)をT’MG8、
AsHs 9と循環式に導入する。別の方法としてはT
MG8と2MSe25を同時にTMG8とは交互に導入
することによって不純物添加ができる。
Next, to form an n-type selective growth layer, ZMSo21 (dimethyl selenium) was added as an impurity gas to T'MG8,
AsHs 9 is introduced in a circular manner. Another method is T
Impurities can be added by simultaneously introducing MG8 and 2MSe25 and alternately introducing TMG8.

尚、このときの不純物ガスとしてはXMS(ジメチル硫
黄)、H2S(硫化水素)、8258(セレン化水素)
などを用いることができる。
In addition, the impurity gases at this time include XMS (dimethyl sulfur), H2S (hydrogen sulfide), and 8258 (hydrogen selenide).
etc. can be used.

この場合、不純物ガスの導入流量をAsHs 9、TM
G8に比べ、例えば10−3〜10−6程小さく取り導
入時間は0.5〜10秒程にすることにより、厚さ方向
に所望の不純物濃度分布を有する分子層エピタキシャル
成長層が形成できる。また、添加する不純物ガスの量と
時間を調整することにより、pn接合、不均一不純物密
度分布、npn、 npin、 pnp、pnip等の
バイポーラトランジスタ構造、n 十in ”、n”n
  n十構造等の電界効果トランジスタや静電誘導トラ
ンジスタ、pnpnのサイリスタ構造等を実現できるこ
とは勿論である。
In this case, the flow rate of impurity gas introduced is AsHs 9, TM
A molecular layer epitaxial growth layer having a desired impurity concentration distribution in the thickness direction can be formed by making the impurity smaller than G8 by, for example, 10 -3 to 10 -6 and setting the introduction time to about 0.5 to 10 seconds. In addition, by adjusting the amount and time of the impurity gas added, it is possible to improve the structure of pn junctions, non-uniform impurity density distributions, bipolar transistor structures such as npn, npin, pnp, pnip, etc.
Of course, it is possible to realize field effect transistors such as n0 structure, electrostatic induction transistors, pnpn thyristor structures, etc.

尚、以上述べた実施例において、結晶成長に用いるガス
は主にGaAsについて説明してきたが、InP、 A
ΩP、 GaP等他のm−v族化合物に適用できること
は勿論である。更には、Ga1−xAflxAs、基板
はGaAsに限らず他の化合物基板に成長させるヘテロ
エピタキシャル成長等でも良い。勿論、半導体が■族の
ような単元素の半導体の結晶成長もすることができる。
In the examples described above, GaAs was mainly used as the gas used for crystal growth, but InP, A
Of course, it can be applied to other m-v group compounds such as ΩP and GaP. Furthermore, the substrate is not limited to Ga1-xAflxAs, but may be formed by heteroepitaxial growth on other compound substrates. Of course, it is also possible to grow crystals of single-element semiconductors, such as semiconductors of group Ⅰ.

この場合、Siでは反応性のガスとしてSiCΩ4 、
5iHCA s 、 5iH2Cfl 2のような塩化
物と112ガスの組み合せによって結晶成長を行なうこ
とができる。
In this case, for Si, SiCΩ4 is used as a reactive gas,
Crystal growth can be performed by a combination of chloride such as 5iHCA s or 5iH2Cfl 2 and 112 gas.

[発明の効果] 以上のように本発明によれば、基板上の所望の領域に所
望の厚さの単結晶を単分子層オーダーの寸法精度で選択
成長させることができる。またこのとき、不純物の添加
も一層ずつ行なうことができ、非常に急峻な不純物濃度
分布を得ることができ、半導体デバイスの製造に優れた
作用効果を発揮する。
[Effects of the Invention] As described above, according to the present invention, a single crystal of a desired thickness can be selectively grown in a desired region on a substrate with dimensional accuracy on the order of a monomolecular layer. Further, at this time, impurities can be added layer by layer, and a very steep impurity concentration distribution can be obtained, which exhibits excellent effects in manufacturing semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る選択型結晶成長装置の
構成図、第2図(a)〜(e)は第1図の装置による選
択成長経過説明図、第3図は第1図の装置における成長
膜厚とガス導入回数との関係図、第4図は本発明の他の
実施例に係る選択型結晶成長装置の構成図である。 1・・・成長槽、2 ・・ゲートバルブ、3・・・排気
装置、4,5,20.21・・・ノズル、6,7,22
.23・・・バルブ、8,9,24.25・・・ガス状
の化合物、10・・・ヒーター、11・・・熱電対、1
2・・・基板、13・・・圧力計、14・・・光源、1
5・・・窓、16・・・Si s N a吻、17・・
・ホトレジスタ。 第1図 第2図 (a) (b) (C) (d) (e) 第3図 (1+意目盛)
FIG. 1 is a block diagram of a selective crystal growth apparatus according to an embodiment of the present invention, FIGS. FIG. 4 is a diagram showing the relationship between the growth film thickness and the number of times gas is introduced in the apparatus shown in FIG. 4, and FIG. 4 is a configuration diagram of a selective crystal growth apparatus according to another embodiment of the present invention. 1... Growth tank, 2... Gate valve, 3... Exhaust device, 4, 5, 20. 21... Nozzle, 6, 7, 22
.. 23... Valve, 8,9,24.25... Gaseous compound, 10... Heater, 11... Thermocouple, 1
2... Board, 13... Pressure gauge, 14... Light source, 1
5... Window, 16... Sis Na proboscis, 17...
・Photoresistor. Figure 1 Figure 2 (a) (b) (C) (d) (e) Figure 3 (1 + scale)

Claims (3)

【特許請求の範囲】[Claims] (1)結晶性基板上にこの基板と異なる材料からなるマ
スクパターンを形成し、洗浄乾燥後、成長槽内に設置し
、前記成長槽を所定の真空度まで排気した後、前記基板
を加熱し、半導体の成分元素を含むガス状分子を所定の
圧力で所定の時間導入し、排気した後に前記半導体の別
の成分元素を含むガス状分子もしくは前記半導体の成分
元素を含むガス状分子と反応するガスを所定の圧力で所
定の時間導入し、排気することにより、単分子層成長さ
せ、更に以上の操作を繰り返すことにより、所望の厚さ
の半導体の単結晶薄膜を前記基板上にのみ選択的に、単
分子層の精度で、成長させることを特徴とする選択型結
晶の成長方法。
(1) A mask pattern made of a material different from that of the substrate is formed on a crystalline substrate, and after cleaning and drying, it is placed in a growth tank, and after evacuating the growth tank to a predetermined degree of vacuum, the substrate is heated. , a gaseous molecule containing a component element of the semiconductor is introduced at a predetermined pressure for a predetermined period of time, and after being evacuated, reacts with a gaseous molecule containing another component element of the semiconductor or a gaseous molecule containing a component element of the semiconductor. By introducing a gas at a predetermined pressure for a predetermined time and evacuating it, a monomolecular layer is grown, and by repeating the above steps, a semiconductor single crystal thin film of a desired thickness is selectively formed only on the substrate. A selective crystal growth method characterized by growing with monomolecular layer precision.
(2)特許請求の範囲第1項記載において、結晶性基板
がIII−V族化合物半導体よりなり、成長用ソースガス
としての材料分子がIII族、V族元素よりなる選択型結
晶の成長方法。
(2) A method for growing a selective crystal according to claim 1, wherein the crystalline substrate is made of a III-V group compound semiconductor, and the material molecules as a growth source gas are made of group III or V elements.
(3)特許請求の範囲第2項記載において、マスクパタ
ーン材料としてSi_xN_yもしくはSi_xO_y
もしくはSi_xN_yとSi_xO_yとの複合膜の
いずれか一つを用い、成長前の基板の洗浄およびエッチ
ング液としてTHAH(トリアルキル2−1ヒドロキシ
アルキルアンモニウムハイドロキサイド)を成分とする
液体を用いる選択型結晶の成長方法。
(3) In claim 2, the mask pattern material is Si_xN_y or Si_xO_y.
Alternatively, a selective crystal using one of the composite films of Si_xN_y and Si_xO_y and using a liquid containing THAH (trialkyl 2-1 hydroxyalkylammonium hydroxide) as a component for cleaning and etching the substrate before growth. How to grow.
JP59153980A 1984-07-26 1984-07-26 Selective crystal growth method Expired - Fee Related JPH0715884B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59153980A JPH0715884B2 (en) 1984-07-26 1984-07-26 Selective crystal growth method
GB08518834A GB2162862B (en) 1984-07-26 1985-07-25 A method of growing a thin film single crystalline semiconductor
DE19853526824 DE3526824A1 (en) 1984-07-26 1985-07-26 METHOD FOR FORMING A MONOCRISTALLINE THIN FILM FROM A CONNECTION SEMICONDUCTOR
FR8511517A FR2578680B1 (en) 1984-07-26 1985-07-26 PROCESS FOR FORMING A MONOCRYSTALLINE THIN FILM OF SEMICONDUCTOR COMPOUND
US08/077,119 US5693139A (en) 1984-07-26 1993-06-15 Growth of doped semiconductor monolayers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59153980A JPH0715884B2 (en) 1984-07-26 1984-07-26 Selective crystal growth method

Publications (2)

Publication Number Publication Date
JPS6134930A true JPS6134930A (en) 1986-02-19
JPH0715884B2 JPH0715884B2 (en) 1995-02-22

Family

ID=15574278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153980A Expired - Fee Related JPH0715884B2 (en) 1984-07-26 1984-07-26 Selective crystal growth method

Country Status (1)

Country Link
JP (1) JPH0715884B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255620A (en) * 1990-03-05 1991-11-14 Daido Sanso Kk Low temperature selective epitaxial growth method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130896A (en) * 1979-02-28 1980-10-11 Lohja Ab Oy Method and device for growing compound thin membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130896A (en) * 1979-02-28 1980-10-11 Lohja Ab Oy Method and device for growing compound thin membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255620A (en) * 1990-03-05 1991-11-14 Daido Sanso Kk Low temperature selective epitaxial growth method

Also Published As

Publication number Publication date
JPH0715884B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US5250148A (en) Process for growing GaAs monocrystal film
US4808551A (en) Method for halide VPE of III-V compound semiconductors
JPS6134929A (en) Growing device of semiconductor device
Nishizawa et al. Deposition mechanism of GaAs epitaxy
US4773355A (en) Growth of epitaxial films by chemical vapor deposition
GB2162862A (en) Process for forming monocrystalline thin film of compound semiconductor
EP0241204B1 (en) Method for forming crystalline deposited film
Ozeki et al. Growth of GaAs and AlAs thin films by a new atomic layer epitaxy technique
JPS6134927A (en) Growing process of compound semiconductor single crystal thin film
JPH03132016A (en) Method of forming crystal
Usui et al. Atomic layer epitaxy of III-V electronic materials
US5229319A (en) Method for producing compound semiconductors and apparatus therefor
JPS63237517A (en) Selective formation of iii-v compound film
JPS6134930A (en) Growing process of selective type crystal
JP2577550B2 (en) Impurity doping of III-V compound semiconductor single crystal thin films
JP2577544B2 (en) Method for manufacturing semiconductor device
JPS61260622A (en) Growth for gaas single crystal thin film
JP2549835B2 (en) Method for manufacturing compound semiconductor thin film
JPS63239937A (en) Method for forming semiconductor polycrystalline film
JPH01313927A (en) Compound-semiconductor crystal growth method
JP2567228B2 (en) Epitaxial growth method for semiconductor crystals
JPS6134922A (en) Manufacture of super lattice semiconductor device
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPS63129616A (en) Semiconductor device and manufacture thereof
JP2620546B2 (en) Method for producing compound semiconductor epitaxy layer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees