JPH0234916B2 - BUNSHISENEPITAKISHARUKETSUSHOSEICHOHO - Google Patents

BUNSHISENEPITAKISHARUKETSUSHOSEICHOHO

Info

Publication number
JPH0234916B2
JPH0234916B2 JP17791284A JP17791284A JPH0234916B2 JP H0234916 B2 JPH0234916 B2 JP H0234916B2 JP 17791284 A JP17791284 A JP 17791284A JP 17791284 A JP17791284 A JP 17791284A JP H0234916 B2 JPH0234916 B2 JP H0234916B2
Authority
JP
Japan
Prior art keywords
substrate
crystal growth
molecular beam
metal film
epitaxial crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17791284A
Other languages
Japanese (ja)
Other versions
JPS6158892A (en
Inventor
Yasunobu Nashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP17791284A priority Critical patent/JPH0234916B2/en
Publication of JPS6158892A publication Critical patent/JPS6158892A/en
Publication of JPH0234916B2 publication Critical patent/JPH0234916B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、分子線エピタキシヤル(以後MBE
と記す)結晶成長法に関し、特に、分子線エピタ
キシヤル結晶成長を行う際の基板の加熱方法に関
するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to molecular beam epitaxial (hereinafter MBE)
The present invention relates to a crystal growth method (described as ), and particularly relates to a method of heating a substrate when performing molecular beam epitaxial crystal growth.

(従来技術) ―族の化合物半導体であるGaP,InPや
GaAs基板上へ、MBE法でエピタキシヤル結晶
を成長させる場合、従来は第2図からわかるよう
にまず基板1を保持する目的のMoブロツク2を
N2雰囲気中で200℃程度に加熱し、Moブロツク
2上にIn3を溶かしてその上から基板1を乗せて
Moブロツク2と基板1を接着する。次いで第2
図に示す様にその基板1及びMoブロツク2を超
高真空容器4に導入し、超高真空中でそのMoブ
ロツク2の裏面からタンタル等のヒーター5の輻
射によつて基板1を加熱し、基板前方に配した分
子線源6から所望の分子線を発生させ、基板1の
表面にエピタキシヤル結晶を成長させる。この
Moブロツク2は効率良く輻射熱を吸収し、これ
によつて基板1は均一に加熱される。エピタキシ
ヤル結晶成長後、基板1及びMoブロツク2を真
空容器外へ取り出し、再びN2雰囲気中で200℃程
度に加熱し、Inを融解させ基板1とMoブロツク
2を分離する。
(Prior art) GaP, InP, etc., which are compound semiconductors of the - group,
When growing epitaxial crystals on a GaAs substrate by the MBE method, conventionally, as shown in Figure 2, first a Mo block 2 for the purpose of holding the substrate 1 is grown.
Heat it to about 200℃ in an N2 atmosphere, melt In3 on Mo block 2, and place substrate 1 on top of it.
Glue Mo block 2 and substrate 1. Then the second
As shown in the figure, the substrate 1 and the Mo block 2 are introduced into an ultra-high vacuum container 4, and the substrate 1 is heated by radiation from a heater 5 made of tantalum or the like from the back side of the Mo block 2 in the ultra-high vacuum. A desired molecular beam is generated from a molecular beam source 6 placed in front of the substrate to grow epitaxial crystals on the surface of the substrate 1. this
The Mo block 2 efficiently absorbs radiant heat, thereby uniformly heating the substrate 1. After epitaxial crystal growth, the substrate 1 and the Mo block 2 are taken out of the vacuum chamber and heated again to about 200° C. in an N 2 atmosphere to melt the In and separate the substrate 1 and the Mo block 2.

以上の方法でMBE結晶成長を行なう場合、基
板1とMoブロツク2の接着、及び分離工程が手
作業に頼らざるを得ず、非効率的である。又、In
3と基板1が合金反応を生ずることが多くそのた
め基板1の裏面からIn3を除去しても合金層が数
10μmの深さまで形成されている。この合金層は
非常に不均一でしかももろく、凸凹であるので素
子を形成するためにこの基板1を加工する際多く
の問題を生じさせる。したがつてこれまではこの
合金層を研摩し除去していた。
When MBE crystal growth is performed using the above method, the adhesion and separation steps between the substrate 1 and the Mo block 2 must be performed manually, which is inefficient. Also, In
3 and substrate 1 often cause an alloy reaction, so even if In3 is removed from the back side of substrate 1, several alloy layers remain.
It is formed to a depth of 10 μm. This alloy layer is very non-uniform, brittle and uneven, giving rise to many problems when processing this substrate 1 to form devices. Therefore, until now, this alloy layer has been removed by polishing.

(発明の目的) 本発明の目的は、上記欠点に対処してなされた
もので、Moブロツク及びInを使用することなく、
真空中で効率よく均一にヒーターからの輻射によ
つて直接基板を加熱することができる分子線エピ
タキシヤル結晶成長法を提供することにある。
(Object of the invention) The object of the present invention has been made to address the above-mentioned drawbacks, and it is possible to
An object of the present invention is to provide a molecular beam epitaxial crystal growth method that can efficiently and uniformly heat a substrate directly in a vacuum using radiation from a heater.

(発明の構成) 本発明の分子線エピタキシヤル結晶成長法は、
超高真空中で加熱した基板の表面に結晶構成要素
を入射させ、該基板の表面にエピタキシヤル結晶
成長を行なう分子線エピタキシヤル結晶成長法に
おいて、あらかじめ前記基板の裏面に金属膜を堆
積しエピタキシヤル結晶成長時に熱輻射によつて
前記金属膜を直接加熱し該金属膜からの熱伝導に
よつて前記基板を加熱することを特徴として構成
される。
(Structure of the Invention) The molecular beam epitaxial crystal growth method of the present invention includes:
In the molecular beam epitaxial crystal growth method, in which a crystal component is incident on the surface of a substrate heated in an ultra-high vacuum and epitaxial crystal growth is performed on the surface of the substrate, a metal film is deposited on the back surface of the substrate in advance and then epitaxially grown. The present invention is characterized in that the metal film is directly heated by thermal radiation during the growth of the crystal, and the substrate is heated by heat conduction from the metal film.

また、本発明は基板がGaAs,InP,GaPのい
ずれかであるときに特徴を発揮することができ、
また金属膜としてはMo,W,Taの何れかを使用
することにより効果をより発揮できる。
In addition, the present invention can exhibit its characteristics when the substrate is GaAs, InP, or GaP.
Furthermore, the effect can be more effectively achieved by using any one of Mo, W, and Ta as the metal film.

(作 用) 本発明では、基板の裏面に高融点金属膜をスパ
ツタデポジツシヨン法等で形成し、真空中でこの
金属膜をタンタル等のヒーターからの輻射によつ
て加熱し、この熱を基板に熱伝導させて基板を加
熱する。
(Function) In the present invention, a high melting point metal film is formed on the back surface of a substrate by a sputter deposition method, etc., and this metal film is heated in vacuum by radiation from a heater such as tantalum. conducts heat to the substrate to heat the substrate.

ここで基板の裏面に金属膜がないと、バンドギ
ヤツプが室温で1.3eV程度以上の半導体基板の場
合、ヒーターからの輻射波長のスペクトルのピー
ク波長における基板の吸収係数が小さく効率良く
基板を加熱できない。しかも基板の熱伝導率が小
さいと基板全体を均一に加熱することが難しく、
このため基板面内で温度差が生じ、均一な結晶成
長を行なうことができない。
If there is no metal film on the back side of the substrate, in the case of a semiconductor substrate with a bandgap of about 1.3 eV or more at room temperature, the absorption coefficient of the substrate at the peak wavelength of the spectrum of the radiation wavelength from the heater is small and the substrate cannot be heated efficiently. Moreover, if the thermal conductivity of the substrate is low, it is difficult to uniformly heat the entire substrate.
Therefore, a temperature difference occurs within the plane of the substrate, making it impossible to achieve uniform crystal growth.

ところが基板の裏面に高融点金属膜を形成して
おくことによつてヒーターからの輻射は効率良く
吸収され、金属膜自体熱伝導率が大きいため均一
に基板を加熱できる。しかも基板と高融点金属と
の間の合金反応は600℃程度のエピタキシヤル結
晶成長温度ではほとんど起こらない。したがつて
基板の裏面に極端な凸凹が生じることはない。ま
たエピタキシヤル結晶成長後に基板の裏面から高
融点金属膜を除去する必要がある場合にはCCl4
等のガスプラズマエツチング法を用いて簡単に除
去できる。
However, by forming a high melting point metal film on the back surface of the substrate, the radiation from the heater is efficiently absorbed, and since the metal film itself has high thermal conductivity, the substrate can be uniformly heated. Moreover, the alloy reaction between the substrate and the high melting point metal hardly occurs at the epitaxial crystal growth temperature of about 600°C. Therefore, extreme unevenness does not occur on the back surface of the substrate. In addition, if it is necessary to remove the high melting point metal film from the back side of the substrate after epitaxial crystal growth, CCl 4
It can be easily removed using gas plasma etching methods such as .

(実施例) 次に、本発明の実施例について、図面を参照し
て説明する。
(Example) Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を説明するための概
念図である。第1図に示すように、超高真空容器
4内の残留ガス圧力は10-10Torr程度に保たれ、
その中に裏面にスパツタデポジツシヨン法でMo
膜8を2000Å程度堆積したGaAs単結晶基板7を
導入する。As分子線源9からAsをGaAs単結晶
基板7の表面に入射させながら、タンタルヒータ
ー5の輻射でGaAs単結晶基板7の裏面から加熱
する。このときタンタルヒーター5の輻射はMo
膜8に入射し、まずMo膜8を加熱する。次いで
熱伝導によつてGaAs単結晶基板7が加熱され
る。GaAs単結晶基板7の表面が600℃程度にな
る様にタンタルヒーター5の電力を調整する。
FIG. 1 is a conceptual diagram for explaining one embodiment of the present invention. As shown in Figure 1, the residual gas pressure inside the ultra-high vacuum vessel 4 is maintained at about 10 -10 Torr.
Inside it, use the spatuta deposition method to place Mo on the back side.
A GaAs single crystal substrate 7 on which a film 8 of about 2000 Å is deposited is introduced. While As is incident on the surface of the GaAs single crystal substrate 7 from the As molecular beam source 9, the back surface of the GaAs single crystal substrate 7 is heated by radiation from the tantalum heater 5. At this time, the radiation of tantalum heater 5 is Mo
The light enters the Mo film 8 and first heats the Mo film 8. GaAs single crystal substrate 7 is then heated by thermal conduction. The power of the tantalum heater 5 is adjusted so that the surface of the GaAs single crystal substrate 7 is heated to about 600°C.

GaAs単結晶基板7の表面から熱的にGaの酸化
物及びAsの酸化物が除去されたことを反射電子
線回折により確認した後、Ga分子線源10から
GaをGaAs単結晶基板7の表面に入射させると
GaAsのエピタキシヤル結晶が成長する。このと
きAsは引き続き表面に入射させてある。
After confirming by reflection electron beam diffraction that Ga oxide and As oxide have been thermally removed from the surface of the GaAs single crystal substrate 7, the Ga molecular beam source 10 is
When Ga is incident on the surface of the GaAs single crystal substrate 7,
A GaAs epitaxial crystal is grown. At this time, As continues to be incident on the surface.

エピタキシヤル結晶成長後、成長室4から
GaAs単結晶基板7を取り出して表面にフオトレ
ジストをスピンコートしてエピタキシヤル結晶を
保護し裏面のMo膜8をCCl4とO2の混合ガスプラ
ズマエツチングによつて除去すれば、裏面を研摩
して平坦化する必要はない。
After epitaxial crystal growth, from growth chamber 4
The GaAs single crystal substrate 7 is taken out, a photoresist is spin-coated on the front surface to protect the epitaxial crystal, and the Mo film 8 on the back surface is removed by plasma etching with a mixed gas of CCl 4 and O 2 to polish the back surface. There is no need to flatten the surface.

しかも、Moブロツク2にIn3を用いて基板1
を接着する場合は、1枚づつの手作業に頼らざる
を得ないが本発明の場合、Mo膜8を基板に堆積
する工程及び除去する工程はすべて多数枚を1度
に自動で処理することが可能である。
Moreover, using In3 for Mo block 2, substrate 1
However, in the case of the present invention, in the case of the present invention, the process of depositing and removing the Mo film 8 on the substrate is all performed automatically for many sheets at once. is possible.

さらに、基板1を真空容器内で搬送する場合、
基板1のみを搬送する方がMoブロツク2を使用
するよりも容易である。
Furthermore, when transporting the substrate 1 in a vacuum container,
It is easier to transport only the substrate 1 than to use the Mo block 2.

本実施例では高融点金属としてMo,基板とし
てはGaAsの場合をもつて説明したが前者はTa及
びWでも良く、後者はInP及びGaPでも同様の効
果が得られることは明らかである。
Although this embodiment has been described using Mo as the high melting point metal and GaAs as the substrate, it is clear that similar effects can be obtained with Ta and W as the former, and with InP and GaP as the latter.

(発明の効果) 以上説明した様に、本発明によれば、従来
MBE結晶成長法で問題となつているMoブロツク
及びInを使用しないで真空中で効率よく均一に、
しかも容易に基板の加熱が可能となり優れた分子
線エピタキシヤル成長を実施することができる。
(Effect of the invention) As explained above, according to the present invention, conventional
Efficiently and uniformly in vacuum without using Mo blocks and In, which are problems with the MBE crystal growth method.
Furthermore, it is possible to easily heat the substrate, and excellent molecular beam epitaxial growth can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための概
念図、第2図は従来の分子線エピタキシヤル結晶
成長法を説明するための概念図である。 1……基板、2……In、3……Moブロツク、
4……超高真空容器、5……ヒーター、6……分
子線源、7……GaAs単結晶基板、8……Mo膜、
9……As分子線源、10……Ga分子線源。
FIG. 1 is a conceptual diagram for explaining one embodiment of the present invention, and FIG. 2 is a conceptual diagram for explaining a conventional molecular beam epitaxial crystal growth method. 1...Substrate, 2...In, 3...Mo block,
4... Ultra-high vacuum container, 5... Heater, 6... Molecular beam source, 7... GaAs single crystal substrate, 8... Mo film,
9...As molecular beam source, 10...Ga molecular beam source.

Claims (1)

【特許請求の範囲】 1 超高真空中で加熱した基板の表面に結晶構成
要素を入射させ、該基板の表面にエピタキシヤル
結晶成長を行なう分子線エピタキシヤル結晶成長
法において、あらかじめ前記基板の裏面に金属膜
を堆積しエピタキシヤル結晶成長時に熱輻射によ
つて前記金属膜を直接加熱し、該金属膜からの熱
伝導によつて前記基板を加熱することを特徴とす
る分子線エピタキシヤル結晶成長法。 2 基板がGaAs,InP,GaPのいずれかである
ところの特許請求の範囲第1項記載の分子線エピ
タキシヤル結晶成長法。 3 金属膜がMo,W,Taのいずれかであるとこ
ろの特許請求の範囲第1項又は第2項記載の分子
線エピタキシヤル結晶成長法。
[Claims] 1. In a molecular beam epitaxial crystal growth method in which crystal constituent elements are incident on the surface of a substrate heated in an ultra-high vacuum and epitaxial crystal growth is performed on the surface of the substrate, Molecular beam epitaxial crystal growth characterized in that a metal film is deposited on a substrate, the metal film is directly heated by thermal radiation during epitaxial crystal growth, and the substrate is heated by heat conduction from the metal film. Law. 2. The molecular beam epitaxial crystal growth method according to claim 1, wherein the substrate is GaAs, InP, or GaP. 3. The molecular beam epitaxial crystal growth method according to claim 1 or 2, wherein the metal film is made of Mo, W, or Ta.
JP17791284A 1984-08-27 1984-08-27 BUNSHISENEPITAKISHARUKETSUSHOSEICHOHO Expired - Lifetime JPH0234916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17791284A JPH0234916B2 (en) 1984-08-27 1984-08-27 BUNSHISENEPITAKISHARUKETSUSHOSEICHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17791284A JPH0234916B2 (en) 1984-08-27 1984-08-27 BUNSHISENEPITAKISHARUKETSUSHOSEICHOHO

Publications (2)

Publication Number Publication Date
JPS6158892A JPS6158892A (en) 1986-03-26
JPH0234916B2 true JPH0234916B2 (en) 1990-08-07

Family

ID=16039231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17791284A Expired - Lifetime JPH0234916B2 (en) 1984-08-27 1984-08-27 BUNSHISENEPITAKISHARUKETSUSHOSEICHOHO

Country Status (1)

Country Link
JP (1) JPH0234916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123178U (en) * 1991-04-24 1992-11-06 松下電工株式会社 shower device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123178U (en) * 1991-04-24 1992-11-06 松下電工株式会社 shower device

Also Published As

Publication number Publication date
JPS6158892A (en) 1986-03-26

Similar Documents

Publication Publication Date Title
US4960720A (en) Method of growing compound semiconductor thin film using multichamber smoothing process
US4599069A (en) Substrate holder for molecular beam epitaxy apparatus
EP0127200B1 (en) Method of manufacturing a semiconductor device by means of a molecular beam technique
JPH01135529A (en) Surface modification of body using electromagnetic radiation
US4514250A (en) Method of substrate heating for deposition processes
JPH0234916B2 (en) BUNSHISENEPITAKISHARUKETSUSHOSEICHOHO
JP3189056B2 (en) Semiconductor substrate pretreatment method and apparatus having its function
US3864162A (en) Method of forming gallium arsenide films by vacuum evaporation deposition
JP3000143B2 (en) Compound semiconductor film forming method
JPH02143420A (en) Manufacture of hetero epitaxial film on silicon substrate
Tamura et al. Growth of crystalline GaAs films on Si substrates by Ga and As ion beams
JPH0831410B2 (en) Method for manufacturing semiconductor device
JPS6225249B2 (en)
US3420705A (en) Method of etching a semiconductor material
JP2793939B2 (en) Method for growing compound semiconductor crystal
WO1997006555A1 (en) A method for the low temperature cleaning of substrates containing indium or antimony
JP2633039B2 (en) Heat treatment method for compound semiconductor wafer
JPH0215520B2 (en)
JPS61269305A (en) Semiconductor manufacturing equipment
JP3139045B2 (en) Molecular beam crystal growth equipment
JPH06244108A (en) Manufacture of semiconductor device
JPH0689861A (en) Semiconductor epitaxial substrate and formation thereof
JPH02243591A (en) Molecular beam crystal growth device
WO2000062335A9 (en) Multi-layer wafer fabrication
JPH05267793A (en) Growth method of compound semiconductor crystal