JPH0831410B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0831410B2
JPH0831410B2 JP60098547A JP9854785A JPH0831410B2 JP H0831410 B2 JPH0831410 B2 JP H0831410B2 JP 60098547 A JP60098547 A JP 60098547A JP 9854785 A JP9854785 A JP 9854785A JP H0831410 B2 JPH0831410 B2 JP H0831410B2
Authority
JP
Japan
Prior art keywords
molecular beam
layer
impurity
growth
group iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60098547A
Other languages
Japanese (ja)
Other versions
JPS61256624A (en
Inventor
茂 龍田
嗣夫 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60098547A priority Critical patent/JPH0831410B2/en
Publication of JPS61256624A publication Critical patent/JPS61256624A/en
Publication of JPH0831410B2 publication Critical patent/JPH0831410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〔概要〕 分子線結晶成長において、成長したエピタキシャル膜
が平坦になる状態まで所定の時間間隔をおき、しかる後
に不純物を添加しまたは所望の領域にのみ不純物を添加
し、ヘテロ構造の膜を成長し、またはプレナードーピン
グをなした膜を成長することを可能にする。
DETAILED DESCRIPTION [Overview] In molecular beam crystal growth, a predetermined time interval is set until the grown epitaxial film becomes flat, and then impurities are added or impurities are added only to a desired region. It makes it possible to grow heterostructured films or films with planar doping.

〔産業上の利用分野〕[Industrial applications]

本発明は分子線結晶成長法において1原子層だけに不
純物を添加する方法および所望の領域にのみ不純物を添
加する方法、特に原子層オーダーで急峻な不純物を添加
する方法に関する。
The present invention relates to a method of adding an impurity only to one atomic layer and a method of adding an impurity only to a desired region in a molecular beam crystal growth method, and more particularly to a method of adding a steep impurity in the atomic layer order.

〔従来の技術〕 分子線結晶成長装置は第1図に断面図で示され、同図
において、11はるつぼからなる分子線源セル、12は半導
体結晶構成元素(以下ソース)、13はるつぼを加熱する
ヒーター、14は熱電対15は分子線、16は加熱された半導
体単結晶基板(以下基板という)、17は基板取付(マウ
ンティング)ブロック、18はヒーター、19は熱電対、を
それぞれ示し、これらの部分は高真空のチャンバ内に配
置される。図にセルは1つしか示さないが、通常2以上
のセルが用いられる。分子線源セル11内のソース(例え
ばGa)12は加熱され、Ga分子は分子線15となって基板16
上に到達しそこに堆積しそれによって基板16上にGaの薄
膜がエピタキシャル成長される。なお、薄膜成長中、基
板取付ブロックは矢印で示すように回転している。
[Prior Art] A molecular beam crystal growth apparatus is shown in a sectional view in FIG. 1, in which 11 is a molecular beam source cell consisting of a crucible, 12 is a semiconductor crystal constituent element (hereinafter source), and 13 is a crucible. A heater for heating, a thermocouple 15 for a molecular beam, 16 for a heated semiconductor single crystal substrate (hereinafter referred to as a substrate), 17 for a substrate mounting (mounting) block, 18 for a heater, 19 for a thermocouple, These parts are placed in a high vacuum chamber. Although only one cell is shown in the figure, two or more cells are usually used. The source (for example, Ga) 12 in the molecular beam source cell 11 is heated, and Ga molecules become the molecular beam 15 and the substrate 16
A thin film of Ga is epitaxially grown on the substrate 16 by reaching and depositing on it. During the thin film growth, the substrate mounting block is rotating as shown by the arrow.

最近は基板16が大型化し、開口径の大きなラッパ状の
セルを分子線源用セルとして使用することが多い。これ
は、開口径が大きいことから分子線強度を大きくとれ
る、基板上での膜厚均一性が良い、などの利点がある
ためである。
Recently, the size of the substrate 16 has increased, and a trumpet-shaped cell having a large opening diameter is often used as a cell for a molecular beam source. This is because the aperture diameter is large, so that the molecular beam strength can be increased, and the film thickness uniformity on the substrate is good.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の不純物添加法は成長速度を考慮してエピタキシ
ャル膜(以下膜ともいう)の成長中に添加する不純物の
分子線を、シャッターの開閉により制御する方法がとら
れているが、成長を中断することなしに、または中断し
ても特に厳密に成長の最表面層を評価することなしに、
シャッターの開閉により分子線を切り換える方法で膜を
成長したが、理想的に原子層オーダーの急峻な不純物添
加ができないという欠点がある。なお前記した最表面層
とは成長しつつある膜の最上層または真空に接する膜表
面をいう。
In the conventional impurity addition method, the molecular beam of the impurity added during the growth of the epitaxial film (hereinafter also referred to as the film) is controlled by opening and closing the shutter in consideration of the growth rate, but the growth is interrupted. Without or without a particularly rigorous evaluation of the outermost layer of growth, even if interrupted
The film was grown by the method of switching the molecular beam by opening and closing the shutter, but it has a drawback that ideally it is not possible to add impurities sharply on the atomic layer order. The above-mentioned outermost surface layer means the uppermost layer of the growing film or the film surface in contact with vacuum.

上記した欠点は膜の成長状態に関係する。従来は、基
板上に膜が平板状に順次厚くなりつつ成長して行くと考
えられていたが、実際にそうではなく、基板上に局所的
に成長した膜の上に段差を作って膜が成長し、それが基
板の膜の成長した部分に落ちてきて基板全体に膜が形成
され、その間にまた局所的に段差を作って膜が成長する
ものであることが確認された。従って、このように段差
をもった膜に不純物を添加すると、不純物添加層が平坦
でなく、段差をもつために、膜の成長方向に対し上下方
向にいわゆるダレが発生し、不純物添加層が急峻でない
状態になることもまた確認された。
The above-mentioned drawbacks are related to the growth state of the film. In the past, it was thought that the film would grow on the substrate in a flat plate shape while gradually increasing in thickness, but this is not the case, and the film is formed by forming a step on the locally grown film on the substrate. It was confirmed that the film grows and falls onto the grown part of the film on the substrate to form a film on the entire substrate, and in the meanwhile, the film locally grows with a step. Therefore, if impurities are added to a film having such a step, the impurity addition layer is not flat and has a step, so that so-called sagging occurs in the vertical direction with respect to the growth direction of the film, and the impurity addition layer is steep. It was also confirmed that it will not be in a state.

本発明はこのような点に鑑み創作されたもので、膜の
成長において最表面を評価しつつ不純物を添加し、ヘテ
ロ構造を形成し、またはプレナードーピングをなす方法
を提供することを目的とする。
The present invention has been made in view of the above points, and an object thereof is to provide a method for adding impurities while forming the heterostructure or performing planar doping while evaluating the outermost surface in the growth of a film. .

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、分子線結晶成長装置を用いるIII−V
族化合物半導体のエピタキシャル成長において不純物添
加層を形成する際に、エピタキシャル層成長に供してい
るIII族ビームとV族ビームのうち、III族ビームを止
め、V族ビームのみ照射してIII族のエピタキシャル膜
の最表面層を平坦化した後、不純物分子線を照射し、次
いでその不純物分子線の照射を止め、再びV族ビームの
み照射して不純物添加膜の最表面層を平坦化した後にII
I族の分子線照射をなすことを特徴とする半導体装置の
製造方法を提供することによって解決される。
The above problems are caused by using a molecular beam crystal growth apparatus III-V.
When forming an impurity-doped layer in the epitaxial growth of a group III compound semiconductor, the group III beam of the group III beam and the group V beam used for the epitaxial layer growth is stopped and only the group V beam is irradiated to form the group III epitaxial film. After planarizing the outermost surface layer, the irradiation of the impurity molecular beam is stopped, then the irradiation of the impurity molecular beam is stopped, and only the group V beam is irradiated again to planarize the outermost surface layer of the impurity-added film.
The problem is solved by providing a method for manufacturing a semiconductor device, which is characterized by performing group I molecular beam irradiation.

第1図に本発明の方法を実施するに用いる分子線結晶
成長装置を示す。
FIG. 1 shows a molecular beam crystal growth apparatus used for carrying out the method of the present invention.

図示の分子線結晶成長を用いて、III−V化合物半導
体のエピタキシャル成長およびヘテロエピタキシャル成
長を行い半導体装置を製造する工程において、特に分子
線結晶成長中に(A)1原子層だけ電気的に活性または
不活性な不純物を有する1層または多層構造の薄膜を形
成工程において、(1)不純物を添加する直前にIII族
(Ga)の分子線照射を断ち、成長最表面層が平坦になる
時間だけ経た後、(2)不純物分子線だけを最大1原子
層成長する時間照射し、または(3)不純物分子線をII
I族分子線の強度比を所望の値に保ちつつ、最大1原子
層だけ成長する時間照射した後、両方の分子線を断ち、
(4)不純物を添加した最表面層が平坦になる時間だけ
経た後に、(5)III族分子線の照射を開始し、また、
(B)選択的に所望の領域だけに不純物を有する1層ま
たは多層構造の薄膜を形成する工程において、特に不純
物の添加を開始する時点において、(6)前記(A)の
(1)の工程を経た後、不純物分子線とIII族分子線の
強度比を所望の値に保ちつつ所望の膜厚を成長し、しか
る後に両方の分子線を断ち、前記(A)の(4)と
(5)の工程を経るものである。
In the process of manufacturing a semiconductor device by performing epitaxial growth and heteroepitaxial growth of a III-V compound semiconductor using the molecular beam crystal growth shown in the figure, (A) only one atomic layer is electrically active or inactive during the molecular beam crystal growth. In the process of forming a single-layer or multi-layered thin film having active impurities, (1) after the irradiation of the group III (Ga) molecular beam is cut off immediately before the addition of impurities, and after the elapse of a period of time until the outermost surface layer for growth becomes flat , (2) Irradiate only the molecular beam of impurities for a time to grow up to one atomic layer, or (3) II the molecular beam of impurities.
While keeping the intensity ratio of the group I molecular beam at a desired value, after irradiation for a time for growing at most one atomic layer, both molecular beams are cut off,
(4) After the elapse of a time during which the impurity-added outermost surface layer becomes flat, (5) irradiation of the group III molecular beam is started, and
(B) In the step of selectively forming a single-layer or multi-layer thin film having impurities only in a desired region, (6) step (1) of (A) above, particularly at the time of starting the addition of impurities. After that, while maintaining the intensity ratio of the impurity molecular beam and the group III molecular beam at a desired value, a desired film thickness is grown, and then both molecular beams are cut off, and (4) and (5) of (A) above are cut off. ) Process.

かくして、常に平坦な最表面層に不純物を添加し、ま
たはそのような最表面層上に膜がエピタキシャル成長さ
れるものである。
Thus, an always flat outermost layer is doped, or a film is epitaxially grown on such an outermost layer.

〔作用〕[Action]

本発明は、分子線結晶成長でIII−V化合物半導体エ
ピタキシャル膜を形成する工程において、不純物を添加
する直前と添加を終了した直後にIII族分子線および不
純物分子線の照射を所望の時間だけ断つことにより、原
子層オーダーでの急峻な不純物分布を形成する方法を提
供することだけを目的とし、分子線結晶成長法で、1原
子層だけ添加した領域の不純物分布が成長の進む方向に
ダレるという現象を見出し、それが定性的には分子線結
晶成長の成長メカニズムが1層1層成長していくのでは
なく、ある層の成長が9割以上進んだ後に次の層の成長
が開始されて、未完の1層目と2層目との相互ミキシン
グが起り易く、特定の原子層に添加した不純物が成長と
共に順次表面側に繰り上げられていくことが原因である
ことを考慮し、III族分子線と不純物分子線を中断して
V族分子線の照射だけを当てておくと成長最表面が平坦
になるので、最表面は安定になり、不純物添加層を成長
しても、下地の層との相互ミキシングは起りにくくなる
のである。そして、このことは特定の領域だけに不純物
を添加する場合においても発生する。そこで、本発明は
この成長メカニズムを考慮して、ダレのない急峻な1原
子層だけに、または特定の領域だけに不純物を添加する
ようにしたものである。
According to the present invention, in the step of forming a III-V compound semiconductor epitaxial film by molecular beam crystal growth, irradiation of the group III molecular beam and the impurity molecular beam is interrupted for a desired time immediately before and after the impurity is added. Thus, for the purpose of only providing a method of forming a steep impurity distribution on the order of atomic layers, the molecular beam crystal growth method causes the impurity distribution of a region to which only one atomic layer is added to fall in the direction of growth. Qualitatively, the growth mechanism of the molecular beam crystal growth does not qualitatively grow one layer by one layer, but the growth of the next layer starts after the growth of one layer progresses 90% or more. In consideration of the fact that the uncompleted mutual mixing of the first layer and the second layer is likely to occur, and the impurities added to the specific atomic layer are successively carried up to the surface side as they grow, molecule When the impurity molecular beam is interrupted and only the irradiation of the group V molecular beam is applied, the outermost surface of the growth becomes flat, so that the outermost surface becomes stable, and even if the impurity-added layer is grown, it does not form a layer with the underlying layer. Mutual mixing is less likely to occur. This also occurs when impurities are added only to a specific region. Therefore, in the present invention, in consideration of this growth mechanism, impurities are added only to a steep one-atom layer without sagging or only to a specific region.

〔実施例〕〔Example〕

第2図は、成長時間(横軸)とRHEED反射強度(縦
軸)との関係を示す線図であり、図の曲線の上の凸の部
分aは膜面が完全に平坦であること、また下の凹の部分
bは膜面に凹凸があることを示す。この第2図を参照し
て本発明の実施例を示す。なお、RHEED反射強度測定装
置は従来分子線結晶成長装置と組み合せて使用されてい
る装置である。
FIG. 2 is a diagram showing the relationship between the growth time (horizontal axis) and the RHEED reflection intensity (vertical axis). The convex portion a on the curve in the figure shows that the film surface is completely flat. The lower concave portion b indicates that the film surface has irregularities. An embodiment of the present invention will be described with reference to FIG. The RHEED reflection intensity measuring device is a device used in combination with a conventional molecular beam crystal growth device.

第3図に示される半絶縁性GaAs基板31上に分子線結晶
成長法を用いて、ノンドープGaAs層32を(0.5μm)を
形成し、GaAs層32の上にノンドープのAl0.3Ga0.7AS層33
(60Å)を形成し、その上にノンドープGaAs層35(17
Å)とノンドープAlAs層36(17Å)とを15周期成長し、
その上にSiを1原子層ドープしたGaAs層37(18Å)を形
成した。ここでSiの1原子層ドープしたGaAs層37を形成
する方法について詳述すると、ノンドープのGaAs層を6
層(8.5Å)成長した後、直ちにGaビームを止め、その
表面を電子線40を用いるRHEEDの反射電子線41のビーム
強度をスクリーン42(またはディテクタ)でモニターし
ておき、その強度が成長前の強度に等しくなるのを待
ち、しかる後、Si分子ビームのみを1原子層成長するだ
け照射し、直ちにSiビームを止める。第2図で点線部分
cは分子線照射が止められた状態を示す。または、Siと
Gaのビームを同時に(但し、Siの分子線強度をセルの温
度で調整して、GaとSiのビーム強度比を所望の値に保
つ)照射してSiを含んだGaAs層を1原子層成長するだけ
照射した後、直ちにGaとSiの両方のビームを止めてRHEE
Dの電子強度が再び成長前の強度に回復するのを待った
後にGaビームを照射して、ノンドープのGaAs層を6層
(8.5Å)成長して、1つのSi原子ドープ層をもったGaA
s層を形成する。
A non-doped GaAs layer 32 (0.5 μm) is formed on the semi-insulating GaAs substrate 31 shown in FIG. 3 by the molecular beam crystal growth method, and a non-doped Al 0.3 Ga 0.7 AS layer is formed on the GaAs layer 32. 33
(60Å) is formed, and the non-doped GaAs layer 35 (17
Å) and non-doped AlAs layer 36 (17 Å) grown for 15 cycles,
A GaAs layer 37 (18 Å) doped with one atomic layer of Si was formed thereon. Here, the method of forming the GaAs layer 37 doped with one atomic layer of Si will be described in detail.
Immediately after growing the layer (8.5 Å), stop the Ga beam and monitor the beam intensity of the reflected electron beam 41 of the RHEED using the electron beam 40 on the surface with the screen 42 (or detector). Waits until the intensity becomes equal to that of Si, and then only the Si molecular beam is irradiated for one atomic layer growth and the Si beam is immediately stopped. In FIG. 2, the dotted line portion c shows the state where the molecular beam irradiation is stopped. Or with Si
Simultaneous irradiation of Ga beam (however, the molecular beam intensity of Si is adjusted by the temperature of the cell to maintain the beam intensity ratio of Ga and Si at a desired value) to grow a GaAs layer containing Si by one atomic layer. After irradiating only for a while, immediately stop both the Ga and Si beams and RHEE
After waiting for the electron intensity of D to recover to the intensity before the growth again, Ga beam irradiation was performed to grow 6 layers (8.5 Å) of undoped GaAs layer and GaA with one Si atom-doped layer.
s layer is formed.

本発明変形例としては、特定の領域だけに不純物を添
加するとき、不純物をドープする直前およびドープした
直後にGaビームおよびSiとGaの両ビームを止めてRHEED
の強度が初めの値に回復するのを待つ。この実施例で
も、急峻なドーピングプロファイルを形成するのに効果
がある。
As a modification of the present invention, when an impurity is added only to a specific region, the Ga beam and both the Si and Ga beams are stopped immediately before and immediately after the impurity is doped to stop the RHEED.
Wait for the strength of to recover to its original value. This embodiment is also effective in forming a steep doping profile.

また、本発明はヘテロ構造の成長にも効果がある。す
なわち、ヘテロ界面で例えばGaAsの成長を終了した後に
RHEEDの強度が回復するのを待って、AlGaAsまたはAlAs
を成長すると相互ミキシングの少ない急峻な界面が得ら
れる。
The present invention is also effective for growing heterostructures. That is, after finishing the growth of GaAs, for example, at the hetero interface
Wait for the strength of RHEED to recover, then use AlGaAs or AlAs
By growing, a steep interface with less mutual mixing can be obtained.

上記の方向において分子線を止めるには、うちわ状の
図に矢印方向に可動な遮蔽板を用意し、分子線を止めた
いときは遮蔽板をセルの前にもってきて分子線を遮断す
る。分子線を再度出したいときには、遮蔽板20を図示の
位置に退避させればよく、かかる遮蔽板は現在の分子線
結晶成長装置に結合可能である。
In order to stop the molecular beam in the above direction, a shielding plate movable in the direction of the arrow is prepared in a fan-shaped drawing, and when it is desired to stop the molecular beam, the shielding plate is brought in front of the cell to block the molecular beam. When the molecular beam is to be emitted again, the shield plate 20 may be retracted to the position shown in the figure, and the shield plate can be connected to the current molecular beam crystal growth apparatus.

〔発明の効果〕〔The invention's effect〕

以上述べてきたように本発明によれば、成長最表面層
と直ぐ下の層との間の相互ミキシングを抑えることが可
能となるので、原子レベルで見て急峻なド−ピングプロ
ファイルをもった不純物添加が実現される。
As described above, according to the present invention, it is possible to suppress the mutual mixing between the growth outermost surface layer and the layer immediately below, so that a sharp Doping profile at the atomic level is obtained. Impurity addition is realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の実施に用いる分子線結晶成長装
置、 第2図は本発明の方法における成長時間とRHEED反射強
度の関係を示す線図、 第3図は本発明の方法によって成長されるエピタキシャ
ル膜の断面図である。 第1図と第3図において、 11は分子線源セル、12はソース、13と18はヒーター、14
と19は熱電対、15は分子線、16は基板、17は基板マウン
ティングブロック、20は遮蔽板、31はGaAs基板、32はノ
ンドープGaAs層、33はノンドープAl0.3Ga0.7As層、35は
GaAs層、36はノンドープAlAs層、37はSi1原子層ドープG
aAs層、40は電子線、41は反射電子線、42はスクリーン
である。
FIG. 1 is a molecular beam crystal growth apparatus used for carrying out the method of the present invention, FIG. 2 is a diagram showing the relationship between growth time and RHEED reflection intensity in the method of the present invention, and FIG. 3 is grown by the method of the present invention. FIG. 3 is a cross-sectional view of an epitaxial film according to the present invention. In FIGS. 1 and 3, 11 is a molecular beam source cell, 12 is a source, 13 and 18 are heaters, 14
And 19 are thermocouples, 15 is molecular beam, 16 is substrate, 17 is substrate mounting block, 20 is shielding plate, 31 is GaAs substrate, 32 is undoped GaAs layer, 33 is undoped Al 0.3 Ga 0.7 As layer, 35 is
GaAs layer, 36 is undoped AlAs layer, 37 is Si1 atomic layer doped G
The aAs layer, 40 is an electron beam, 41 is a reflected electron beam, and 42 is a screen.

フロントページの続き (56)参考文献 第32回応用物理学関係連合講演会講演予 稿集(1985年)P.743 31P−ZA−9 Japanese Journal o f Applied Physics V ol.23No.9(1984)PP.L657〜 L659Continued Front Page (56) References Proceedings of the 32nd Joint Lecture on Applied Physics (1985) P. 743 31P-ZA-9 Japanese Journal of Applied Physics Vol. 23 No. 9 (1984) PP. L657 ~ L659

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】分子線結晶成長装置を用いるIII−V族化
合物半導体のエピタキシャル成長において不純物添加層
を形成する際に、 エピタキシャル層成長に供しているIII族ビームとV族
ビームのうち、III族ビームを止め、V族ビームのみ照
射してIII族のエピタキシャル膜の最表面層を平坦化し
た後、不純物分子線を照射し、 次いでその不純物分子線の照射を止め、再びV族ビーム
のみ照射して不純物添加膜の最表面層を平坦化した後に
III族の分子線照射をなすことを特徴とする半導体装置
の製造方法。
1. A group III beam of a group III beam and a group V beam used for epitaxial layer growth when forming an impurity-doped layer in the epitaxial growth of a group III-V compound semiconductor using a molecular beam crystal growth apparatus. Stop and irradiate only the group V beam to flatten the outermost surface layer of the group III epitaxial film, irradiate with the impurity molecular beam, then stop the irradiation with the impurity molecular beam, and irradiate only the group V beam again. After flattening the outermost surface layer of the doped film
A method of manufacturing a semiconductor device, which comprises irradiating a group III molecular beam.
【請求項2】不純物分子線とIII族分子線の強度比を所
望の値に保って不純物分子線を照射し、 両方の分子線を断った後に不純物添加最表面層が平坦に
なる時間経過した後にIII族分子線照射を開始すること
を特徴とする特許請求の範囲第1項記載の方法。
2. An impurity molecular beam is irradiated while keeping the intensity ratio of the impurity molecular beam and the group III molecular beam at a desired value, and after the two molecular beams are cut off, the time for flattening the impurity-added outermost surface layer has elapsed. The method according to claim 1, characterized in that the group III molecular beam irradiation is started later.
JP60098547A 1985-05-09 1985-05-09 Method for manufacturing semiconductor device Expired - Lifetime JPH0831410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60098547A JPH0831410B2 (en) 1985-05-09 1985-05-09 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60098547A JPH0831410B2 (en) 1985-05-09 1985-05-09 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS61256624A JPS61256624A (en) 1986-11-14
JPH0831410B2 true JPH0831410B2 (en) 1996-03-27

Family

ID=14222714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60098547A Expired - Lifetime JPH0831410B2 (en) 1985-05-09 1985-05-09 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0831410B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269508A (en) * 1985-09-20 1987-03-30 Sumitomo Electric Ind Ltd Manufacture of compound semiconductor device
JPS62165909A (en) * 1986-01-17 1987-07-22 Hokkaido Univ Growth method of thin-film having super-lattice structure of compound semiconductor
JPS6468917A (en) * 1987-09-09 1989-03-15 Agency Ind Science Techn Single atomic layer growth method
US5171399A (en) * 1990-08-15 1992-12-15 The United States Of America As Represented By The United States Department Of Energy Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JapaneseJournalofAppliedPhysicsVol.23No.9(1984)PP.L657〜L659
第32回応用物理学関係連合講演会講演予稿集(1985年)P.74331P−ZA−9

Also Published As

Publication number Publication date
JPS61256624A (en) 1986-11-14

Similar Documents

Publication Publication Date Title
US5098850A (en) Process for producing substrate for selective crystal growth, selective crystal growth process and process for producing solar battery by use of them
US4960728A (en) Homogenization anneal of II-VI compounds
CA1225571A (en) Growth of oriented single crystal semiconductor on insulator
JPH0831410B2 (en) Method for manufacturing semiconductor device
Cheung Epitaxial growth of Hg0. 7Cd0. 3Te by laser‐assisted deposition
JPH04233219A (en) Manufacture of products comprising semiconductor devices
JP2006253414A (en) Method for forming semiconductor thin film on si substrate and its structure
JP2507888B2 (en) Method for manufacturing heterostructure
JP2706369B2 (en) Method for growing compound semiconductor and method for manufacturing semiconductor laser
EP0215436A2 (en) Method of growth of thin film layer for use in a composite semiconductor
JPS5893222A (en) Preparation of semiconductor single crystal film
JPS5853863A (en) Preparation of semiconductor device
US5463975A (en) Process for producing crystal
JPH05182910A (en) Molecular beam epitaxtially growing method
JP2737152B2 (en) SOI forming method
JPH01125818A (en) Heterointerface formation
JPH05206028A (en) Method of growing semiconductor crystal
JP2771635B2 (en) Ca lower 1-lower x Sr lower x F lower 2
JPH06191989A (en) Production of semiconductor crystal thin film
JPH0786161A (en) Selective growing method for semiconductor
JPH04216616A (en) Controlling method for conductivity type of thin film crystal formed by molecular beam epitaxial growth, and molecular beam epitaxial device using the controlling method
JPH01117016A (en) Hetero structure forming method
JPH0374838A (en) Epitaxial growth method
JPS63282193A (en) Formation of hetero interface
JPS62196815A (en) Thin-film growth device