JPH01117016A - Hetero structure forming method - Google Patents

Hetero structure forming method

Info

Publication number
JPH01117016A
JPH01117016A JP27325187A JP27325187A JPH01117016A JP H01117016 A JPH01117016 A JP H01117016A JP 27325187 A JP27325187 A JP 27325187A JP 27325187 A JP27325187 A JP 27325187A JP H01117016 A JPH01117016 A JP H01117016A
Authority
JP
Japan
Prior art keywords
substrate
shutter
temperature
infrared rays
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27325187A
Other languages
Japanese (ja)
Inventor
Takayoshi Anami
隆由 阿南
Kentarou Onabe
尾鍋 研太郎
Yuichi Ide
雄一 井手
Kenichi Nishi
研一 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27325187A priority Critical patent/JPH01117016A/en
Publication of JPH01117016A publication Critical patent/JPH01117016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To enable sharp substrate temperature control, and form high quality hetero structure, by a method wherein a first semiconductor material is subjected to crystal growth by resistor heating method, and a second semiconductor material is subjected to crystal growth by resistor heating method and infrared ray irradiation. CONSTITUTION:A cleaned InP (001) substrate 4 is mounted on a substrate holder 3 in a growth chamber 1. The substrate 4 is irradiated with infrared rays by opening a shutter 54 in front of an infrared ray lamp 6. In order to form InGaAs quantum well, shutters 53, 54 of Al and infrared rays are closed, and at the same time, a shutter 52 in front of a Ga molecular beam source 22 is opened. In this state, InGaAs is grown in thickness up to 100Angstrom at a substrate temperature of 550 deg.C. Again, the shutter 52 of Ga is closed, and shutter 53 of Al and shutter 54 of infrared rays are opened. In this state, InAlAs is grown in thickness of 100Angstrom at 580 deg.C. By repeating 20 cycles of this process, a multi-quantum well structure is formed. Thereby enabling steep substrate temperature control, and forming high quality hetero structure.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はへテロ構造形成方法に関し、特に分子線エピタ
キシ(以下、MBEと称する)法によって高品質なヘテ
ロ構造を形成する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming a heterostructure, and particularly to a method for forming a high-quality heterostructure by molecular beam epitaxy (hereinafter referred to as MBE). .

[従来の技術] 異種の半導体結晶の成長において、それぞれの半導体結
晶の最適成長条件は、通常具なっている。
[Prior Art] In the growth of different types of semiconductor crystals, the optimum growth conditions for each semiconductor crystal are usually the same.

特に成長温度は高品質なエピタキシャル層を成長させる
上で、重要な役割をはたす。従来、最適成長温度の異な
った半導体結晶を成長させる方法として、ヒータ加熱法
で、そこに投入する電力を制御することにより、基板温
度をそれぞれの最適成長温度に合わせるという方法が行
われている(ジャーナル・オブ・アプライド・フィツク
ス(Journal of applied phys
ics) 、52、(1981)、3861 )。
In particular, growth temperature plays an important role in growing a high quality epitaxial layer. Conventionally, the method used to grow semiconductor crystals with different optimal growth temperatures is to adjust the substrate temperature to the respective optimal growth temperature by controlling the power input to the heater heating method ( Journal of applied phys
ics), 52, (1981), 3861).

[発明が解決しようとする問題点] しかしながら従来のヒータ加熱による基板温度の制御法
によっては温度変化の急峻なプロファイルを実現できな
いという欠点があった。これはヒータ加熱法が、基板を
保持している基板ホルダを温め、その熱が基板に伝わる
ことによって、基板温度を変化させるという間接的な温
度制御法であることに由来する。このため、成長温度の
異なる超薄膜の多層構造を成長させる際、成長させる材
料の変化に基板温度の変化が追従できず、高品質のへテ
ロ構造を形成することが困難であった。
[Problems to be Solved by the Invention] However, the conventional method of controlling the substrate temperature by heating with a heater has the disadvantage that a steep profile of temperature change cannot be realized. This is because the heater heating method is an indirect temperature control method in which the substrate holder holding the substrate is heated and the heat is transferred to the substrate, thereby changing the substrate temperature. For this reason, when growing a multilayer structure of ultra-thin films grown at different growth temperatures, changes in the substrate temperature cannot follow changes in the material being grown, making it difficult to form a high-quality heterostructure.

本発明の目的は、以上述べたような従来の問題点を解決
した高品質のへテロ構造の形成方法を提供することにあ
る。
An object of the present invention is to provide a method for forming a high-quality heterostructure that solves the conventional problems as described above.

し問題点を解決するための手段] 本発明は、分子線エピタキシ法において、ヒータ加熱法
で制御した第1の成長温度で基板上に第1の半導体材料
を結晶成長させる第1の工程と、該ヒータ加熱法と基板
上への赤外線照射により急峻に第1の成長温度より高い
第2の成長温度に基板湿度を制御し、第2の半導体材料
を結晶成長させる第2の工程とを有し、上記2つの工程
を連続して行うことを特徴とするヘテロ構造形成方法で
ある。
Means for Solving the Problems] The present invention provides a first step of crystal-growing a first semiconductor material on a substrate at a first growth temperature controlled by a heater heating method in a molecular beam epitaxy method; a second step of rapidly controlling substrate humidity to a second growth temperature higher than the first growth temperature by using the heater heating method and irradiating infrared rays onto the substrate to grow crystals of the second semiconductor material; , a method for forming a heterostructure, characterized in that the above two steps are performed consecutively.

[作用] 基板に赤外線を照射すると格子振動吸収を生じ、該基板
温度を上昇せしめることが可能である。この昇温過程は
、ヒータ加熱法による間接的な昇温過程と異なり、直接
基板を温めることができるため、ヒータ加熱法と併用す
ることにより、きわめて急峻な温度変化プロファイルを
得ることができる。
[Function] When a substrate is irradiated with infrared rays, lattice vibration absorption occurs and the temperature of the substrate can be increased. Unlike the indirect temperature raising process using the heater heating method, this temperature raising process can directly warm the substrate, so when used in combination with the heater heating method, an extremely steep temperature change profile can be obtained.

[実施例コ 以下、図面を参照しながら本発明の詳細な説明する。[Example code] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明の方法に用いられるMBE装置の概略
構成図である。ここではInP基板上に、InMAsバ
リア層でInGaAs量子井戸を挟んだ多重量子井戸構
造を形成する例について述べる。
FIG. 1 is a schematic diagram of an MBE apparatus used in the method of the present invention. Here, an example will be described in which a multiple quantum well structure in which an InGaAs quantum well is sandwiched between InMAs barrier layers is formed on an InP substrate.

まず通常の方法で化学的に清浄化したInP(001)
基板4を成長室1内の基板ホルダ3に装着する。
First, InP(001) was chemically cleaned using the usual method.
The substrate 4 is mounted on the substrate holder 3 in the growth chamber 1.

成長に先立ち、2.5X 1O−5TOrrのAs圧下
でInP基板4の表面を熱クリーニングする。通常51
0℃で表面酸化膜が脱落し、表面が清浄となる。ヒータ
加熱によりInGaASの成長温度550℃に基板温度
を安定に制御させる。
Prior to growth, the surface of the InP substrate 4 is thermally cleaned under an As pressure of 2.5×10−5 Torr. Usually 51
At 0°C, the surface oxide film falls off and the surface becomes clean. The substrate temperature is stably controlled to the InGaAS growth temperature of 550° C. by heating with a heater.

まず、InMAsのクラッド層を成長させるため、In
、 Hの分子線源21.23の前方のシャ’yり51,
53を開け、さらに赤外線ランプ6の前方のシャッタ5
4を開けて赤外線を基板に照射し、基板温度をInMA
Sの成長温度である580°Cに昇温させる。この時の
成長膜厚は0.5庫とした。
First, in order to grow a cladding layer of InMAs,
, H molecular beam source 21.23 front shutter 51,
53, and then close the shutter 5 in front of the infrared lamp 6.
4 and irradiates the substrate with infrared rays to adjust the substrate temperature to InMA.
The temperature is raised to 580°C, which is the S growth temperature. The thickness of the grown film at this time was set to 0.5.

次にInGaASとInMAsの多重母子井戸構造形成
の方法について述べる。第2図は、多重量子井戸形成時
の基板温度プロファイルおよびシャッタ制御図で、同図
に示すように、前記成長にひきつづき、InGaAS量
子井戸形成のためMと赤外線のシャッタ53、54を閉
めると同時にGaの分子線源22の前方のシャッタ52
を開け、基板温度550℃でInGaAsを100人成
長する。次に、再びGaのシャッタ52を閉じ、Nと赤
外線のシャッタ53.54を開け、InMAsを580
℃で100人成長する。この工程を20回繰返し、多重
量子井戸構造を形成した。最後に再びInMAsクラッ
ド層を0.4庫成長した。
Next, a method for forming a multiple mother-child well structure of InGaAS and InMAs will be described. FIG. 2 is a diagram showing the substrate temperature profile and shutter control during the formation of multiple quantum wells. As shown in the figure, following the growth, M and infrared shutters 53 and 54 are closed at the same time to form the InGaAS quantum wells. Shutter 52 in front of Ga molecular beam source 22
100 layers of InGaAs were grown at a substrate temperature of 550°C. Next, the Ga shutter 52 is closed again, the N and infrared shutters 53 and 54 are opened, and InMAs is
100 people grow at ℃. This process was repeated 20 times to form a multiple quantum well structure. Finally, an InMAs cladding layer was grown again for 0.4 times.

このようにして形成された多重母子井戸の室温における
フォトルミネッセンス(以下、PLと称す)スペクトル
を第3図に示す。図中、実線は本発明方法によって形成
した場合、破線は従来例によって形成した場合を示す。
FIG. 3 shows the photoluminescence (hereinafter referred to as PL) spectrum at room temperature of the multiple mother-child well formed in this manner. In the figure, the solid line indicates the case formed by the method of the present invention, and the broken line indicates the case formed by the conventional method.

第3図かられかるように、従来のヒータ加熱法による成
長温度制御より正確で急峻な制御が可能なため、各層で
の非発光中心を低減でき、その結果、強いP[発光強度
が得られた。
As can be seen from Fig. 3, it is possible to control the growth temperature more accurately and steeply than with the conventional heater heating method, so it is possible to reduce the number of non-emissive centers in each layer, and as a result, a strong P[emission intensity can be obtained. Ta.

このように、本発明によれば発光効率の高いヘテロ量子
井戸構造を得ることができる。
As described above, according to the present invention, a hetero quantum well structure with high luminous efficiency can be obtained.

なお、以上の実施例では、InGaAs/ InMAs
吊子井戸を例にとったが、伯の成長温度の異なる材料系
においても本発明の方法を適用して、発光効率の高いヘ
テロ構造を形成することができる。
In the above embodiments, InGaAs/InMAs
Although a hanging well is taken as an example, the method of the present invention can also be applied to material systems with different growth temperatures to form a heterostructure with high luminous efficiency.

[発明の効果] 以上説明したように、本発明のへテロ構造形成方法によ
れば、極めて急峻な基板温度制御が可能である。この結
果、これまで成長条件が大きく異なるため組合わせ不可
能と考えられていた材料系においても、高品質なヘテロ
構造を形成することが可能であり、デバイス設計上、材
料選択の自由度を広げることができる。
[Effects of the Invention] As explained above, according to the heterostructure forming method of the present invention, extremely steep substrate temperature control is possible. As a result, it is now possible to form high-quality heterostructures even with material systems that were previously thought to be impossible to combine due to vastly different growth conditions, increasing the degree of freedom in material selection in device design. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法に用いられるMBE装置の概略構
成図、第2図は多重量子井戸形成時の基板温度プロファ
イルおよびシャッタ制御図、第3図は本発明の方法によ
り形成した多重量子井戸の室温におけるPLスペクトル
図を従来例と比較して示した図である。
FIG. 1 is a schematic configuration diagram of the MBE apparatus used in the method of the present invention, FIG. 2 is a diagram of the substrate temperature profile and shutter control during the formation of multiple quantum wells, and FIG. 3 is a diagram of the multiple quantum wells formed by the method of the present invention. FIG. 3 is a diagram showing a PL spectrum diagram at room temperature in comparison with a conventional example.

Claims (1)

【特許請求の範囲】[Claims] (1)分子線エピタキシ法において、ヒータ加熱法で制
御した第1の成長温度で基板上に第1の半導体材料を結
晶成長させる第1の工程と、該ヒータ加熱法と基板上へ
の赤外線照射により急峻に第1の成長温度より高い第2
の成長温度に基板温度を制御し、第2の半導体材料を結
晶成長させる第2の工程とを有し、上記2つの工程を連
続して行うことを特徴とするヘテロ構造形成方法。
(1) In the molecular beam epitaxy method, a first step of growing crystals of a first semiconductor material on a substrate at a first growth temperature controlled by a heater heating method, and applying infrared rays to the substrate using the heater heating method. The second growth temperature is steeply higher than the first growth temperature.
and a second step of controlling the substrate temperature to a growth temperature of 100% and growing crystals of a second semiconductor material, the method comprising: performing the above two steps in succession.
JP27325187A 1987-10-30 1987-10-30 Hetero structure forming method Pending JPH01117016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27325187A JPH01117016A (en) 1987-10-30 1987-10-30 Hetero structure forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27325187A JPH01117016A (en) 1987-10-30 1987-10-30 Hetero structure forming method

Publications (1)

Publication Number Publication Date
JPH01117016A true JPH01117016A (en) 1989-05-09

Family

ID=17525227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27325187A Pending JPH01117016A (en) 1987-10-30 1987-10-30 Hetero structure forming method

Country Status (1)

Country Link
JP (1) JPH01117016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354190A (en) * 1989-07-21 1991-03-08 Sony Corp Formation of thin film and device therefor
CN112160030A (en) * 2020-09-25 2021-01-01 中国电子科技集团公司第十一研究所 Molecular beam epitaxy system and temperature control method of molecular beam epitaxy surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354190A (en) * 1989-07-21 1991-03-08 Sony Corp Formation of thin film and device therefor
CN112160030A (en) * 2020-09-25 2021-01-01 中国电子科技集团公司第十一研究所 Molecular beam epitaxy system and temperature control method of molecular beam epitaxy surface

Similar Documents

Publication Publication Date Title
DE3526888C2 (en)
DE3739639A1 (en) PROCESS OF EPITAXIAL GROWTH OF CONNECTING SEMICONDUCTORS
JP3855061B2 (en) Method of forming compound semiconductor thin film on Si substrate
DE68901735T2 (en) METHOD FOR PRODUCING SEMI-CONDUCTING CRYSTALS.
JPH04198095A (en) Method for growing thin film of compound semiconductor
JPH01117016A (en) Hetero structure forming method
JP2006253414A (en) Method for forming semiconductor thin film on si substrate and its structure
JPH0787179B2 (en) Method for manufacturing superlattice semiconductor device
JPH02139918A (en) Manufacture of hetero structure
JP2682511B2 (en) Group 2-6 compound semiconductor thin film and method of manufacturing the same
JPH0831410B2 (en) Method for manufacturing semiconductor device
JPH01125818A (en) Heterointerface formation
WO2007145873A2 (en) Growth of low dislocation density group-iii nitrides and related thin-film structures
JPH02222527A (en) Vapor deposition process and vapor deposition device
JPH0630339B2 (en) Method for producing GaAs single crystal
JPS6143413A (en) Formation of compound semiconductor single crystal thin film
JP4216580B2 (en) ZnTe compound semiconductor surface treatment method and semiconductor device manufacturing method
JP3096579B2 (en) Vapor phase growth method and vapor phase growth apparatus
JP2870061B2 (en) Super lattice structure element
DE4447177A1 (en) Blue-emitting gallium nitride epitaxial layer growth
JPH05326412A (en) Method for forming compound thin film
JPS63282193A (en) Formation of hetero interface
JPH05182910A (en) Molecular beam epitaxtially growing method
JPH02289499A (en) Superlattice structural element
JPS63228711A (en) Manufacture of iii-v compound semiconductor layer