JP2771635B2 - Ca lower 1-lower x Sr lower x F lower 2 - Google Patents

Ca lower 1-lower x Sr lower x F lower 2

Info

Publication number
JP2771635B2
JP2771635B2 JP26075389A JP26075389A JP2771635B2 JP 2771635 B2 JP2771635 B2 JP 2771635B2 JP 26075389 A JP26075389 A JP 26075389A JP 26075389 A JP26075389 A JP 26075389A JP 2771635 B2 JP2771635 B2 JP 2771635B2
Authority
JP
Japan
Prior art keywords
film
crystal
single crystal
caf
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26075389A
Other languages
Japanese (ja)
Other versions
JPH02290023A (en
Inventor
祥司 周藤
佳宏 森本
清 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP26075389A priority Critical patent/JP2771635B2/en
Publication of JPH02290023A publication Critical patent/JPH02290023A/en
Application granted granted Critical
Publication of JP2771635B2 publication Critical patent/JP2771635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、絶縁層としてCaF2,SrF2膜の混晶のCa1-xSr
xF2膜を用いたSOI(Semiconductor on Insulator)構造
を形成するためのSi基板上への単結晶Ca1-xSrxF2膜の形
成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention relates to a mixed crystal Ca 1-x Sr of CaF 2 , SrF 2 film as an insulating layer.
x F 2 film to a method for forming SOI (Semiconductor on Insulator) single crystal onto a Si substrate to form a structure Ca 1-x Sr x F 2 film was used.

(ロ)従来の技術 Si基板上に単結晶絶縁膜を形成し、更にこの絶縁膜上
に単結晶Siや単結晶GaAs膜を形成したSOI構造を有する
ものは、半導体集積回路における高集積化、高速化、低
消費電力化が図れるものとして知られている。
(B) Conventional technology An SOI structure in which a single-crystal insulating film is formed on a Si substrate and a single-crystal Si or single-crystal GaAs film is further formed on the insulating film is used for high integration in a semiconductor integrated circuit. It is known that high speed and low power consumption can be achieved.

CaF2はSiやGaAsと同じ立方晶構造をもち、その格子定
数は5.46ÅでSiとの格子不整合率は0.6%と極めて良い
ので、良質な単結晶CaF2を単結晶Si基板上に成長させる
ことができ、単結晶Si基板上に上層がSiであるSOI構造
を形成する際の絶縁膜として用いることが考えられてい
る。
Since CaF 2 has the same cubic structure as Si and GaAs, its lattice constant is 5.46Å and its lattice mismatch with Si is extremely good at 0.6%, high-quality single-crystal CaF 2 is grown on a single-crystal Si substrate. It has been considered to be used as an insulating film when forming an SOI structure in which the upper layer is Si on a single crystal Si substrate.

一方、SrF2も同様な結晶系で、その格子定数は5.8Å
であることから、CaF2とSrF2の混晶を用い、その混晶比
を制御することにより、単結晶Si基板上に5.46から5.8
Åの範囲で任意の格子定数を持つ単結晶絶縁膜が形成さ
れる。
On the other hand, SrF 2 is a similar crystal system, and its lattice constant is 5.8Å
Therefore, by using a mixed crystal of CaF 2 and SrF 2 and controlling the mixed crystal ratio, from 5.46 to 5.8 on a single crystal Si substrate.
A single crystal insulating film having an arbitrary lattice constant is formed in the range of 形成.

半導体集積回路においては、高集積化のために、能動
層としての半導体層を間に絶縁膜を介在させて積層した
三次元回路の研究開発が進められており、多機能化の要
請から、異なる半導体層を積層することが研究されてい
る。
In semiconductor integrated circuits, for the purpose of high integration, research and development of three-dimensional circuits in which semiconductor layers as active layers are stacked with an insulating film interposed therebetween are being promoted. Stacking semiconductor layers has been studied.

その一つに単結晶Si基板上に絶縁層を介して単結晶Ga
As膜を形成するものがある。このときの絶縁層としてCa
1-xSrxF2膜が用いられる(Materials Reserch Society
Symposium Proceeding Vol.91 pp337〜pp348、1987参
照)。
One of them is single-crystal Ga on a single-crystal Si substrate via an insulating layer.
Some form an As film. In this case, the insulating layer
1-x Sr x F 2 film is used (Materials Research Society
Symposium Proceeding Vol. 91 pp337-pp348, 1987).

しかし、単結晶Si基板上に直接Ca1-xSrxF2膜をエピタ
キシャル成長させると、その表面には無数のクラックが
発生するため、このCa1-xSrxF2膜上に単結晶GaAs膜を成
長させても、質の悪い半導体素子の作成には適さないGa
As膜しか得られない。
However, when epitaxially growing a direct Ca 1-x Sr x F 2 film on the single crystal Si substrate, since the countless cracks on the surface, the single crystal GaAs in the Ca 1-x Sr x F 2 film Even if the film is grown, Ga
Only As film can be obtained.

そこで、単結晶Si基板上にまず単結晶CaF2膜を成長さ
せ、そのCaF2膜上に組成比xを連続的に変化させてCa
1-xSrxF2膜を成長させることで、クラックの発生を抑え
たCa1-xSrxF2膜の成長を行っている。
Therefore, first, a single-crystal CaF 2 film is grown on a single-crystal Si substrate, and the composition ratio x is continuously changed on the CaF 2 film to obtain a single-crystal CaF 2 film.
By growing the 1-x Sr x F 2 film, the Ca 1-x Sr x F 2 film is suppressed from being cracked.

(ハ)発明が解決しようとする課題 然し乍ら、混晶比を連続的に変化させてCa1-xSrxF2
を成長させていくと、格子定数のわずかな違いによるSi
とCaF2の格子不整合により発生する単結晶CaF2膜中の欠
陥、あるいはCaF2とCa1-xSrxF2の格子定数の違いによる
格子不整合に起因して、単結晶CaF2膜とCa1-xSrxF2膜と
の界面で生じる結晶欠陥が、Ca1-xSrxF2膜の中で界面か
ら表面まで連続的に発生してしまう。
(C) Problems to be Solved by the Invention However, when the Ca 1-x Sr x F 2 film is grown by continuously changing the mixed crystal ratio, the Si due to a slight difference in the lattice constant
And defects in the single crystal CaF 2 film caused by lattice mismatch CaF 2 or due to the difference due to the lattice mismatch of the lattice constants of CaF 2 and Ca 1-x Sr x F 2 ,, monocrystalline CaF 2 film Defects generated at the interface between the Ca 1-x Sr x F 2 film and the Ca 1-x Sr x F 2 film occur continuously from the interface to the surface in the Ca 1-x Sr x F 2 film.

表面に結晶欠陥のあるCa1-xSrxF2膜上に単結晶GaAs膜
をエピタキシャル成長させても、やはり、半導体素子を
作成するに適した良好な単結晶GaAs膜を得ることはでき
なかった。
Even when a single-crystal GaAs film was epitaxially grown on a Ca 1-x Sr x F 2 film having a crystal defect on the surface, a good single-crystal GaAs film suitable for fabricating a semiconductor device could not be obtained. .

本発明は斯様な点に鑑みて為されたもので、単結晶Si
基板上に、良好な単結晶GaAs膜の成長が可能なCa1-xSrx
F2膜を形成するものである。
The present invention has been made in view of such a point, and a single crystal Si
Ca 1-x Sr x capable of growing good single crystal GaAs film on substrate
And forms a F 2 film.

(ニ)課題を解決するための手段 本発明は、単結晶Si基板上に単結晶CaF2膜を形成し、
該単結晶CaF2膜上に、段階的に混晶比xを変化させて、
複数の単結晶Ca1-xSrxF2膜を形成し、GaAsの成長に適し
た格子定数のCa1-xSrxF2膜を得るCa1-xSrxF2膜の形成方
法である。
(D) Means for Solving the Problems The present invention forms a single-crystal CaF 2 film on a single-crystal Si substrate,
On the single crystal CaF 2 film, by changing the mixed crystal ratio x step by step,
A plurality of single crystal Ca 1-x Sr x F 2 film was formed to obtain Ca 1-x Sr x F 2 film lattice constant appropriate for GaAs growth Ca 1-x Sr x F 2 film forming method is there.

(ホ)作用 単結晶CaF2膜上に、混晶比xを段階的に変化させて単
結晶Ca1-xSrxF2膜を形成するので、単結晶CaF2膜上との
界面に発生する欠陥が、単結晶CaF2膜との界面から連続
してCa1-xSrxF2膜内に発生することを抑えられる。そし
て、欠陥密度の小さい単結晶Ca1-xSrxF2膜が形成され
る。
(E) on the working monocrystalline CaF 2 film, since the stepwise changed mixed crystal ratio x of forming a single crystal Ca 1-x Sr x F 2 film, generated at the interface between the single crystal CaF 2 film And the generation of defects in the Ca 1-x Sr x F 2 film continuously from the interface with the single crystal CaF 2 film can be suppressed. Then, a single crystal Ca 1-x Sr x F 2 film having a low defect density is formed.

(ヘ)実施例 第1図A乃至Fは本発明一実施例の工程説明図であ
る。
(F) Example FIGS. 1A to 1F are process explanatory views of one example of the present invention.

(1)は(100)面を主面とする単結晶Si基板で(第
1図A)、化学的に洗浄され、図示しないMBE(分子線
エピタキシー)成長装置内に設置されている。そしてま
ず、1×10-11Torr台の真空度下で基板を850℃から950
℃に昇温して、約20〜30分間保持し、Si基板表面の薄い
自然酸化膜及びコンタミネーションを熱的に除去して清
浄な表面を露出させる。清浄な表面が露出したかどうか
は、MBE成長装置に備えられる電子線回折装置により判
断される。
(1) is a single crystal Si substrate having a (100) plane as a main surface (FIG. 1A), which is chemically cleaned and installed in an MBE (molecular beam epitaxy) growth apparatus (not shown). First, the substrate is heated from 850 ° C. to 950 ° C. under a vacuum of 1 × 10 −11 Torr.
The temperature is raised to ° C. and maintained for about 20 to 30 minutes to thermally remove the thin native oxide film and contamination on the surface of the Si substrate to expose a clean surface. Whether or not the clean surface is exposed is determined by an electron diffraction device provided in the MBE growth device.

その後基板温度を約550℃に降下させ、あらかじめ約1
200℃に昇温しておいたCaF2が充填されているクヌード
センセルから、温度に応じた分子線強度を有するCaF2
子線を単結晶Si基板(1)表面に照射して、単結晶CaF2
膜(2)を成長させる(第1図B)。単結晶CaF2
(2)は、約140Å/minの成長速度で、約700Å成長させ
る。
Then, lower the substrate temperature to about 550 ° C, and
The surface of the single crystal Si substrate (1) is irradiated with a CaF 2 molecular beam having a molecular beam intensity corresponding to the temperature from a Knudsen cell filled with CaF 2 heated to 200 ° C. Crystalline CaF 2
A film (2) is grown (FIG. 1B). The single crystal CaF 2 film (2) grows at about 700 ° at a growth rate of about 140 ° / min.

単結晶CaF2膜(2)を成長させたら、基板温度を約80
0℃に昇温し、3分間以上この温度を保持して、単結晶C
aF2膜(2)の結晶性及び表面モホロジーの改善を行
う。
After growing a single-crystal CaF 2 film (2), the substrate temperature should be about 80
The temperature was raised to 0 ° C, and the temperature was maintained for 3 minutes or more to obtain a single crystal C
The crystallinity and surface morphology of the aF 2 film (2) are improved.

次に混晶比xが0.07、即ち、CaF2分子線の強度とSrF2
分子線の強度の比が0.93:0.07となる様に、先にCaF2
充填されたクヌードセンセルとSrF2が充填されたクヌー
ドセンセルの温度を調節し、約800℃に保持された基板
の単結晶CaF2膜(2)表面に夫々の分子線を照射して、
単結晶Ca1-xSrxF2膜(ここではx=0.07なので、Ca0.93
Sr0.07F2膜)(3a)をエピタキシャル成長させる(第1
図C)。単結晶Ca0.93Sr0.07F2膜(3a)の成長速度は約
140Å/minで、約1000Å成長させる。
Next, the mixed crystal ratio x was 0.07, that is, the intensity of CaF 2 molecular beam and SrF 2
The temperature of the Knudsen cell filled with CaF 2 and the Knudsen cell filled with SrF 2 were adjusted so that the intensity ratio of the molecular beam became 0.93: 0.07, and the temperature was maintained at about 800 ° C. Irradiate each molecular beam on the surface of the single crystal CaF 2 film (2) of the substrate
Single crystal Ca 1-x Sr x F 2 film (here x = 0.07, Ca 0.93
Sr 0.07 F 2 film) (3a) is epitaxially grown (No. 1)
Figure C). The growth rate of single crystal Ca 0.93 Sr 0.07 F 2 film (3a) is about
At 140Å / min, grow about 1000Å.

このときSiとの格子不整合により単結晶CaF2膜(2)
内に発生していた欠陥は、格子定数の異なるCa0.93Sr
0.07F2膜(3a)を成長させることで、単結晶CaF2
(2)とCa0.93Sr0.07F2膜(3a)との界面においてCa
0.93Sr0.07F2膜(3a)の成長面に吸収されて、欠陥数は
減少する。
At this time, single crystal CaF 2 film (2) due to lattice mismatch with Si
Defects that occurred in Ca 0.93 Sr with different lattice constants
By growing the 0.07 F 2 film (3a), Ca at the interface between the single crystal CaF 2 film (2) and Ca 0.93 Sr 0.07 F 2 film (3a)
The number of defects is reduced by being absorbed by the growth surface of the 0.93 Sr 0.07 F 2 film (3a).

次に、混晶比xを0.07から0.1増化して0.17にする様
に、即ち、CaF2とSrF2の分子線強度の比を0.83:0.17に
する様に、CaF2とSrF2が充填された夫々のクヌードセン
セルの温度を制御する。そして、単結晶Ca0.93Sr0.07F2
膜(3a)の表面にCaF2とSrF2の分子線を照射してCa0.83
Sr0.17F2膜(3b)をエピタキシャル成長させる。
Next, as to the mixed crystal ratio x of 0.07 to 0.1 Zoka to 0.17, i.e., the ratio of the molecular beam intensities of CaF 2 and SrF 2 0.83: As to 0.17, CaF 2 and SrF 2 are filled Control the temperature of each Knudsen cell. And single crystal Ca 0.93 Sr 0.07 F 2
The surface of the film (3a) is irradiated with molecular beams of CaF 2 and SrF 2 to obtain Ca 0.83
An Sr 0.17 F 2 film (3b) is epitaxially grown.

更に同様にして、混晶比xを0.1づつ増加して、夫々
約1000Åの厚さのCa0.73Sr0.27F2膜(3c)、Ca0.63Sr
0.37F2膜(3d)、Ca0.53Sr0.47F2膜(3e)を、順次エピ
タキシャル成長させる(第1図D)。
In the same manner, the mixed crystal ratio x was increased by 0.1, and the Ca 0.73 Sr 0.27 F 2 film (3c) and the Ca 0.63 Sr having a thickness of about 1000
A 0.37 F 2 film (3d) and a Ca 0.53 Sr 0.47 F 2 film (3e) are sequentially grown epitaxially (FIG. 1D).

単結晶Ca0.53Sr0.47F2膜(3e)を成長させたら、上述
と同様に、混晶比を0.1増加して、Ca0.53Sr0.47F2膜(3
e)上にCa0.43Sr0.57F2膜(3f)をエピタキシャル成長
させる(第1図E)。この時、単結晶Ca0.43Sr0.57F2
(3f)の膜厚は約3000Åとする。
After growing the single-crystal Ca 0.53 Sr 0.47 F 2 film (3e), the mixed crystal ratio is increased by 0.1 and the Ca 0.53 Sr 0.47 F 2 film (3
e) A Ca 0.43 Sr 0.57 F 2 film (3f) is epitaxially grown thereon (FIG. 1E). At this time, the thickness of the single crystal Ca 0.43 Sr 0.57 F 2 film (3f) is set to about 3000 °.

そして最後に、このCa0.43Sr0.57F2膜(3f)上に単結
晶GaAs膜(4)をエピタキシャル成長させる(第1図
F)。
Finally, a single-crystal GaAs film (4) is epitaxially grown on the Ca 0.43 Sr 0.57 F 2 film (3f) (FIG. 1F).

格子定数の異なる膜を成長させるためにCa1-xSrxF2
中に生じる欠陥は、混晶比xの異なるCa1-xSrxF2膜を成
長させるときの界面付近に局在するので、成長させたCa
1-xSrxF2膜の表面に現れる欠陥は少ない。従って、混晶
比xの異なる6層のCa1-xSrxF2膜の内、最上層のCa0.43
Sr0.57F2膜(3f)は、極めて欠陥の少ない単結晶Ca1-xS
rxF2膜となる。また、このCa0.43Sr0.57F2膜(3f)の格
子定数は約5.64Åで、GaAsの格子定数とほぼ等しいの
で、欠陥の少ない良質で半導体素子の作成に適した単結
晶GaAs膜のエピタキシャル成長がされる。
Defects generated in the Ca 1-x Sr x F 2 film for growing films with different lattice constants are localized near the interface when growing Ca 1-x Sr x F 2 films with different mixed crystal ratio x So the grown Ca
Few defects appear on the surface of the 1-x Sr x F 2 film. Therefore, of the six layers of Ca 1-x Sr x F 2 films having different mixed crystal ratios x, the uppermost layer of Ca 0.43
Sr 0.57 F 2 film (3f) is a single crystal Ca 1-x S
r x F 2 film. The Ca 0.43 Sr 0.57 F 2 film (3f) has a lattice constant of about 5.64Å, which is almost equal to the lattice constant of GaAs. Is done.

ここで、更に半導体素子の作成に好適な、表面モホロ
ジーが平坦な単結晶GaAs膜を形成する場合には、単結晶
Ca0.93Sr0.07F2膜(3a)、Ca0.83Sr0.17F2膜(3b)、単
結晶Ca0.73Sr0.27F2膜(3c)、単結晶Ca0.63Sr0.37F2
(3d)、単結晶Ca0.53Sr0.47F2膜(3e)及び単結晶Ca
0.43Sr0.57F2膜(3f)を夫々エピタキシャル成長させた
時点で、アニール処理を施すことによってこれらの膜の
表面モホロジーを改善させればよい。
Here, when forming a single-crystal GaAs film having a flat surface morphology, which is suitable for the production of a semiconductor device, a single-crystal GaAs film may be used.
Ca 0.93 Sr 0.07 F 2 film (3a), Ca 0.83 Sr 0.17 F 2 film (3b), single crystal Ca 0.73 Sr 0.27 F 2 film (3c), single crystal Ca 0.63 Sr 0.37 F 2 film (3d), single crystal Ca 0.53 Sr 0.47 F 2 film (3e) and single crystal Ca
After epitaxial growth of the 0.43 Sr 0.57 F 2 films (3f), annealing treatment may be performed to improve the surface morphology of these films.

即ち、上述と同様に、単結晶Si基板(1)上に単結晶
CaF2(2)をエピタキシャル成長させ、アニール処理に
より表面モホロジーの改善を行った後、基板温度を約73
0℃に設定保持して単結晶Ca0.93Sr0.07F2膜(3a)をエ
ピタキシャル成長させる。
That is, as described above, the single crystal Si substrate (1)
After CaF 2 (2) is epitaxially grown and the surface morphology is improved by annealing, the substrate temperature is reduced to about 73
The single crystal Ca 0.93 Sr 0.07 F 2 film (3a) is epitaxially grown while maintaining the temperature at 0 ° C.

続いて、基板温度を約750℃以上、ここでは約800℃に
昇温し、3分間以上保持してアニール処理を行う。この
アニール処理により単結晶Ca0.93Sr0.07F2膜(3a)の表
面モホロジーは改善され、平坦となる。
Subsequently, the temperature of the substrate is raised to about 750 ° C. or more, here about 800 ° C., and the annealing treatment is performed for 3 minutes or more. By this annealing treatment, the surface morphology of the single crystal Ca 0.93 Sr 0.07 F 2 film (3a) is improved and becomes flat.

更に、それ以降のCa0.83Sr0.17F2膜(3b)、単結晶Ca
0.73Sr0.27F2膜(3c)、単結晶Ca0.63Sr0.37F2膜(3
d)、単結晶Ca0.53Sr0.47F2膜(3e)及び単結晶Ca0.43S
r0.57F2膜(3f)についても、基板温度約530℃でエピタ
キシャル成長させ、続いて約800℃、3分以上のアニー
ル処理を行って、これら膜の表面モホロジーの改善を行
う。
Furthermore, the subsequent Ca 0.83 Sr 0.17 F 2 film (3b), single crystal Ca
0.73 Sr 0.27 F 2 film (3c), single crystal Ca 0.63 Sr 0.37 F 2 film (3
d), single-crystal Ca 0.53 Sr 0.47 F 2 film (3e) and single-crystal Ca 0.43 S
The r 0.57 F 2 film (3f) is also epitaxially grown at a substrate temperature of about 530 ° C., and then annealed at about 800 ° C. for 3 minutes or more to improve the surface morphology of these films.

そして、斯様にして形成された単結晶Ca0.43Sr0.57F2
膜(3f)上に単結晶GaAs膜をエピタキシャル成長させれ
ば、欠陥が少なく、表面が平坦で半導体素子の作成に好
適な単結晶GaAs膜が得られる。
And the single crystal Ca 0.43 Sr 0.57 F 2 thus formed
If a single crystal GaAs film is epitaxially grown on the film (3f), a single crystal GaAs film having few defects and a flat surface and suitable for manufacturing a semiconductor device can be obtained.

(ト)発明の効果 本発明は、以上の説明から明らかな如く、複数のCa
1-xSrxF2膜を、混晶比xを段階的に変化させて単結晶Ca
F2膜上にエピタキシャル成長させることにより、結晶欠
陥の極めて少ないCa1-xSrxF2膜を形成することができ
る。そして、半導体素子の作成に適した単結晶GaAs膜を
絶縁膜上に形成でき、半導体集積回路の多機能化を図る
ことが可能になる。
(G) Effects of the present invention As apparent from the above description, the present invention
1-x Sr x F 2 film, single crystal Ca by changing the mixed crystal ratio x stepwise
By performing epitaxial growth on the F 2 film, a Ca 1-x Sr x F 2 film having extremely few crystal defects can be formed. Then, a single-crystal GaAs film suitable for manufacturing a semiconductor element can be formed over the insulating film, so that the semiconductor integrated circuit can have multiple functions.

また、各々の単結晶Ca1-xSrxF2膜を、アニール処理に
よりその表面モホロジーを改善すれば、より半導体素子
の作成に適した単結晶GaAs膜が形成できる。
If the surface morphology of each single-crystal Ca 1-x Sr x F 2 film is improved by annealing, a single-crystal GaAs film more suitable for manufacturing a semiconductor device can be formed.

【図面の簡単な説明】[Brief description of the drawings]

第1図A乃至Fは本発明の一実施例の工程説明図であ
る。 (1)……単結晶Si基板、(2)……単結晶CaF2膜、
(3a)……単結晶Ca0.93Sr0.07F2膜、(3b)……単結晶
Ca0.83Sr0.17F2膜、(3c)……単結晶Ca0.73Sr0.27F
2膜、(3d)……単結晶Ca0.63Sr0.37F2膜、(3e)……
単結晶Ca0.53Sr0.47F2膜、(3f)……単結晶Ca0.43Sr
0.57F2膜、(4)……単結晶GaAs膜。
1A to 1F are process explanatory views of one embodiment of the present invention. (1) Single crystal Si substrate, (2) Single crystal CaF 2 film,
(3a) Single crystal Ca 0.93 Sr 0.07 F 2 film, (3b) Single crystal
Ca 0.83 Sr 0.17 F 2 film, (3c) …… Single crystal Ca 0.73 Sr 0.27 F
2 film, (3d) …… Single crystal Ca 0.63 Sr 0.37 F 2 film, (3e) ……
Single-crystal Ca 0.53 Sr 0.47 F 2 film, (3f) …… Single-crystal Ca 0.43 Sr
0.57 F 2 film, (4) .... monocrystalline GaAs film.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 Materials Reserch Society Symposium Procecdlng,Vol.91, (1987) P.337−348 (58)調査した分野(Int.Cl.6,DB名) H01L 21/314 JOISファイル──────────────────────────────────────────────────続 き Continued on the front page (56) References Materials Research Society Symposium Processdling, Vol. 91, (1987) p. 337-348 (58) Field surveyed (Int. Cl. 6 , DB name) H01L 21/314 JOIS file

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単結晶半導体基板上に単結晶CaF2膜を形成
し、該単結晶CaF2膜上に混晶比x(0<x<1)を所望
の値まで段階的に変化させた複数の単結晶Ca1-xSrxF2
を形成することを特徴とするCa1-xSrxF2膜の形成方法。
1. A form a single crystal CaF 2 film on the single crystal semiconductor substrate, the graduated alloy composition on the single crystal CaF 2 film x a (0 <x <1) to a desired value Ca 1-x Sr x F 2 film formation method, which comprises forming a plurality of single crystal Ca 1-x Sr x F 2 film.
【請求項2】前記単結晶半導体基板は単結晶Si基板であ
り、混晶比xは段階的に増加することを特徴とする請求
項1記載のCa1-xSrxF2膜の形成方法。
Wherein said single crystal semiconductor substrate is a single crystal Si substrate, mixed crystal ratio x is formed stepwise method of Ca 1-x Sr x F 2 film according to claim 1, wherein the increasing .
【請求項3】前記混晶比xを約0.07から約0.57まで0.1
づつ増加させ、6層の単結晶Ca1-xSrxF2膜を形成するこ
とを特徴とする請求項2記載のCa1-xSrxF2膜の形成方
法。
3. The method according to claim 1, wherein said mixed crystal ratio x is from about 0.07 to about 0.57.
3. The method of forming a Ca 1-x Sr x F 2 film according to claim 2, wherein the single-crystal Ca 1-x Sr x F 2 film is formed in increments of six.
【請求項4】前記複数の単結晶Ca1-xSrxF2膜各々は、基
板温度約530℃で形成され、次いで、約750℃以上の温度
でアニール処理されることを特徴とする請求項1、2又
は3記載のCa1-xSrxF2膜の形成方法。
4. The method according to claim 1, wherein each of the plurality of single-crystal Ca 1-x Sr x F 2 films is formed at a substrate temperature of about 530 ° C., and then annealed at a temperature of about 750 ° C. or higher. Item 4. The method for forming a Ca 1-x Sr x F 2 film according to item 1, 2 or 3.
JP26075389A 1989-02-15 1989-10-05 Ca lower 1-lower x Sr lower x F lower 2 Expired - Fee Related JP2771635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26075389A JP2771635B2 (en) 1989-02-15 1989-10-05 Ca lower 1-lower x Sr lower x F lower 2

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-36716 1989-02-15
JP3671689 1989-02-15
JP26075389A JP2771635B2 (en) 1989-02-15 1989-10-05 Ca lower 1-lower x Sr lower x F lower 2

Publications (2)

Publication Number Publication Date
JPH02290023A JPH02290023A (en) 1990-11-29
JP2771635B2 true JP2771635B2 (en) 1998-07-02

Family

ID=26375804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26075389A Expired - Fee Related JP2771635B2 (en) 1989-02-15 1989-10-05 Ca lower 1-lower x Sr lower x F lower 2

Country Status (1)

Country Link
JP (1) JP2771635B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Materials Reserch Society Symposium Procecdlng,Vol.91,(1987) P.337−348

Also Published As

Publication number Publication date
JPH02290023A (en) 1990-11-29

Similar Documents

Publication Publication Date Title
JPH0794420A (en) Manufacture of compound semiconductor crystal substrate
JP2771635B2 (en) Ca lower 1-lower x Sr lower x F lower 2
JPH04233219A (en) Manufacture of products comprising semiconductor devices
US5254211A (en) Method for forming crystals
CA1333248C (en) Method of forming crystals
JPS5860556A (en) Preparation of semiconductor device
JPS62132312A (en) Manufacture of semiconductor thin film
JP2747823B2 (en) Method for producing gallium arsenide layer and method for producing gallium arsenide / aluminum gallium arsenide laminate
JP2619734B2 (en) Semiconductor substrate and method of manufacturing the same
JPH01149483A (en) Solar cell
JPS6191917A (en) Manufacture of semiconductor thin film crystal
JPH0524113B2 (en)
JP2721683B2 (en) Method for growing compound semiconductor thin film crystal
JPH02191321A (en) Method of forming crystal
JPS5934626A (en) Method for formation of semiconductor film
JPH0524884A (en) Production of cu-based chalopyrite film
JP2737152B2 (en) SOI forming method
JPS61145823A (en) Molecular beam epitaxial growth method
JPH0746684B2 (en) Semiconductor wafer and manufacturing method thereof
JPH06140332A (en) Algaas film formation method
JPH0828325B2 (en) Method for forming semiconductor thin film
JPH01243513A (en) Compound semiconductor substrate
JPS63137412A (en) Manufacture of semiconductor substrate
JP2696928B2 (en) Heteroepitaxial growth method
JPH01149466A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees