JPH01243513A - Compound semiconductor substrate - Google Patents

Compound semiconductor substrate

Info

Publication number
JPH01243513A
JPH01243513A JP6949788A JP6949788A JPH01243513A JP H01243513 A JPH01243513 A JP H01243513A JP 6949788 A JP6949788 A JP 6949788A JP 6949788 A JP6949788 A JP 6949788A JP H01243513 A JPH01243513 A JP H01243513A
Authority
JP
Japan
Prior art keywords
layer
lattice
substrate
intermediate layer
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6949788A
Other languages
Japanese (ja)
Inventor
Junko Asano
純子 浅野
Yoshiaki Yazawa
義昭 矢澤
Hitoshi Onuki
仁 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6949788A priority Critical patent/JPH01243513A/en
Publication of JPH01243513A publication Critical patent/JPH01243513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a compound semiconductor substrate capable of withstanding high-temperature processes by forming an ultra-lattice structure of NiSi2 or CoSi2 that lattice-matches an Si substrate and Fe3Si that lattice-matches a GaAs layer. CONSTITUTION:An NiSi2 layer 21 is formed 100Angstrom or greater on an Si substrate 1 as an intermediate layer 2 by electron beam deposition. The growth tempera ture is 600-700 deg.C, and an MBE growth process is performed. Next, ten layers of ultra-lattice layers of NiSi2 and Fe3Si are laminated in a thickness of several 10Angstrom . This process removes about 4% mismatchings of lattice. The Fe3Si layer is formed 100Angstrom or greater on the ultra-lattice layer 22 as a third intermediate layer 23 by electron beam deposition. After this, the GaAs layer 3 is formed 0.5mum at a growth temperature of 600 deg.C and at a growth speed of 1mum/h by the MBE method, finally obtaining a single-crystal GaAs layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はSi基板上にGaAs等の■−V族化合物半導
体層を形成することにより得られる化合物半導体基板に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a compound semiconductor substrate obtained by forming a -V group compound semiconductor layer such as GaAs on a Si substrate.

〔従来の技術〕[Conventional technology]

GaAs等の化合物半導体は、高い電子移動度と直接遷
移型のバンド構造を持っているために、高速デバイス、
発光デバイス等に利用されている。
Compound semiconductors such as GaAs have high electron mobility and a direct transition type band structure, so they are suitable for high-speed devices,
Used in light-emitting devices, etc.

また、GaAs等の化合物半導体の薄膜結晶の成長が活
発に研究され、それらを使ったデバイスが試作されてい
る。これらのデバイスの実現化のために、低価格で大規
模面積基板等の利点を持つ、Si基板を利用することが
期待されている。そこで、Si基板上へG a A s
単結晶層を形成することが望まれているが、GaAsは
Siよりも格子定数が大きく、直接Si基板上に良質の
単結晶層を成長させることができない。そのため、Si
基板とG a A s層の間に格子の不整合を解消する
ための何らかの中間層が必要である。
Furthermore, the growth of thin film crystals of compound semiconductors such as GaAs is being actively researched, and devices using them are being prototyped. In order to realize these devices, it is expected to use a Si substrate, which has advantages such as low cost and large area substrate. Therefore, Ga As is applied onto the Si substrate.
Although it is desired to form a single crystal layer, GaAs has a larger lattice constant than Si, and it is not possible to grow a high quality single crystal layer directly on a Si substrate. Therefore, Si
Some intermediate layer is required between the substrate and the GaAs layer to overcome the lattice mismatch.

従来のSi基板上にGaAs層を形成した化合物半導体
基板には、中間層としてGe層や5i1−XGeX層、
または、他の二元、三元の化合物半導体層を利用する方
法等があり、中でも超格子を用いて格子の不整合を解消
することが行われていた。例えば、第2図に示す、特開
昭62−58616号公報として開示されているように
、中間層20として格子定数の少しずつ異なるGaP2
1゜G a A s o、5Po*3等の化合物半導体
による超格子層22.23を積み重ねることによって、
約4%異なるSiからG a A sの格子定数の不整
合を解消していた。なお、30はGaAs成長層。
A conventional compound semiconductor substrate in which a GaAs layer is formed on a Si substrate has a Ge layer, a 5i1-XGeX layer, or a 5i1-XGeX layer as an intermediate layer.
Alternatively, there are methods using other binary or ternary compound semiconductor layers, among which a superlattice has been used to eliminate lattice mismatch. For example, as shown in FIG. 2 and disclosed in Japanese Unexamined Patent Publication No. 62-58616, GaP2 with slightly different lattice constants is used as the intermediate layer 20.
By stacking superlattice layers 22 and 23 made of compound semiconductors such as 1°G a So, 5Po*3,
The mismatch between the lattice constants of Si and GaAs, which differ by about 4%, was resolved. Note that 30 is a GaAs growth layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

GaAs等の化合物半導体薄膜デバイスでは、その基板
に熱的安定性が要求される。従来の化合物半導体の超格
子層を用いた中間層では、熱的安定性に欠け、超格子層
形成後、高温処理を加えることができない。
Compound semiconductor thin film devices such as GaAs require thermal stability in their substrates. An intermediate layer using a conventional compound semiconductor superlattice layer lacks thermal stability and cannot be subjected to high-temperature treatment after the superlattice layer is formed.

本発明の目的は、一般に熱的に安定であるシリサイドを
中間層としで用い、高温処理に耐え得る中間層を形成し
た上で、Si基板とGaAs層の間の約4%の格子の不
整合を解決することにある。
The purpose of the present invention is to use silicide, which is generally thermally stable, as an intermediate layer to form an intermediate layer that can withstand high-temperature processing, and to reduce the lattice mismatch of approximately 4% between the Si substrate and the GaAs layer. The goal is to solve the problem.

一般に、GaAs層にデバイスを形成する場合、不純物
の拡散工程や層間絶縁膜を形成する工程で。
Generally, when forming a device in a GaAs layer, this is done in the process of diffusing impurities or forming an interlayer insulating film.

基板の温度を上昇させる必要がある。そのため、Siと
GaAs層の中間層に超格子を用いた基板では上述の工
程中に超格子構造が破壊され、Si基板表面からGaA
s層に向かう転移の伝搬が抑制できなくなり、良好な結
晶性をもつGaAs層を維持できなくなる。そこで各種
デバイスを形成するための熱処理工程に耐え得る超格子
構造が必要とされていた。
It is necessary to raise the temperature of the substrate. Therefore, in a substrate using a superlattice in the intermediate layer between Si and GaAs, the superlattice structure is destroyed during the above process, and the GaAs is removed from the surface of the Si substrate.
The propagation of dislocation toward the s-layer cannot be suppressed, and a GaAs layer with good crystallinity cannot be maintained. Therefore, there was a need for a superlattice structure that could withstand the heat treatment process used to form various devices.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、Si基板とGaAs層の間に中間層として
、Si(格子定数5.43人)と格子整合するN15i
z(格子定数5.41人)、あるいは、Co512(格
子定数5.38人)と、G a A s(格子定数5.
65人)と格子整合するFe3Si(格子定数5.66
人)を用いることにより、耐熱性の高い超格子構造を形
成することができ、デバイス形成過程における熱処理を
経てもG a A s層の初期の結晶性を維持すること
ができる。
The above purpose is to use N15 as an intermediate layer between the Si substrate and the GaAs layer, which is lattice-matched to Si (lattice constant 5.43).
z (lattice constant 5.41 people), or Co512 (lattice constant 5.38 people) and G a A s (lattice constant 5.38 people).
Fe3Si (lattice constant 5.66), which is lattice-matched with
By using a superlattice structure with high heat resistance, the initial crystallinity of the GaAs layer can be maintained even after heat treatment in the device formation process.

〔作用〕[Effect]

Si基板と格子整合するN15izやCo S i z
と、GaAs層と格子整合するFe3Siの超格子構造
を形成することにより、格子定数の不整合による転位の
伝搬をおさえ、熱的に安定な結晶性シリサイド中間層を
もち、高温処理に耐える化合物半導体基板が得られる。
N15iz and Co Si z that lattice match with Si substrate
By forming a Fe3Si superlattice structure that lattice-matches with the GaAs layer, it suppresses the propagation of dislocations due to lattice constant mismatch, has a thermally stable crystalline silicide intermediate layer, and is a compound semiconductor that can withstand high-temperature processing. A substrate is obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

Si基板1上に中間層2として電子ビーム蒸着法により
N15iz層21を100Å以上形成する。
A N15iz layer 21 with a thickness of 100 Å or more is formed as an intermediate layer 2 on a Si substrate 1 by electron beam evaporation.

成長温度は600−700℃で、MBE成長させる。次
に、N i S i x層21の上に、第二の中間層2
2としてN i S i zとFe3Siの超格子層を
数10人の厚さで中層積層する。これにより、約4%の
格子の不整合を解消する。この超格子層22の上に第三
の中間層2aとして、Fe3Si層を電子ビーム蒸着法
により、100Å以上形成した後、MBE法により、G
aAs層3を成長温度600℃、成長速度1μm/hで
0.5 μm形成し、最終的に単結晶GaAs層を得る
The growth temperature is 600-700°C, and MBE growth is performed. Next, on the N i S i x layer 21, a second intermediate layer 2 is formed.
2, superlattice layers of N i S i z and Fe3Si are laminated to a thickness of several tens of layers. This eliminates about 4% of the lattice mismatch. After forming a Fe3Si layer of 100 Å or more as the third intermediate layer 2a on this superlattice layer 22 by electron beam evaporation, G
An aAs layer 3 of 0.5 μm is formed at a growth temperature of 600° C. and a growth rate of 1 μm/h to finally obtain a single crystal GaAs layer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、欠陥が少なく、良質、低価格で、高温
処理に耐えることができ、熱的に安定な化合物半導体基
板が得られる。
According to the present invention, it is possible to obtain a thermally stable compound semiconductor substrate that has few defects, is of good quality, is inexpensive, can withstand high-temperature processing, and is thermally stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図は従来例の
断面図である。 1・・・Si基板、2・・・シリサイド中間層、21・
・・N15iz、2z−N i S iz/ F ea
s iのSLS、2a=・Fe3Si、3−GaAs成
長層。 第1図 第2図
FIG. 1 is a sectional view of one embodiment of the present invention, and FIG. 2 is a sectional view of a conventional example. DESCRIPTION OF SYMBOLS 1... Si substrate, 2... Silicide intermediate layer, 21.
・・N15iz, 2z-N i S iz/ F ea
SLS of s i, 2a = .Fe3Si, 3-GaAs growth layer. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、Si基板とIII−V族化合物半導体層との間でC
oSi_2あるいはNiSi_2からなり前記Si基板
に接して形成された第一の中間層と、前記第一の中間層
を形成するCoSi_2あるいはNiSi_2とFe_
3Siとの超格子構造からなり、前記第一の中間層上に
形成された第三の中間層と、Fe_3Siからなり、前
記第二の中間層上に形成された第三の中間層の三層を構
成することを特徴とする化合物半導体基板。 2、特許請求の範囲第1項において、 前記第二の中間層として前記CoSi_2あるいはNi
Si_2を一方の層とし、前記Fe_3Siと前記Co
Si_2あるいは前記NiSi_2との混晶を他方の層
とする超格子構造を用いたことを特徴とする化合物半導
体基板。
[Claims] 1. C between the Si substrate and the III-V compound semiconductor layer
A first intermediate layer made of oSi_2 or NiSi_2 and formed in contact with the Si substrate, and CoSi_2 or NiSi_2 and Fe_2 forming the first intermediate layer.
A third intermediate layer consisting of a superlattice structure with 3Si and formed on the first intermediate layer, and a third intermediate layer consisting of Fe_3Si and formed on the second intermediate layer. A compound semiconductor substrate comprising: 2. In claim 1, the CoSi_2 or Ni is used as the second intermediate layer.
With Si_2 as one layer, the Fe_3Si and the Co
A compound semiconductor substrate characterized by using a superlattice structure in which the other layer is Si_2 or a mixed crystal with NiSi_2.
JP6949788A 1988-03-25 1988-03-25 Compound semiconductor substrate Pending JPH01243513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6949788A JPH01243513A (en) 1988-03-25 1988-03-25 Compound semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6949788A JPH01243513A (en) 1988-03-25 1988-03-25 Compound semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH01243513A true JPH01243513A (en) 1989-09-28

Family

ID=13404414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6949788A Pending JPH01243513A (en) 1988-03-25 1988-03-25 Compound semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH01243513A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463254A (en) * 1992-10-30 1995-10-31 International Business Machines Corporation Formation of 3-dimensional silicon silicide structures
WO1995033285A1 (en) * 1994-05-31 1995-12-07 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Silicon thin film on glass substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463254A (en) * 1992-10-30 1995-10-31 International Business Machines Corporation Formation of 3-dimensional silicon silicide structures
WO1995033285A1 (en) * 1994-05-31 1995-12-07 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Silicon thin film on glass substrate

Similar Documents

Publication Publication Date Title
US4555301A (en) Formation of heterostructures by pulsed melting of precursor material
JPS5893221A (en) Semiconductor thin film structure and preparation thereof
JP2002343742A (en) DEVICE INCLUDING EPITAXIAL NICKEL SILICIDE FILM ON Si OF (100) FACE OR STABLE NICKEL SILICIDE FILM ON AMORPHOUS Si AND METHOD OF MANUFACTURING IT
JPH0614540B2 (en) Method for manufacturing semiconductor thin film crystal layer
JPH04198095A (en) Method for growing thin film of compound semiconductor
JPS6158879A (en) Preparation of silicon thin film crystal
JPS61188927A (en) Compound semiconductor device
JPH04233219A (en) Manufacture of products comprising semiconductor devices
JPH01243513A (en) Compound semiconductor substrate
JPH11251241A (en) Manufacture of crystalline silicon layer, manufacture of solar battery, and manufacture of thin-film transistor
RU2063094C1 (en) Method for producing heteroepitaxial structures insb/gaas
JP2747823B2 (en) Method for producing gallium arsenide layer and method for producing gallium arsenide / aluminum gallium arsenide laminate
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JP3261444B2 (en) Manufacturing method of semiconductor thin film
JPS63137412A (en) Manufacture of semiconductor substrate
JP2771635B2 (en) Ca lower 1-lower x Sr lower x F lower 2
JPS5893228A (en) Preparation of semiconductor single crystal thin film
JPH02105517A (en) Manufacture of semiconductor device
JPS6164118A (en) Manufacture of semiconductor device
JPS63158836A (en) Manufacture of semiconductor element
JPS62219614A (en) Method for growth of compound semiconductor
JPH03188619A (en) Method for heteroepitaxially growing iii-v group compound semiconductor on different kind of substrate
JPH05175144A (en) Semiconductor device and its manufacture
JPH01291420A (en) Manufacture of semiconductor substrate
JPH04335519A (en) Manufacture of semiconductor crystal