JP3261444B2 - Manufacturing method of semiconductor thin film - Google Patents

Manufacturing method of semiconductor thin film

Info

Publication number
JP3261444B2
JP3261444B2 JP29369293A JP29369293A JP3261444B2 JP 3261444 B2 JP3261444 B2 JP 3261444B2 JP 29369293 A JP29369293 A JP 29369293A JP 29369293 A JP29369293 A JP 29369293A JP 3261444 B2 JP3261444 B2 JP 3261444B2
Authority
JP
Japan
Prior art keywords
film
silicon
semiconductor thin
thin film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29369293A
Other languages
Japanese (ja)
Other versions
JPH07147232A (en
Inventor
敏弘 関川
賢一 石井
克好 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Citizen Watch Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Citizen Watch Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP29369293A priority Critical patent/JP3261444B2/en
Publication of JPH07147232A publication Critical patent/JPH07147232A/en
Application granted granted Critical
Publication of JP3261444B2 publication Critical patent/JP3261444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は絶縁膜上に単結晶シリコ
ン膜を形成する半導体薄膜の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor thin film for forming a single crystal silicon film on an insulating film.

【0002】[0002]

【従来の技術】従来、シリコン酸化膜などの絶縁膜上に
単結晶シリコン膜を形成する方法として、たとえば特開
昭64−39378号公報に記載されているような、横
方向固相成長法(L−SPE:Latral Soli
d Phase Epitaxy)がある。
2. Description of the Related Art Conventionally, as a method of forming a single crystal silicon film on an insulating film such as a silicon oxide film, a lateral solid phase growth method (for example, as described in Japanese Patent Application Laid-Open No. L-SPE: Latral Soli
d Phase Epitaxy).

【0003】一般には単結晶シリコン基板を熱酸化して
シリコン酸化膜からなる絶縁膜を形成し、そのシリコン
酸化膜の一部分を除去し、単結晶シリコン基板表面が露
出した領域であるシード領域を、塩素を含むガスでエッ
チング後、同一反応管内で熱CVD法によって非晶質シ
リコン膜を形成する。
In general, a single crystal silicon substrate is thermally oxidized to form an insulating film made of a silicon oxide film, a part of the silicon oxide film is removed, and a seed region in which the surface of the single crystal silicon substrate is exposed is formed. After etching with a gas containing chlorine, an amorphous silicon film is formed in the same reaction tube by a thermal CVD method.

【0004】その後、非晶質シリコン膜の形成温度付近
の温度条件に保たれた窒素雰囲気中で、10時間程度の
結晶化のための熱処理を行い、結晶化シリコン層を得て
いる。
After that, a heat treatment for crystallization is performed for about 10 hours in a nitrogen atmosphere maintained at a temperature around the formation temperature of the amorphous silicon film to obtain a crystallized silicon layer.

【0005】しかし、上述した従来方法では単結晶シリ
コン基板として面方位(100)を用いた場合、縦方向
は基板方位に従ってシリコンの結晶化が起こるが、横方
向にシリコンの結晶の成長が移行する際、面方位(11
1)が混在するようになる。
However, in the above-described conventional method, when a plane orientation (100) is used as a single crystal silicon substrate, silicon crystallization occurs in the vertical direction according to the substrate orientation, but the growth of silicon crystal shifts in the horizontal direction. When the plane orientation (11
1) is mixed.

【0006】このため結晶成長が決まった面方位で進行
しなくなり、ランダムに核生成が起こり、横方向固相成
長距離が伸びなくなるという欠点がある。
For this reason, there is a defect that crystal growth does not proceed in a predetermined plane orientation, nucleation occurs at random, and the solid phase growth distance in the horizontal direction does not increase.

【0007】そこで、従来においても、横方向への固相
成長距離を得るために非晶質シリコン膜形成後、シリコ
ンイオンを注入したり、リンやボロンなどの不純物を導
入した後に、シリコンの結晶化のための熱処理を行うと
いう方法が試みられている。
Therefore, conventionally, after an amorphous silicon film is formed in order to obtain a solid phase growth distance in the lateral direction, silicon ions are implanted, or impurities such as phosphorus and boron are introduced. Attempts have been made to carry out a heat treatment for the formation of a layer.

【0008】前者は、非晶質シリコン膜に過剰のシリコ
ンイオンが入ることによりシリコン−シリコン結合を切
り、結晶化のための熱処理によるランダムな核生成を抑
制するという効果がある。
The former has the effect of cutting off the silicon-silicon bond due to excessive silicon ions entering the amorphous silicon film and suppressing random nucleation due to heat treatment for crystallization.

【0009】また、後者は、例えば特公昭59−474
53号公報に記載されているように、結晶化する非晶質
シリコン膜内にリンなどの不純物が入ることにより、結
晶化のための熱処理によって核発生を抑制する効果があ
ることが知られている。
The latter is disclosed, for example, in JP-B-59-474.
As described in Japanese Patent Application Publication No. 53-53, it is known that impurities such as phosphorus enter an amorphous silicon film to be crystallized, and have an effect of suppressing nucleation by a heat treatment for crystallization. I have.

【0010】さらに、非晶質シリコン膜形成時に不純物
を含むガスを導入し、不純物を含むシリコン膜を形成す
る方法もある。
Further, there is a method of forming a silicon film containing impurities by introducing a gas containing impurities at the time of forming the amorphous silicon film.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上述し
た従来方法の場合、シード領域から絶縁膜上に固相成長
する距離は長くなるものの、得られた結晶化シリコン層
をトランジスタのチャネルとなる活性層として半導体デ
バイスを形成すると、活性層の不純物濃度が再結晶化シ
リコン層を形成する際に決まってしまう。このため半導
体デバイスの比抵抗等の特性のコントロールができない
という問題点がある。
However, in the case of the above-described conventional method, although the distance of the solid phase growth from the seed region on the insulating film becomes longer, the obtained crystallized silicon layer is used as an active layer serving as a channel of a transistor. When a semiconductor device is formed as follows, the impurity concentration of the active layer is determined when the recrystallized silicon layer is formed. Therefore, there is a problem that characteristics such as specific resistance of the semiconductor device cannot be controlled.

【0012】本発明の目的は、上記課題を解決して、絶
縁膜上に不純物濃度の低い結晶化シリコン層を形成し、
特性のコントロールが可能な半導体デバイスを得ること
ができる半導体薄膜の製造方法を提供することにある。
An object of the present invention is to solve the above problems and form a crystallized silicon layer having a low impurity concentration on an insulating film,
It is an object of the present invention to provide a method of manufacturing a semiconductor thin film capable of obtaining a semiconductor device whose characteristics can be controlled.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
本発明は下記記載の方法を採用する。
In order to achieve the above object, the present invention employs the following method.

【0014】請求項1記載の発明は、単結晶シリコン基
板上に絶縁膜を形成し、この絶縁膜を部分的に除去して
単結晶シリコン基板表面の一部を露出させたシード領域
を形成した後、このシード領域及び前記絶縁膜上に半導
体薄膜を形成する半導体薄膜の製造方法において、前記
シード領域である単結晶シリコン基板表面及び前記絶縁
膜上にボロンを含むシリコン膜を形成する工程と、この
シリコン膜を熱処理してシリコン酸化膜を形成する工程
及びシリコン酸化膜を除去する工程を複数回にわたり繰
り返し所望の厚さの半導体薄膜を形成する工程とを含む
ものである。
According to the first aspect of the present invention, an insulating film is formed on a single crystal silicon substrate, and the insulating film is partially removed to form a seed region exposing a part of the surface of the single crystal silicon substrate. Thereafter, in the method for manufacturing a semiconductor thin film that forms a semiconductor thin film on the seed region and the insulating film, a step of forming a silicon film containing boron on the surface of the single-crystal silicon substrate that is the seed region and the insulating film; The method includes a step of forming a silicon oxide film by heat-treating the silicon film and a step of removing the silicon oxide film a plurality of times to form a semiconductor thin film having a desired thickness.

【0015】請求項2記載の発明は、単結晶シリコン基
板上に絶縁膜を形成し、この絶縁膜を部分的に除去して
単結晶シリコン基板表面の一部を露出させたシード領域
を形成した後、このシード領域及び前記絶縁膜上に半導
体薄膜を形成する半導体薄膜の製造方法において、前記
シード領域である単結晶シリコン基板表面及び前記絶縁
膜上にボロンを含むシリコン膜を形成する工程と、この
シリコン膜上にシリコン系高融点金属化合物を形成し熱
処理する工程と、熱処理したシリコン系高融点金属化合
物を除去し所望の厚さの半導体薄膜を形成する工程とを
含むものである。
According to a second aspect of the present invention, an insulating film is formed on a single crystal silicon substrate, and the insulating film is partially removed to form a seed region exposing a part of the surface of the single crystal silicon substrate. Thereafter, in the method for manufacturing a semiconductor thin film that forms a semiconductor thin film on the seed region and the insulating film, a step of forming a silicon film containing boron on the surface of the single-crystal silicon substrate that is the seed region and the insulating film; The method includes a step of forming a silicon-based refractory metal compound on the silicon film and performing a heat treatment, and a step of removing the heat-treated silicon-based refractory metal compound to form a semiconductor thin film having a desired thickness.

【0016】[0016]

【作用】請求項1記載の半導体薄膜の製造方法によれ
ば、ボロンを含むシリコン膜を形成した後、このシリコ
ン膜を熱処理してシリコン酸化膜を形成すること及びシ
リコン酸化膜を除去することを複数回にわたり繰り返し
所望の厚さの半導体薄膜を形成するものであるから、半
導体薄膜中のボロン濃度を低減でき、比抵抗等の特性の
コントロール可能な活性層領域を有する半導体デバイス
を製造することができる。
According to the method of manufacturing a semiconductor thin film according to the first aspect, after forming a silicon film containing boron, the silicon film is heat-treated to form a silicon oxide film and to remove the silicon oxide film. Since a semiconductor thin film having a desired thickness is repeatedly formed a plurality of times, it is possible to reduce the boron concentration in the semiconductor thin film and manufacture a semiconductor device having an active layer region in which characteristics such as specific resistance can be controlled. it can.

【0017】請求項2記載の半導体薄膜の製造方法によ
れば、ボロンを含むシリコン膜を形成した後、このシリ
コン膜上にシリコン系高融点金属化合物を形成し熱処理
しさらに熱処理したシリコン系高融点金属化合物を除去
し所望の厚さの半導体薄膜を形成するするものであるか
ら、半導体薄膜中のボロン濃度を低減でき、比抵抗等の
特性のコントロール可能な活性層領域を有する半導体デ
バイスを製造することができる。
According to the method of manufacturing a semiconductor thin film according to the second aspect, after forming a silicon film containing boron, a silicon-based high melting point metal compound is formed on the silicon film, heat-treated, and further heat-treated. Since a semiconductor thin film having a desired thickness is formed by removing a metal compound, a boron concentration in the semiconductor thin film can be reduced, and a semiconductor device having an active layer region in which characteristics such as specific resistance can be controlled is manufactured. be able to.

【0018】[0018]

【実施例】以下に本発明に係る半導体薄膜の製造方法の
実施例を、図1乃至図7の断面図を参照して具体的に説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a semiconductor thin film according to the present invention will be specifically described below with reference to the sectional views of FIGS.

【0019】まず、図1に示すように、面方位(10
0)のP型の単結晶シリコン基板1を用意し、この単結
晶シリコン基板1上(一方の面上)に、温度1100
℃、酸素/窒素分圧雰囲気中で、絶縁膜2としての膜厚
150nm程度のシリコン酸化膜を形成する。尚、前記
単結晶シリコン基板1としては、N型を用いることもで
きる。また、絶縁膜2としてシリコン酸化膜を形成した
が、この他、シリコンナイトライドや、シリコン酸化膜
とシリコンナイトライドとの2層膜等を絶縁膜2として
もよい。
First, as shown in FIG.
0), a P-type single-crystal silicon substrate 1 is prepared, and a temperature of 1100 is formed on the single-crystal silicon substrate 1 (on one surface).
A silicon oxide film having a film thickness of about 150 nm is formed as the insulating film 2 in an oxygen / nitrogen partial pressure atmosphere at a temperature of ° C. Incidentally, as the single crystal silicon substrate 1, an N-type can also be used. In addition, although the silicon oxide film is formed as the insulating film 2, the insulating film 2 may be a silicon nitride, a two-layer film of a silicon oxide film and a silicon nitride, or the like.

【0020】次に、写真製版技術を用いてレジスト(図
示せず)をパターニング後、図2に示すように絶縁膜2
をフッ酸水溶液で部分的に除去し、単結晶シリコン基板
1表面を露出させてシード領域3を形成する。
Next, after a resist (not shown) is patterned by using a photomechanical technique, as shown in FIG.
Is partially removed with a hydrofluoric acid aqueous solution to expose the surface of the single crystal silicon substrate 1 to form a seed region 3.

【0021】続いてマルチチャンバー形式のDCスパッ
タリング装置にて、前処理室であるエッチング室を圧力
1×10-6Torr程度に真空引きした後、図3に示す
ように、アルゴンガスを導入し、5×10-3Torrの
圧力で、高周波電力1KWを印加し、単結晶シリコン基
板1表面のエッチングを行う。
Subsequently, in a multi-chamber type DC sputtering apparatus, the etching chamber, which is a pretreatment chamber, was evacuated to a pressure of about 1 × 10 −6 Torr, and then argon gas was introduced as shown in FIG. At a pressure of 5 × 10 −3 Torr, high-frequency power of 1 KW is applied to etch the surface of the single crystal silicon substrate 1.

【0022】このエッチング処理により、単結晶シリコ
ン基板1の洗浄後で後述するボロンを含むシリコン膜4
形成前に、シード領域3に自然酸化膜が形成されたとし
てもこの自然酸化膜を容易に除去することができる。
By this etching process, after cleaning the single crystal silicon substrate 1, a silicon film 4 containing boron, which will be described later, is formed.
Even if a native oxide film is formed in the seed region 3 before formation, the native oxide film can be easily removed.

【0023】次に、同じマルチチャンバー形式のDCス
パッタリング装置の膜形成室に試料を移動させ、図4に
示すように、マイクロ波電力400Wを印加し、2×1
19cm-3の濃度を有するボロンドープのシリコンター
ゲットをスパッタリングし、膜厚500nmのボロンを
含むシリコン膜4を形成する。
Next, the sample was moved to a film forming chamber of the same multi-chamber type DC sputtering apparatus, and as shown in FIG.
A boron-doped silicon target having a concentration of 0 19 cm -3 is sputtered to form a silicon film 4 containing boron with a thickness of 500 nm.

【0024】その後、流量2000cc/minの窒素
雰囲気中、温度570℃の条件下で12時間の熱処理を
行う。
Thereafter, a heat treatment is performed for 12 hours at a temperature of 570 ° C. in a nitrogen atmosphere at a flow rate of 2000 cc / min.

【0025】この熱処理を行うことにより、単結晶シリ
コン基板1の面方位(100)に従ってボロンを含むシ
リコン膜4はまず縦方向に単結晶に成長し、その後絶縁
膜2上をはうようにして横方向に結晶化していき、図5
に示す膜厚500nmの結晶化シリコン層6が得られ
る。
By performing this heat treatment, the silicon film 4 containing boron first grows into a single crystal in the vertical direction according to the plane orientation (100) of the single crystal silicon substrate 1, and then the insulating film 2 is covered with the silicon film 4. Crystallization in the horizontal direction
As a result, a crystallized silicon layer 6 having a thickness of 500 nm is obtained.

【0026】さらに、シリコン膜4は不純物としてボロ
ンが入っているので、不純物を導入しないときに比べ、
横方向の固相成長距離も1乃至2μm長くなる。
Further, since the silicon film 4 contains boron as an impurity, the silicon film 4 has a larger thickness than when no impurity is introduced.
The solid phase growth distance in the lateral direction also increases by 1 to 2 μm.

【0027】さらに、図5に示すように、酸素雰囲気
中、1000℃の温度で前記結晶化シリコン層6を熱酸
化し、その表面に膜厚200nmのシリコン酸化膜5を
形成する。
Further, as shown in FIG. 5, the crystallized silicon layer 6 is thermally oxidized in an oxygen atmosphere at a temperature of 1000 ° C. to form a 200 nm-thick silicon oxide film 5 on its surface.

【0028】その後、図6に示すように、フッ酸系水溶
液を用いて前記シリコン酸化膜5を除去する。
Thereafter, as shown in FIG. 6, the silicon oxide film 5 is removed using a hydrofluoric acid-based aqueous solution.

【0029】これにより、膜厚500nmであった結晶
化シリコン層6は、400nmの膜厚に薄膜化されると
ともに、シリコン膜4中の不純物であるボロンも酸化処
理中に外向拡散し、不純物濃度が1桁程度低下する。
As a result, the crystallized silicon layer 6 having a thickness of 500 nm is thinned to a thickness of 400 nm, and boron, which is an impurity in the silicon film 4, is also diffused outward during the oxidation process, so that the impurity concentration is reduced. Is reduced by about one digit.

【0030】上述したようなシリコン酸化膜5の形成
と、シリコン酸化膜5の除去との工程を4回繰り返し、
図7に示すように、最終的に結晶化シリコン層6の膜厚
を100nmに薄膜化する。
The steps of forming the silicon oxide film 5 and removing the silicon oxide film 5 as described above are repeated four times.
As shown in FIG. 7, the thickness of the crystallized silicon layer 6 is finally reduced to 100 nm.

【0031】その結果、結晶化シリコン層6中のボロン
濃度は、1014cm-3台にまで低減させることができ
る。
As a result, the boron concentration in the crystallized silicon layer 6 can be reduced to the order of 10 14 cm −3 .

【0032】このように、本実施例方法によれば、ボロ
ンを含むシリコン膜4の膜厚と、シリコン酸化膜5の形
成およびシリコン酸化膜5の除去の繰り返し回数と、酸
化時間を任意に選ぶことによって、結晶化シリコン層6
の膜厚と、結晶化シリコン層6の膜中の不純物濃度を制
御することができ、比抵抗等の特性のコントロール可能
な活性層領域を有する半導体デバイスを作製することが
できる。
As described above, according to the method of the present embodiment, the thickness of the silicon film 4 containing boron, the number of repetitions of the formation of the silicon oxide film 5 and the removal of the silicon oxide film 5, and the oxidation time are arbitrarily selected. As a result, the crystallized silicon layer 6
And the impurity concentration in the crystallized silicon layer 6 can be controlled, and a semiconductor device having an active layer region in which characteristics such as specific resistance can be controlled can be manufactured.

【0033】尚、酸化処理の代わりにシリコン系高融点
金属化合物であるタングステンシリサイド膜(WSi
膜)をDCスパッタリング装置により前記シリコン膜4
上に形成しても良い。
In place of the oxidation treatment, a tungsten silicide film (WSi
Film) by a DC sputtering apparatus.
It may be formed on top.

【0034】このシリコン系高融点金属化合物を形成す
る方法では、その後、瞬時の熱処理が可能なRTA(R
apid Thermal Anneal)装置を用い
て窒素雰囲気中、温度1000℃、処理時間1分の条件
で熱処理を行う。
In the method of forming a silicon-based refractory metal compound, the RTA (R)
Heat treatment is performed in an atmosphere of nitrogen at a temperature of 1000 ° C. and a processing time of 1 minute using an rapid thermal anneal apparatus.

【0035】この瞬時の熱処理により、ボロンを含むシ
リコン膜4とタングステンシリサイド膜との界面付近で
は、シリコン膜4中のボロンがタングステンシリサイド
膜に吸い上げられる。その後タングステンシリサイド膜
を除去すれば、シリコン酸化膜5の形成と除去とを繰り
返した場合と同様に、ボロン濃度を低減させることがで
きる。必要に応じて、この工程を繰り返しても良い。
By this instant heat treatment, boron in the silicon film 4 is absorbed by the tungsten silicide film near the interface between the silicon film 4 containing boron and the tungsten silicide film. Thereafter, if the tungsten silicide film is removed, the boron concentration can be reduced as in the case where the formation and removal of the silicon oxide film 5 are repeated. This step may be repeated as necessary.

【0036】[0036]

【発明の効果】以上説明したように本発明によれば、ボ
ロンを含むシリコン膜を窒素雰囲気中で熱処理し、結晶
化シリコン層を形成させた後、シリコン酸化膜を形成す
ることとシリコン酸化膜を除去することとを複数回にわ
たり繰り返している。
As described above, according to the present invention, a silicon film containing boron is heat-treated in a nitrogen atmosphere to form a crystallized silicon layer, and then a silicon oxide film is formed. Is repeated several times.

【0037】この結果、結晶化シリコン層中のボロン濃
度を低減でき、比抵抗等の特性のコントロール可能な活
性層領域を有する半導体デバイスを作製可能な半導体薄
膜の製造方法を提供することができる。
As a result, it is possible to provide a method of manufacturing a semiconductor thin film capable of reducing the boron concentration in the crystallized silicon layer and manufacturing a semiconductor device having an active layer region whose characteristics such as specific resistance can be controlled.

【0038】また、本発明によれば、ボロンを含むシリ
コン膜を窒素雰囲気中で熱処理して結晶化シリコン層を
形成した後、シリコン系高融点金属化合物を形成し、熱
処理した後にシリコン系高融点金属化合物を除去してい
る。
Further, according to the present invention, after a silicon film containing boron is heat-treated in a nitrogen atmosphere to form a crystallized silicon layer, a silicon-based high melting point metal compound is formed, and after the heat treatment, a silicon-based high melting point metal compound is formed. Metal compounds have been removed.

【0039】この結果、結晶化シリコン層中のボロン濃
度を低減でき、比抵抗等の特性のコントロール可能な活
性層領域を有する半導体デバイスを作製可能な半導体薄
膜の製造方法を提供することができる。
As a result, it is possible to provide a method of manufacturing a semiconductor thin film capable of reducing the boron concentration in the crystallized silicon layer and manufacturing a semiconductor device having an active layer region whose characteristics such as specific resistance can be controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例方法の製造工程を示す断面図で
ある。
FIG. 1 is a sectional view showing a manufacturing process of a method according to an embodiment of the present invention.

【図2】本発明の実施例方法の製造工程を示す断面図で
ある。
FIG. 2 is a cross-sectional view illustrating a manufacturing process of a method according to an embodiment of the present invention.

【図3】本発明の実施例方法の製造工程を示す断面図で
ある。
FIG. 3 is a sectional view showing a manufacturing process of the method according to the embodiment of the present invention.

【図4】本発明の実施例方法の製造工程を示す断面図で
ある。
FIG. 4 is a sectional view showing a manufacturing process of the method according to the embodiment of the present invention.

【図5】本発明の実施例方法の製造工程を示す断面図で
ある。
FIG. 5 is a cross-sectional view showing a manufacturing process of the method according to the embodiment of the present invention.

【図6】本発明の実施例方法の製造工程を示す断面図で
ある。
FIG. 6 is a cross-sectional view showing a manufacturing process of the method according to the embodiment of the present invention.

【図7】本発明の実施例方法の製造工程を示す断面図で
ある。
FIG. 7 is a cross-sectional view showing the manufacturing process of the method according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 単結晶シリコン基板 2 絶縁膜 3 シード領域 4 シリコン膜 5 シリコン酸化膜 6 結晶化シリコン層 Reference Signs List 1 single-crystal silicon substrate 2 insulating film 3 seed region 4 silicon film 5 silicon oxide film 6 crystallized silicon layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 相原 克好 埼玉県所沢市大字下富字武野840番地 シチズン時計株式会社技術研究所内 審査官 長谷山 健 (56)参考文献 特開 平2−94625(JP,A) 特開 平6−236894(JP,A) 特開 平4−196311(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/20 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Katsuyoshi Aihara, Inventor Takeshi Haseyama, Technical Research Institute, Citizen Watch Co., Ltd. 840, Shimotomi, Tokorozawa, Saitama Prefecture , A) JP-A-6-236894 (JP, A) JP-A-4-196311 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/20

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単結晶シリコン基板上に絶縁膜を形成
し、この絶縁膜を部分的に除去して単結晶シリコン基板
表面の一部を露出させたシード領域を形成した後、この
シード領域及び前記絶縁膜上に半導体薄膜を形成する半
導体薄膜の製造方法において、前記シード領域である単
結晶シリコン基板表面及び前記絶縁膜上にボロンを含む
シリコン膜を形成する工程と、このシリコン膜を熱処理
してシリコン酸化膜を形成する工程及びシリコン酸化膜
を除去する工程を複数回にわたり繰り返し所望の厚さの
半導体薄膜を形成する工程とを含むことを特徴とする半
導体薄膜の製造方法。
An insulating film is formed on a single crystal silicon substrate, and the insulating film is partially removed to form a seed region exposing a part of the surface of the single crystal silicon substrate. In the method of manufacturing a semiconductor thin film for forming a semiconductor thin film on the insulating film, a step of forming a silicon film containing boron on the surface of the single crystal silicon substrate serving as the seed region and the insulating film; Forming a silicon oxide film and removing the silicon oxide film a plurality of times to form a semiconductor thin film having a desired thickness.
【請求項2】 単結晶シリコン基板上に絶縁膜を形成
し、この絶縁膜を部分的に除去して単結晶シリコン基板
表面の一部を露出させたシード領域を形成した後、この
シード領域及び前記絶縁膜上に半導体薄膜を形成する半
導体薄膜の製造方法において、前記シード領域である単
結晶シリコン基板表面及び前記絶縁膜上にボロンを含む
シリコン膜を形成する工程と、このシリコン膜上にシリ
コン系高融点金属化合物を形成し熱処理する工程と、熱
処理したシリコン系高融点金属化合物を除去し所望の厚
さの半導体薄膜を形成する工程とを含むことを特徴とす
る半導体薄膜の製造方法。
2. An insulating film is formed on a single crystal silicon substrate, and the insulating film is partially removed to form a seed region exposing a part of the surface of the single crystal silicon substrate. In the method of manufacturing a semiconductor thin film for forming a semiconductor thin film on the insulating film, a step of forming a silicon film containing boron on the surface of the single crystal silicon substrate as the seed region and the insulating film; A method of manufacturing a semiconductor thin film, comprising: a step of forming a system-based high melting point metal compound and heat-treating; and a step of removing the heat-treated silicon-based high melting point metal compound to form a semiconductor thin film having a desired thickness.
JP29369293A 1993-11-24 1993-11-24 Manufacturing method of semiconductor thin film Expired - Lifetime JP3261444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29369293A JP3261444B2 (en) 1993-11-24 1993-11-24 Manufacturing method of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29369293A JP3261444B2 (en) 1993-11-24 1993-11-24 Manufacturing method of semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH07147232A JPH07147232A (en) 1995-06-06
JP3261444B2 true JP3261444B2 (en) 2002-03-04

Family

ID=17798006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29369293A Expired - Lifetime JP3261444B2 (en) 1993-11-24 1993-11-24 Manufacturing method of semiconductor thin film

Country Status (1)

Country Link
JP (1) JP3261444B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016692A (en) * 2007-07-06 2009-01-22 Toshiba Corp Manufacturing method of semiconductor storage device, and semiconductor storage device
JP2011023610A (en) * 2009-07-16 2011-02-03 Toshiba Corp Method of fabricating semiconductor device

Also Published As

Publication number Publication date
JPH07147232A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
JP2615390B2 (en) Method of manufacturing silicon carbide field effect transistor
JP2738333B2 (en) Method for manufacturing semiconductor device
JPS62177909A (en) Manufacture of semiconductor device
JPH08162433A (en) Cleaning method of ion doping equipment
JP3138174B2 (en) Low temperature selective growth method of silicon or silicon alloy
JP3261444B2 (en) Manufacturing method of semiconductor thin film
JP3486118B2 (en) Method for manufacturing semiconductor device
WO2021140763A1 (en) Epitaxial wafer manufacturing method and epitaxial wafer
JP3023189B2 (en) Method for manufacturing semiconductor device
JPS5812732B2 (en) Manufacturing method for semiconductor devices
JP2001068670A (en) Fabrication of semiconductor device
JP2001223359A (en) Method of manufacturing thin film semiconductor device
JPS63236310A (en) Semiconductor device and manufacture thereof
JP2906491B2 (en) Method for manufacturing semiconductor device
JP3415739B2 (en) Method for manufacturing semiconductor device
JPH0330293B2 (en)
JP3236861B2 (en) Semiconductor thin film manufacturing method
JPH09306867A (en) Manufacturing semiconductor device
JPH0547660A (en) Solid growth method for semiconductor thin film
JPH06291307A (en) Manufacture of semiconductor device
JPH07283229A (en) Manufacture of semiconductor device
JPS61135156A (en) Semiconductor device and manufacture thereof
JP2815997B2 (en) Method for manufacturing thin film semiconductor device
JPH0845838A (en) Production process of soi structure
JPH10144624A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term