JPS61207064A - Bi-polar transistor - Google Patents

Bi-polar transistor

Info

Publication number
JPS61207064A
JPS61207064A JP60047829A JP4782985A JPS61207064A JP S61207064 A JPS61207064 A JP S61207064A JP 60047829 A JP60047829 A JP 60047829A JP 4782985 A JP4782985 A JP 4782985A JP S61207064 A JPS61207064 A JP S61207064A
Authority
JP
Japan
Prior art keywords
region
base region
base
emitter
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60047829A
Other languages
Japanese (ja)
Inventor
Masaharu Nishii
西井 雅晴
Kazuo Kurihara
一夫 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP60047829A priority Critical patent/JPS61207064A/en
Priority to KR1019860000499A priority patent/KR900001244B1/en
Priority to CN86100522.8A priority patent/CN1003149B/en
Publication of JPS61207064A publication Critical patent/JPS61207064A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To form transistors having different hFE values on a chip simultaneously, by providing with a second base region being deeper than a first base region and overlapping the emitter region. CONSTITUTION:A second base region 23 being deeper than a first base region 18 and overlapping the emitter region 20 is formed. In such a structure, since the base width of the second base region 23 is wider, recombination current due to extinction of injected carriers at the base of the transistor is increased to reduce the hFE value, which is determined by the impurity concentration and diffusion depth of the second base region 23 and the overlapping area between the second base region 23 and emitter region 20. If these regions are formed on respective islands 16 simultaneously, the hFE values can be controlled by the overlapping area between the second base region 23 and emitter region 20, because the impurity concentration and diffusion depths are all uniform. As the overlapping area increases, the recombination current on account of the second base region 23 increases considerably to reduce the hFE.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体集積回路(IC)に組込まれるバイポー
ラトランジスタのhall値コントロールに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to hall value control of a bipolar transistor incorporated in a semiconductor integrated circuit (IC).

(ロ)従来の技術 従来のバイポーラトランジスタとしては、例えば特開昭
59−2343号公報に開示されている。
(B) Prior Art A conventional bipolar transistor is disclosed in, for example, Japanese Patent Laid-Open No. 59-2343.

第4図はこのようなバイポーラトランジスタを示し、(
1)はPM半導体基板、(2)はN 型埋込層。
Figure 4 shows such a bipolar transistor, (
1) is a PM semiconductor substrate, and (2) is an N-type buried layer.

(3)はN−型エピタキシャル層、(4)はP 型分離
領域、(5)は分離領域(4)により島状に分離された
複数の島領域である。そして島領域(5)表面にP型不
純物を拡散して第1のベース領域(6)を形成し、後に
N型不純物を拡散してエミッタ領域(7)及びコレクタ
コンタクト領域(8)を形成し、NPN型トランジスタ
を構成する。この時他の島領域(5)においても前述し
た拡散工程で同時にNPN型トランジスタが形成されて
いる。
(3) is an N-type epitaxial layer, (4) is a P-type isolation region, and (5) is a plurality of island regions separated into island shapes by the isolation region (4). P-type impurities are then diffused into the surface of the island region (5) to form a first base region (6), and later N-type impurities are diffused to form an emitter region (7) and a collector contact region (8). , constitutes an NPN type transistor. At this time, an NPN transistor is also formed in the other island region (5) at the same time by the above-described diffusion process.

斯上した如く構成したトランジスタのh□値は。The h□ value of the transistor constructed as above is.

ベース領域(6)及びエミッタ領域(7)の不純物濃度
Impurity concentration in the base region (6) and emitter region (7).

ベース幅(第4図図中に′B”で示す)により決定する
。従って各々の島領域(5)に同時に形成する限り、従
来のトランジスタは何れもほぼ均一なh□値になる。
It is determined by the base width (indicated by 'B'' in FIG. 4). Therefore, as long as they are formed in each island region (5) at the same time, all conventional transistors have a substantially uniform h□ value.

(ハ)発明が解決しようとする問題点 しかしながら、ユーザーの要求や回路構成上の必要性か
ら同一チップ上に複数の異るh□値をもつトランジスタ
を形成したい場合、従来のトランジスタではそれぞれの
h1値ごとに拡散工程を追加しなければならず、同時に
は形成できないという欠点があった。
(c) Problems to be Solved by the Invention However, when it is desired to form transistors with a plurality of different h□ values on the same chip due to user requests or circuit configuration needs, conventional transistors There was a drawback that a diffusion process had to be added for each value, and that they could not be formed at the same time.

に)問題点を解決するための手段 本発明は斯上した欠点に鑑みてなされ、同一チップ上に
様々なh□値をもつトランジスタを形成することを目的
とし、エミッタ領域−に一部重畳し且つ第1のベース領
域(ト)より深い第2のベース領域(2)を設け、第2
のベース領域(ハ)とエミッタ領域−との重畳面積の変
化でh□値をコントロールすることを特徴とする。
B) Means for Solving the Problems The present invention was made in view of the above-mentioned drawbacks, and aims to form transistors with various h□ values on the same chip. In addition, a second base region (2) deeper than the first base region (G) is provided, and a second base region (2) is provided.
It is characterized by controlling the h□ value by changing the overlapping area of the base region (c) and the emitter region.

(ホ)作用 本発明によれば、第2のベース領域(ホ)のベース幅[
F])がより広いのでベースでの注入担体の消滅による
再結合電流が増加し、h□値は小さくなる。
(e) Effect According to the present invention, the base width of the second base region (e) [
Since F]) is wider, the recombination current due to the annihilation of implanted carriers at the base increases, and the h□ value becomes smaller.

その値は重畳面積により増減し1重畳面積が大であれば
第2のベース領域−による再結合電流の増加が大きいの
でり、N値は小となる。
The value increases or decreases depending on the overlapping area, and if the overlapping area is large, the increase in recombination current due to the second base region is large, so the N value becomes small.

(へ)実施例 以下本発明の実施例を図面を参照しながら説明の第1の
実施例を示し、αωはPW半導体基板 U (’11.
’・1“ はNu埋込層、(2)はN型エピタキシャル層、α→゛
はP 型分離領域、(至)(2)は分離領域0局により
島状に分離された複数の島領域、ση叫はP型第1のベ
ース領域、QI翰はN 型エミッタ領域、QB(ハ)は
N“型コレクタコンタクト領域、@はP 型梁2のベー
ス領域、(ハ)は酸化膜、@(ホ)・・・・・・銅は夫
々の領域上に設けられた電極である。
(F) Example Hereinafter, a first example of the present invention will be described with reference to the drawings, and αω is a PW semiconductor substrate U ('11.
'・1'' is a Nu buried layer, (2) is an N-type epitaxial layer, α→゛ is a P-type isolation region, (to) (2) is a plurality of island regions separated into islands by isolation region 0 stations. , ση is the P-type first base region, QI wire is the N-type emitter region, QB (c) is the N"-type collector contact region, @ is the base region of the P-type beam 2, (c) is the oxide film, @ (e) Copper is an electrode provided on each region.

而して、島領域α■には同一チップ上で最も大きいh□
値をもつNPN型トランジスタが形成され。
Therefore, the island area α■ has the largest h□ on the same chip.
An NPN transistor with a value of .

島領域(2)には第2のベース領域−により小さいhF
m値をもつNPN型トランジスタが形成されている。
The island region (2) has a second base region - a smaller hF
An NPN transistor having a value of m is formed.

本発明の最も特徴゛とする点は、エミッタ領域(ホ)と
一部重量し且つ第1のベース領域(ト)より深い第2の
ベース領域−を形成した点にある。この構造によれば、
第2のベース領域−のベース@(1重1図図中に”B′
”で示す)がより広いのでトランジスタのベースでの注
入担体の消滅による再結合電流が増し、hFl値は小さ
くなる。その値は3つのパタメータ、すなわち第2のベ
ース領域−の不純物濃度、拡散深さ及び第2のベース領
域−とエミッタ領域−との重畳面積により決定するが、
これを夫々の島領域(至)に同時に形成すれば不純物濃
度と拡散深さは全て均一なのでh□値をコントロールす
るには第2のベース領域−とエミッタ領域−との重畳面
積による。前記重畳面積が大きくなれば第2のベース領
域−による再結合電流の増加が大きいのでh□値は小と
なる。
The most distinctive feature of the present invention is that a second base region is formed which partially overlaps the emitter region (e) and is deeper than the first base region (g). According to this structure,
The base of the second base region
”) is wider, the recombination current due to the annihilation of the implanted carriers at the base of the transistor increases, and the hFl value becomes smaller. Its value depends on three parameters: the impurity concentration in the second base region, the diffusion depth. It is determined by the overlap area of the second base region and emitter region,
If this is formed simultaneously in each island region, the impurity concentration and diffusion depth will all be uniform, so the h□ value can be controlled by the overlapping area of the second base region and the emitter region. As the overlapping area increases, the increase in recombination current due to the second base region increases, so the h□ value decreases.

従って本発明によれば、h□値の最も高いトランジスタ
を第1のベース領域αηのみの構造とし。
Therefore, according to the present invention, the transistor with the highest h□ value has a structure including only the first base region αη.

h□値が小さくなるに従って前記重畳面積を大とすれば
同一チップ上に様々なhrm値をもつトランジスタを同
時に形成することができる。
By increasing the overlapping area as the h□ value decreases, transistors having various hrm values can be simultaneously formed on the same chip.

実験によれば、ベース拡散深さ2.3μ、セミツタ拡散
深さ1.8μ、h□=300のトランジスタに、前記重
畳面積をエミッタ面積の約30%として拡散深さ4.7
p、不純物濃度5. OX 10”atoms・cIr
L−’の第2のベース領域−を形成したところ。
According to experiments, a transistor with a base diffusion depth of 2.3μ, a semi-vine diffusion depth of 1.8μ, and h□=300 has a diffusion depth of 4.7μ with the overlapping area being about 30% of the emitter area.
p, impurity concentration5. OX 10”atoms・cIr
The second base region of L-' is formed.

h□=100前後にコントロールできた。It was possible to control h□=around 100.

第2図(イ)(ロ)は本発明の第2の実施例を示してい
る。本実施例では第2のベース領域−をエミッタ領域−
と一部重畳すると共に、第1のベース領域(至)の周辺
部にリング状に設けている。この構造によれば、第2の
ベース領域(2)の拡散深さがより深いことから領域底
部でのPN接合の曲率半径(2)が大きくなり、電界集
中を緩和できるので静電破壊に強くなる。また第1の実
施例と同様にh□値をコントロールできる。
FIGS. 2A and 2B show a second embodiment of the present invention. In this embodiment, the second base region is the emitter region.
It partially overlaps with the first base region, and is provided in a ring shape around the first base region. According to this structure, since the diffusion depth of the second base region (2) is deeper, the radius of curvature (2) of the PN junction at the bottom of the region becomes larger, and electric field concentration can be alleviated, making it resistant to electrostatic damage. Become. Further, the h□ value can be controlled similarly to the first embodiment.

以下本発明による第1の実施例の製造方法を第3図(イ
)〜に)を参照しながら説明する。
The manufacturing method of the first embodiment according to the present invention will be explained below with reference to FIGS.

先ず第3図(イ)に示す如く、P型半導体基板(ロ)に
N 型埋込層(2)をドープした後エピタキシャル成長
法を用いてエピタキシャル層(至)を形成し p+型分
離領域α4を形成することにより複数の島領域(至)(
至)を形成する。
First, as shown in FIG. 3(A), a P type semiconductor substrate (B) is doped with an N type buried layer (2), and then an epitaxial layer (2) is formed using an epitaxial growth method to form a p+ type isolation region α4. By forming multiple island areas (to) (
to form).

次に第3図(ロ)に示す如く1選択拡散法を用いてP型
不純物1例えばボロンを拡散し、所望の島領域(至)に
第2のベース領域−を形成する。拡散窓の大きさは後に
形成するエミッタ領域翰との重畳面積で所望のh□値が
得られるようKする。
Next, as shown in FIG. 3(B), a P-type impurity 1, for example, boron, is diffused using a selective diffusion method to form a second base region in a desired island region. The size of the diffusion window is determined so that a desired h□ value can be obtained by the area of overlap with the emitter region that will be formed later.

次に第3図(ハ)に示す如く、選択拡散法を用いてP型
不純物を拡散し、トランジスタを形成する島領域(至)
(至)に第1のベース領域α力(ト)を形成し、続いて
N型不純物1例えばすy(P)を拡散してエミッタ領域
α■東コレクタコンタクト領域@η翰を形成する。
Next, as shown in FIG. 3(c), P-type impurities are diffused using a selective diffusion method to form an island region (to) where a transistor will be formed.
First, a first base region α is formed, and then an N-type impurity 1, for example, sy(P) is diffused to form an emitter region α■east collector contact region @η翰.

そして、第3図に)に示す如く酸化膜(ハ)にコンタク
トホールなあけた後に周知の蒸着技術にて電極部材、例
えばアルミ(1りを蒸着し、所望形状にエツチングして
各領域上に電極ej4m・・・・・・(1)(ロ)(至
)を設けて完成する。
After forming contact holes in the oxide film (c) as shown in Figure 3), an electrode member, such as aluminum (1), is deposited using a well-known vapor deposition technique and etched into a desired shape on each region. Electrodes ej4m... (1) (B) (To) are provided and completed.

同図では島領域(至)には最も高いh□値をもつトラン
ジスタが、島領域(2)にはそれより小さいh□値をも
つトランジスタが形成されている。
In the figure, a transistor with the highest h□ value is formed in the island region (to), and a transistor with a smaller h□ value is formed in the island region (2).

(ト)発明の詳細 な説明した如く1本発明によれば1回の拡散工程を追加
するだけで同一チップ上に様々なh□値をもつトランジ
スタを同時に形成することができるので、ユーザーの要
求に即対応でき、回路設計がより容易になる。
(G) As described in detail, according to the present invention, transistors with various h□ values can be simultaneously formed on the same chip by adding one diffusion process, so that it is possible to meet the user's requirements. This makes circuit design easier.

さらに第2の実施例によれば静電破壊に強くなるので信
頼性向上に寄与する。
Furthermore, the second embodiment is resistant to electrostatic damage, contributing to improved reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)(ロ)はそれぞれ本発明の第1の実施例を
説明するだめの断面図、平面図、第2図8)(ロ)はそ
れぞれ本発明の第2の実施例を説明するための断面図、
平面図、@3図(イ)〜に)は本発明の第1の実施例の
製造方法を説明する断面図、第4図(イ)(ロ)はそれ
ぞれ従来のバイポーラトランジスタを示す断面図、平面
図である。 主な図番の説明 αBは半導体基板、QQ(至)は島領域、 αη(9)
は第1のベース領域、 (イ)は第2のベース領域。 cI窃翰はエミッタ領域、  [31B)はベース暢で
ある。 次                        
 ζQ:、:、 2 1j(す C) 紀S                      い
ン5 C) ビ                    −は
Figures 1 (a) and (b) are cross-sectional views and plan views for explaining the first embodiment of the present invention, and Figures 2 and 8) (b) are for explaining the second embodiment of the present invention, respectively. A cross-sectional view for
A plan view, Figures 3 (a) to 3) are cross-sectional views explaining the manufacturing method of the first embodiment of the present invention, and Figures 4 (a) and (b) are cross-sectional views showing conventional bipolar transistors, respectively. FIG. Explanation of main figure numbers αB is the semiconductor substrate, QQ (to) is the island region, αη (9)
is the first base area, and (a) is the second base area. cI control is the emitter area, [31B) is the base control. Next
ζQ:, :, 2 1j (S C) Ki S in 5 C) B - is

Claims (1)

【特許請求の範囲】[Claims] (1)一導電型半導体基板上に形成した逆導電型のエピ
タキシャル層と該エピタキシャル層を島状に分離した島
領域と該島領域表面に二重に形成した一導電型の第1の
ベース領域及び逆導電型のエミッタ領域とを備えたバイ
ポーラトランジスタにおいて、前記エミッタ領域と一部
重畳し且つ前記ベース領域より深い第2のベース領域を
備え、該第2のベース領域と前記エミッタ領域との重畳
面積を変化させることによりh_■_■値をコントロー
ルした事を特徴とするバイポーラトランジスタ。
(1) An epitaxial layer of the opposite conductivity type formed on a semiconductor substrate of one conductivity type, an island region in which the epitaxial layer is separated into islands, and a first base region of one conductivity type formed double on the surface of the island region. and a second base region that partially overlaps with the emitter region and is deeper than the base region, wherein the second base region and the emitter region overlap. A bipolar transistor characterized by controlling the h_■_■ value by changing the area.
JP60047829A 1985-03-11 1985-03-11 Bi-polar transistor Pending JPS61207064A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60047829A JPS61207064A (en) 1985-03-11 1985-03-11 Bi-polar transistor
KR1019860000499A KR900001244B1 (en) 1985-03-11 1986-01-27 Bipolar transistor
CN86100522.8A CN1003149B (en) 1985-03-11 1986-03-07 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60047829A JPS61207064A (en) 1985-03-11 1985-03-11 Bi-polar transistor

Publications (1)

Publication Number Publication Date
JPS61207064A true JPS61207064A (en) 1986-09-13

Family

ID=12786241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60047829A Pending JPS61207064A (en) 1985-03-11 1985-03-11 Bi-polar transistor

Country Status (3)

Country Link
JP (1) JPS61207064A (en)
KR (1) KR900001244B1 (en)
CN (1) CN1003149B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315186C (en) * 2004-05-01 2007-05-09 江苏长电科技股份有限公司 Mini flipchip transistor and method for manufacturing same

Also Published As

Publication number Publication date
CN1003149B (en) 1989-01-25
KR900001244B1 (en) 1990-03-05
KR860007726A (en) 1986-10-15
CN86100522A (en) 1986-09-10

Similar Documents

Publication Publication Date Title
GB1457139A (en) Method of manufacturing semiconductor device
JPH07326773A (en) Diode and its preparation
JPH01293562A (en) Semiconductor device
JPS61207064A (en) Bi-polar transistor
JP3738127B2 (en) High voltage semiconductor device
JPS61260666A (en) Bipolar integrated circuit and manufacture thereof
JPS61207066A (en) Bi-polar transistor
GB1224802A (en) Semiconductor device and a method of manufacturing the same
JP2558472B2 (en) Semiconductor integrated circuit
JPS5914898B2 (en) Manufacturing method of semiconductor device
JPS6267855A (en) Semiconductor integrated injection logic circuit device
JPS61207067A (en) Manufacture of semiconductor integrated circuit device
JPS63136660A (en) Semiconductor device and manufacture thereof
JPS6244430B2 (en)
JPH02154428A (en) Junction separation semiconductor region structure for integrated circuit device
JPS6156624B2 (en)
KR900008818B1 (en) Manufacture method of a particle in bipolar integrated circuit
JPH0439788B2 (en)
JPS6132460A (en) Manufacture of semiconductor injection integrated logic circuit device
JPS61150231A (en) Semiconductor device
JPS6223177A (en) Manufacture of semiconductor device
JPS6123659B2 (en)
JPH01187868A (en) Semiconductor device
JPH061814B2 (en) Semiconductor device
JPH0439789B2 (en)