JPH0439789B2 - - Google Patents

Info

Publication number
JPH0439789B2
JPH0439789B2 JP59162551A JP16255184A JPH0439789B2 JP H0439789 B2 JPH0439789 B2 JP H0439789B2 JP 59162551 A JP59162551 A JP 59162551A JP 16255184 A JP16255184 A JP 16255184A JP H0439789 B2 JPH0439789 B2 JP H0439789B2
Authority
JP
Japan
Prior art keywords
region
layer
type
buried
base region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59162551A
Other languages
Japanese (ja)
Other versions
JPS6142166A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16255184A priority Critical patent/JPS6142166A/en
Publication of JPS6142166A publication Critical patent/JPS6142166A/en
Publication of JPH0439789B2 publication Critical patent/JPH0439789B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • H01L21/8226Bipolar technology comprising merged transistor logic or integrated injection logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は半導体注入集積論理回路装置(以下、
IILという。)の製造方法に関する。
[Detailed Description of the Invention] (a) Industrial Application Field The present invention relates to a semiconductor injection integrated logic circuit device (hereinafter referred to as
It is called IIL. ).

(ロ) 従来の技術 一つの半導体基板上に二つのトランジスタQI
QRを第2図に示すように構成されたIILは、一般
に第3図に示すように、注入側をラテラルPNP
トランジスタQIとし、出力側を逆方向縦形NPN
トランジスタQRとして、ラテラルPNPトランジ
スタQIのコレクタを逆方向縦形NPNトランジス
タQRのベースと共用する構造を有する。すなわ
ち、P型シリコン基板1上にN+型の埋め込み層
2を設け、基板1上にエピタキシヤル成長で形成
されたN-型のエピタキシヤル層3をP+型の分離
領域4で島状に分離して島領域5が形成される。
この島領域5にP型拡散領域6,7およびN型拡
散領域8,9を順次不純物拡散によつて形成し、
酸化膜3aに設けた電極孔を介して電極10〜1
4が設けられている。そして、ラテラルPNPト
ランジスタQIはP型拡散領域6がエミツタ(イ
ンジエクタ)、エピタキシヤル層(島領域5)が
ベース、P型拡散層7がコレクタでベース接地で
働く。一方逆方向縦形NPNトランジスタQRはエ
ピタキシヤル層(島領域5)がエミツタ、P型拡
散領域7がベース、N型拡散領域8,9がコレク
タとなつている。
(b) Conventional technology Two transistors Q I on one semiconductor substrate,
An IIL configured with Q R as shown in Figure 2 generally has a lateral PNP on the injection side as shown in Figure 3.
Transistor Q I , reverse vertical NPN on output side
The transistor Q R has a structure in which the collector of the lateral PNP transistor Q I is shared with the base of the reverse vertical NPN transistor Q R. That is, an N + type buried layer 2 is provided on a P type silicon substrate 1, and an N - type epitaxial layer 3 formed by epitaxial growth on the substrate 1 is formed into an island shape with a P + type isolation region 4. Island regions 5 are formed by separation.
P-type diffusion regions 6, 7 and N-type diffusion regions 8, 9 are sequentially formed in this island region 5 by impurity diffusion,
Electrodes 10 to 1 are inserted through the electrode holes provided in the oxide film 3a.
4 is provided. The lateral PNP transistor Q I operates with the P-type diffusion region 6 as the emitter (injector), the epitaxial layer (island region 5) as the base, and the P-type diffusion layer 7 as the collector, with the base being grounded. On the other hand, in the reverse vertical NPN transistor Q R , the epitaxial layer (island region 5) serves as an emitter, the P type diffusion region 7 serves as a base, and the N type diffusion regions 8 and 9 serve as a collector.

このようなIILにおいては、高速動作を行うべ
く、逆方向縦形NPNトランジスタの高い逆方向
電流増幅率βiを得るために、N+型のカラー領域
15でベース領域、P型拡散領域6,7を取り囲
んでいた(例えば、特公昭49−35030号公報に詳
しい。)。
In such an IIL, in order to achieve high-speed operation and a high reverse current amplification factor βi of the reverse vertical NPN transistor, the base region and the P-type diffusion regions 6 and 7 are formed in the N + type collar region 15. (See, for example, Japanese Patent Publication No. 49-35030 for details.)

(ハ) 発明が解決しようとする問題点 しかしながら第2図に示すように、従来のIIL
は、N+型のカラー領域15を島領域5表面に形
成しているため、島領域5表面でのホールの逆注
入は抑えることができるが、カラー領域15直下
からのホールの逆注入は大きくホールの逆注入を
一定以上に小さくできず、逆方向電流増幅率βiを
あまり大きくすることはできなかつた。
(c) Problems to be solved by the invention However, as shown in Figure 2, the conventional IIL
Since the N + type collar region 15 is formed on the surface of the island region 5, the back injection of holes at the surface of the island region 5 can be suppressed, but the back injection of holes from directly below the collar region 15 is greatly suppressed. It was not possible to reduce the reverse injection of holes beyond a certain level, and it was not possible to increase the reverse current amplification factor βi very much.

また、ホールの逆注入を小さくするために、カ
ラー領域15を深く拡散しようとすれば、カラー
領域15の横方向拡散が大きくなり、集積度を上
げることができないなどの問題点があつた。
Further, if an attempt is made to diffuse the collar region 15 deeply in order to reduce the back injection of holes, the lateral diffusion of the collar region 15 becomes large, resulting in problems such as an inability to increase the degree of integration.

更に、IILはラテラルPNPトランジスタQIのコ
レクタを逆方向縦形NPNトランジスタQRのベー
スとして共用する構造としているため、ラテラル
PNPトランジスタQIの動作の関係上逆方向縦形
NPNトランジスタQRのベース領域の全周をエピ
タキシヤル層表面に形成するカラー領域15で取
り囲むことはできない。従つて、第1図に示すよ
うにP型拡散領域6とP型拡散領域7との間には
N+型のカラー領域15は設けていないので、そ
の領域からのホールの逆注入は抑制できず、逆方
向電流増幅率βiをあまり大きくすることはできな
かつた。
Furthermore, since the IIL has a structure in which the collector of the lateral PNP transistor Q I is shared as the base of the reverse vertical NPN transistor Q R , the lateral
Due to the operation of PNP transistor Q I , reverse vertical type
The entire circumference of the base region of the NPN transistor Q R cannot be surrounded by the collar region 15 formed on the surface of the epitaxial layer. Therefore, as shown in FIG. 1, there is a gap between P type diffusion region 6 and P type diffusion region 7.
Since the N + type collar region 15 is not provided, the reverse injection of holes from that region cannot be suppressed, and the reverse current amplification factor βi cannot be made very large.

(ニ) 問題点を解決するための手段 本発明は上述した従来の問題点を解決するため
になされたもので、一導電型の半導体基板上に逆
導電型の埋め込み層となる不純物堆積層を形成す
る工程と、前記堆積層の不純物の拡散速度より拡
散速度の速い逆導電型の不純物を前記堆積層の所
望位置に注入してベース領域を取り囲む埋め込み
カラー領域となる第2堆積層を形成する工程と、
前記基板上に逆導電型のエピタキシヤル層を形成
する工程と、前記埋め込み層上のエピタキシヤル
層表面の所望箇所に一導電型の不純物を拡散し
て、インジエクタ領域と埋め込みカラー領域に取
り囲まれたベース領域とを形成する工程と、逆導
電型の不純物を前記ベース領域表面およびエピタ
キシヤル層表面に拡散することにより、前記ベー
ス領域にコレクタ領域を形成すると共に、前記エ
ピタキシヤル層表面に前記インジエクタ領域およ
びベース領域を取り囲むカラー領域を形成する工
程と、からなる。
(d) Means for Solving the Problems The present invention has been made to solve the above-mentioned conventional problems, and consists of forming an impurity deposited layer to serve as a buried layer of the opposite conductivity type on a semiconductor substrate of one conductivity type. forming a second deposited layer that becomes a buried collar region surrounding the base region by implanting an impurity of an opposite conductivity type whose diffusion rate is faster than that of the impurity in the deposited layer into a desired position of the deposited layer; process and
forming an epitaxial layer of opposite conductivity type on the substrate, and diffusing impurities of one conductivity type to a desired location on the surface of the epitaxial layer on the buried layer to form an epitaxial layer surrounded by an injector region and a buried collar region; By forming a base region and diffusing impurities of opposite conductivity type to the surface of the base region and the surface of the epitaxial layer, a collector region is formed in the base region, and a collector region is formed in the surface of the epitaxial layer. and forming a color region surrounding the base region.

(ホ) 作用 本発明によれば、横方向拡散を大きくせずにベ
ース領域の側面を高濃度の埋め込みカラー領域で
取り囲むことができる。
(e) Effects According to the present invention, the side surfaces of the base region can be surrounded by a high-density embedded color region without increasing lateral diffusion.

(ヘ) 実施例 第1図イ〜トは本発明による製造方法の各工程
の断面図を示すものである。
(f) Example FIGS. 1A to 1I show cross-sectional views of each step of the manufacturing method according to the present invention.

(i) P型シリコン半導体基板1の表面に酸化膜3
0等をマスクとしてN+型埋め込み層2を形成
するためにアンチモン(sb)をデボ拡散して不
純物堆積層21を形成する(第1図イ)。
(i) Oxide film 3 on the surface of P-type silicon semiconductor substrate 1
In order to form an N + type buried layer 2, antimony (SB) is deposited and diffused using a mask such as 0 as a mask to form an impurity deposited layer 21 (FIG. 1A).

(ii) 不純物堆積層21の所望の位置、すなわち、
ベース領域7を取り囲む位置に、N+型の埋め
込みカラー領域20を形成するために酸化膜3
1等をマスクとして不純物堆積層21の不純物
拡散速度より拡散速度の早いN型の不純物、本
実施例ではリンPをイオン注入して第2堆積層
22を形成する(第1図ロ)。
(ii) the desired position of the impurity deposition layer 21, i.e.
At a position surrounding the base region 7, an oxide film 3 is formed to form an N + type buried collar region 20.
The second deposited layer 22 is formed by ion-implanting an N-type impurity whose diffusion rate is faster than that of the impurity deposited layer 21, in this example, phosphorus P, using the second deposited layer 22 as a mask (FIG. 1B).

(iii) 基板1上に気相によりN-型のエピタキシヤ
ル層3を成長させる。このN-型エピタキシヤ
ル層3の成長により、前記工程でデボジツトお
よびイオン注入して形成された不純物堆積層2
1および第2堆積層22が拡散して埋め込み層
2と埋め込みカラー領域20が形成される(第
1図ハ)。
(iii) An N - type epitaxial layer 3 is grown on the substrate 1 in a vapor phase. By the growth of this N - type epitaxial layer 3, the impurity deposited layer 2 formed by depositing and ion implantation in the previous step is removed.
The first and second deposited layers 22 are diffused to form a buried layer 2 and a buried collar region 20 (FIG. 1c).

(iv) エピタキシヤル層3表面の酸化膜32をマス
クにして、ボロンBを拡散して基板1に達する
P+型の分離領域4を形成する。この分離領域
4によりエピタキシヤル層3を島状にPN接合
分離して島領域5が形成される。また、この熱
処理によつて埋め込み層2および埋め込みカラ
ー領域16は上下方向に拡散された所定の巾を
有する埋め込み層2と所定のはい上り量を有す
る埋め込みカラー領域16が形成される(第1
図ニ)。
(iv) Using the oxide film 32 on the surface of the epitaxial layer 3 as a mask, boron B is diffused to reach the substrate 1.
A P + type isolation region 4 is formed. This isolation region 4 separates the epitaxial layer 3 into island-like PN junctions to form island regions 5. Further, by this heat treatment, the buried layer 2 and the buried collar region 16 are vertically diffused to form a buried layer 2 having a predetermined width and a buried collar region 16 having a predetermined creeping amount (the first
Figure 2).

(v) 島領域5表面にP型の不純物拡散によりP型
のインジエクタ領域6およびP型のベース領域
7を形成する。すなわち、エピタキシヤル層3
表面の酸化膜33をマスクにしてボロン(B)を拡
散して、インジエクタ領域6と埋め込みカラー
領域20に隣接してベース領域7を形成する。
そして、ベース領域7の全周は埋め込みカラー
領域20で取り囲まれることになる(第1図
ホ)。
(v) A P-type injector region 6 and a P-type base region 7 are formed on the surface of the island region 5 by diffusing P-type impurities. That is, epitaxial layer 3
Using the surface oxide film 33 as a mask, boron (B) is diffused to form a base region 7 adjacent to the injector region 6 and the buried collar region 20.
Then, the entire circumference of the base region 7 is surrounded by the embedded color region 20 (FIG. 1(e)).

(vi) さいごにN型の不純物拡散を行なう。すなわ
ち、エピタキシヤル層3の酸化膜34をマスク
にしてベース領域7表面とベース領域7および
インジエクタ領域6を取り囲む島領域5表面に
リン(P)を拡散する。この拡散工程によりベース
領域7にコレクタ領域8,9が形成されると共
に、ベース領域7およびインジエクタ領域6を
取り囲むN+型カラー領域15が島領域5表面
に形成される。そしてこのカラー領域15は、
埋め込みカラー領域20に接するように形成さ
れており、カラー領域15で取り囲まれている
ベース領域7の周囲は埋め込みカラー領域20
とカラー領域15という高濃度領域で取り囲ま
れている。また、インジエクタ領域6とベース
領域7との間の島領域5表面にはカラー領域1
5は拡散形成されていない(第1図ヘ)。
(vi) Finally, N-type impurity diffusion is performed. That is, using the oxide film 34 of the epitaxial layer 3 as a mask, phosphorus (P) is diffused into the surface of the base region 7 and the surface of the island region 5 surrounding the base region 7 and the injector region 6. Through this diffusion process, collector regions 8 and 9 are formed in the base region 7, and an N + type collar region 15 surrounding the base region 7 and the injector region 6 is formed on the surface of the island region 5. And this color area 15 is
The base area 7 is formed so as to be in contact with the embedded color area 20 and is surrounded by the color area 15. The area around the base area 7 is surrounded by the embedded color area 20.
and is surrounded by a high density area called a color area 15. Further, a color area 1 is provided on the surface of the island area 5 between the injector area 6 and the base area 7.
5 is not formed by diffusion (FIG. 1).

次いて、周知のアルミニウム蒸着技術等によ
り、電極10…14を設けて第1図トに示すIIL
が製造される。
Next, electrodes 10...14 are provided by well-known aluminum vapor deposition technology, etc., and the IIL shown in FIG.
is manufactured.

このようにして製造されたIILは第1図トに示
すように、半導体基板1と基板1上にエピタキシ
ヤル成長されたN-型のエピタキシヤル層3との
間にN+型の埋め込み層2が設けられると共に、
この埋め込み層2とエピタキシヤル層3との間に
ベース領域7を取り囲むN+型の埋め込みカラー
領域20が埋め込み層2からはい上らせて設けら
れている。エピタキシヤル層3はP+型の分離領
域4で島状に分離され島領域5が形成されてい
る。島領域5表面に、P型のインジエクタ領域6
とベース領域7が形成され、ベース領域7表面に
N+型のコレクタ領域8,9が形成される。また
島領域5表面にインジエクタ領域6およびベース
領域7を取り囲むN+型のカラー領域15が形成
されている。3aはエピタキシヤル層3表面に設
けられた酸化膜である。インジエクタ領域6には
インジエクタ電極10、ベース領域7にはベース
電極11、コレクタ領域8,9にはコレクタ電極
12,13が設けられていると共に、逆方向縦形
NPNトランジスタのエミツタ電極14はカラー
領域15にオーミツクコンタクトすることにより
電極の取り出しが行なわれる。
As shown in FIG . is established, and
An N + type buried collar region 20 surrounding the base region 7 is provided between the buried layer 2 and the epitaxial layer 3 and extends from the buried layer 2 . The epitaxial layer 3 is separated into islands by P + type isolation regions 4 to form island regions 5 . A P-type injector region 6 is provided on the surface of the island region 5.
and base region 7 is formed, and on the surface of base region 7
N + type collector regions 8 and 9 are formed. Further, an N + type collar region 15 surrounding the injector region 6 and base region 7 is formed on the surface of the island region 5 . 3a is an oxide film provided on the surface of the epitaxial layer 3. An injector electrode 10 is provided in the injector region 6, a base electrode 11 is provided in the base region 7, and collector electrodes 12 and 13 are provided in the collector regions 8 and 9.
The emitter electrode 14 of the NPN transistor is brought into ohmic contact with the collar region 15 to take out the electrode.

このように本発明による製造方法によれば、イ
ンジエクタ領域6とベース領域7との間を除いて
ベース領域7の側面は埋め込みカラー領域20と
カラー領域15とで取り囲み、そしてベース領域
7とインジエクタ領域6との間は埋め込みカラー
領域20がベース領域7に隣接して設けてベース
領域7を取り囲むことができる。従つて、ラテラ
ルPNPトランジスタQIの注入効率を低下させず
に、サイドウオールでのホールの逆注入を埋め込
みカラー領域20とカラー領域15とで抑制で
き、逆方向電流増幅率βiを高くでき、IILの高速
動作が可能となる。
As described above, according to the manufacturing method according to the present invention, the side surface of the base region 7 except for the area between the injector region 6 and the base region 7 is surrounded by the embedded collar region 20 and the collar region 15, and the base region 7 and the injector region 6, a buried collar region 20 may be provided adjacent to the base region 7 to surround the base region 7. Therefore, the reverse injection of holes in the sidewall can be suppressed by the buried collar region 20 and the collar region 15 without reducing the injection efficiency of the lateral PNP transistor QI , and the reverse current amplification factor βi can be increased, and IIL enables high-speed operation.

また、カラー領域15はコレクタ領域8,9の
形成と同時に形成するため、カラー領域15の横
方向拡散量も小さくすむため集精度を上げること
ができる。
Further, since the color region 15 is formed at the same time as the collector regions 8 and 9, the amount of lateral diffusion of the color region 15 can also be reduced, and collection accuracy can be improved.

更に、インジエクタ領域6を取り囲むカラー領
域15による濃度差により立上り電圧が良くな
り、インジエクタ領域6からベース領域7への注
入効率が上る。
Furthermore, the rise voltage is improved due to the concentration difference due to the collar region 15 surrounding the injector region 6, and the injection efficiency from the injector region 6 to the base region 7 is increased.

(ト) 発明の効果 以上説明したように本発明によれば、ラテラル
PNPトランジスタの動作に影響を与えずにサイ
ドウオールからのホールの逆注入を大幅に抑制し
て、逆方向電流増幅率βiを高くした高速動作の可
能なIILを製造することができる。
(g) Effects of the invention As explained above, according to the present invention, the lateral
It is possible to significantly suppress the reverse injection of holes from the sidewall without affecting the operation of the PNP transistor, and to manufacture an IIL capable of high-speed operation with a high reverse current amplification factor βi.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イ乃至第1図トは本発明による製造方法
の各プロセスにおける工程断面図である。第2図
はIILの回路図、第3図は従来のIIL構造を示す断
面図である。 1……半導体基板、2……埋め込み層、3……
エピタキシヤル層、5……島領域、6……インジ
エクタ領域、7……ベース領域、8,9……コレ
クタ領域、15……カラー領域、20……埋め込
みカラー領域、21……不純物堆積層、22……
第2堆積層。
FIGS. 1A to 1G are cross-sectional views of each process of the manufacturing method according to the present invention. FIG. 2 is a circuit diagram of an IIL, and FIG. 3 is a sectional view showing a conventional IIL structure. 1... Semiconductor substrate, 2... Buried layer, 3...
epitaxial layer, 5... island region, 6... injector region, 7... base region, 8, 9... collector region, 15... collar region, 20... buried collar region, 21... impurity deposition layer, 22...
Second sedimentary layer.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板上に逆導電型の埋め込
み層となる不純物堆積層を形成する工程と、前記
堆積層の不純物の拡散速度より拡散速度の速い逆
導電型の不純物を前記堆積層の所望位置に注入し
てベース領域を取り囲む埋め込みカラー領域とな
る第2堆積層を形成する工程と、前記基板上に逆
導電型のエピタキシヤル層を形成する工程と、前
記埋め込み層上のエピタキシヤル層表面の所望箇
所に一導電型の不純物を拡散して、インジエクタ
領域と埋め込みカラー領域に取り囲まれたベース
領域とを形成する工程と、逆導電型の不純物を前
記ベース領域表面およびエピタキシヤル層表面に
拡散することにより、前記ベース領域にコレクタ
領域を形成すると共に、前記エピタキシヤル層表
面に前記インジエクタ領域およびベース領域を取
り囲むカラー領域を形成する工程と、からなる半
導体注入集積論理回路装置の製造方法。
1. A step of forming an impurity deposited layer to be a buried layer of an opposite conductivity type on a semiconductor substrate of one conductivity type, and adding an impurity of the opposite conductivity type, which has a diffusion rate faster than the diffusion rate of the impurity of the deposited layer, to a desired amount of the deposited layer. forming a second deposited layer to form a buried collar region surrounding the base region; forming an epitaxial layer of opposite conductivity type on the substrate; and forming a surface of the epitaxial layer on the buried layer. a step of diffusing impurities of one conductivity type to a desired location of the base region to form an injector region and a base region surrounded by a buried collar region; and diffusing impurities of the opposite conductivity type to the surface of the base region and the surface of the epitaxial layer. A method for manufacturing a semiconductor implanted integrated logic circuit device, comprising the steps of: forming a collector region in the base region, and forming a collar region surrounding the injector region and the base region on the surface of the epitaxial layer.
JP16255184A 1984-08-01 1984-08-01 Manufacture of semiconductor injection integrated logic circuit device Granted JPS6142166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16255184A JPS6142166A (en) 1984-08-01 1984-08-01 Manufacture of semiconductor injection integrated logic circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16255184A JPS6142166A (en) 1984-08-01 1984-08-01 Manufacture of semiconductor injection integrated logic circuit device

Publications (2)

Publication Number Publication Date
JPS6142166A JPS6142166A (en) 1986-02-28
JPH0439789B2 true JPH0439789B2 (en) 1992-06-30

Family

ID=15756738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16255184A Granted JPS6142166A (en) 1984-08-01 1984-08-01 Manufacture of semiconductor injection integrated logic circuit device

Country Status (1)

Country Link
JP (1) JPS6142166A (en)

Also Published As

Publication number Publication date
JPS6142166A (en) 1986-02-28

Similar Documents

Publication Publication Date Title
KR0171128B1 (en) A vertical bipolar transistor
EP0051534B1 (en) A method of fabricating a self-aligned integrated circuit structure using differential oxide growth
JPH025432A (en) Semiconductor device and its manufacture
JPH01268172A (en) Semiconductor device
US4694321A (en) Semiconductor device having bipolar transistor and integrated injection logic
JPH0439789B2 (en)
JPH0439787B2 (en)
JPH0478163A (en) Semiconductor device
JP2501556B2 (en) Optical sensor and manufacturing method thereof
JP2729870B2 (en) Variable capacitance diode and manufacturing method thereof
JP3135615B2 (en) Semiconductor device and manufacturing method thereof
JP2653019B2 (en) Bipolar transistor and method of manufacturing the same
JPS60123062A (en) Manufacture of semiconductor integrated circuit
JPH0439788B2 (en)
JP2558472B2 (en) Semiconductor integrated circuit
JPS62216356A (en) Manufacture of semiconductor integrated circuit
JPS63136660A (en) Semiconductor device and manufacture thereof
JPH01187868A (en) Semiconductor device
JPS60105265A (en) Manufacture of complementary type semiconductor device
KR930011799B1 (en) Manufacturing method of bipolar trasistor
KR0186022B1 (en) Manufacturing method of bipolar npn transistor
JPH01161753A (en) Manufacture of semiconductor integrated circuit
JPS61207066A (en) Bi-polar transistor
JPH01272155A (en) Semiconductor device and manufacture thereof
JPH0451067B2 (en)