JPS61191575A - Porous silicon carbide sintered body and manufacture - Google Patents

Porous silicon carbide sintered body and manufacture

Info

Publication number
JPS61191575A
JPS61191575A JP60030800A JP3080085A JPS61191575A JP S61191575 A JPS61191575 A JP S61191575A JP 60030800 A JP60030800 A JP 60030800A JP 3080085 A JP3080085 A JP 3080085A JP S61191575 A JPS61191575 A JP S61191575A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
porous
network structure
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60030800A
Other languages
Japanese (ja)
Other versions
JPH0379310B2 (en
Inventor
輝代隆 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP60030800A priority Critical patent/JPS61191575A/en
Publication of JPS61191575A publication Critical patent/JPS61191575A/en
Publication of JPH0379310B2 publication Critical patent/JPH0379310B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mechanical Sealing (AREA)
  • Filtering Materials (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多孔管炭化珪素焼結体とその製造方法に関し、
特に本発明は炭化珪素質板状結晶から主として構成され
てなる三次元網目構造の開放気孔の平均断面積が連続的
に変化する遷移層を有する多孔管炭化珪素焼結体とその
製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a porous tube silicon carbide sintered body and a method for manufacturing the same.
In particular, the present invention relates to a porous tubular silicon carbide sintered body having a transition layer in which the average cross-sectional area of open pores of a three-dimensional network structure mainly composed of silicon carbide plate crystals changes continuously, and a method for manufacturing the same.

従来、炭化珪素は高い硬度、優れた耐摩耗性、優几た耐
酸化性、優れた耐食性、良好な熱伝導率、低い熱膨張率
、高いr#熱熱衝衝撃性びに高温での高い強度等の化学
的および物理的に優れた特性を有し、メカニカルシール
や軸受は等の酌m耗材料、高温炉用の耐火材、熱交換器
、燃焼管等の耐熱構造材料、酸およびアルカリ等の強い
腐食性を有する溶液のポンプ部品等の耐腐食材料として
広く使用することができる材料である。
Traditionally, silicon carbide has high hardness, good wear resistance, good oxidation resistance, good corrosion resistance, good thermal conductivity, low coefficient of thermal expansion, high r# thermal shock resistance and high strength at high temperatures. It has excellent chemical and physical properties such as mechanical seals and bearings, wear-resistant materials such as refractory materials for high-temperature furnaces, heat-resistant structural materials such as heat exchangers, combustion tubes, acids and alkalis, etc. It is a material that can be widely used as a corrosion-resistant material for pump parts for solutions with strong corrosive properties.

従って、これらの優れた性質を有する炭化珪素焼結体で
あって開放気孔すなわち外部に対して通電性を有する気
孔(以下単に気孔と称す)を有する多孔質炭化珪素焼結
体は、前記炭化珪素の特徴を生かして、高温雰囲気、酸
化性雰囲気および/または腐食性雰囲気で使用される濾
過フィIレター、酸化発熱反応あるいは高温下における
化学反応用の触媒あるいは触媒担体として利用可能な材
料であり、例えばメッキ液中に混入しているスラッジあ
るいは硫酸、j!1酸等の腐食性液体中に混入している
異物粒子の除去のために使用されるフィMターとして使
用し得ることが考えられる。
Therefore, a porous silicon carbide sintered body that has these excellent properties and has open pores, that is, pores that conduct electricity to the outside (hereinafter simply referred to as pores), is a porous silicon carbide sintered body that has these excellent properties. Taking advantage of its characteristics, it is a material that can be used as a filter filter used in high temperature atmospheres, oxidizing atmospheres and/or corrosive atmospheres, catalysts or catalyst supports for oxidative exothermic reactions or chemical reactions at high temperatures, For example, sludge or sulfuric acid mixed in the plating solution, j! It is conceivable that it can be used as a filter used to remove foreign particles mixed in corrosive liquids such as acids.

上述のようなライlレターの用途に対しては、単に1l
iI熱性、耐食性が必要であるばかりでなく、流体の通
過時の抵抗が小さく、しかも高効率で異物粒子を取り除
くことができ耐用期間が長い等の特性が必要とされる。
For the above-mentioned use of the 1l letter, simply 1l
In addition to being required to have heat resistance and corrosion resistance, it is also required to have characteristics such as low resistance when fluid passes through it, the ability to remove foreign particles with high efficiency, and a long service life.

一方、触媒、触媒担体あるいは熱交換器等の用途に対し
ては化学反応、熱移動あるいは物質移動の生成を有効に
行なわせるだめの表面積が多いこと、しかもその表面が
長期間の使用に対して安定であり、かつ目詰りが生じ難
いことが必要とされる。
On the other hand, for applications such as catalysts, catalyst supports, or heat exchangers, it is important to have a large surface area that can effectively generate chemical reactions, heat transfer, or mass transfer. It is required to be stable and hard to cause clogging.

〔従来の技術〕[Conventional technology]

従来、多孔質炭化珪素焼結体の製造方法として、(1)
粗粒の炭化珪素粒子と微細な炭化珪素粒子を混合し成形
した後、炭化珪素の再結晶温度以上の高温域で焼成して
製造する方法、(2)特開昭48−39515号公報で
開示されている「炭化珪素粉に炭素粉を加え又は加えず
に#j2素質バインダーを加えると共にこの炭素粉及び
焼成時に生成されるバインダーからの遊離炭素と反応す
る理論量の珪素質粉を添加して成形し、しかる後この成
形体の炭素粉中で1900〜2400°Cに加熱して成
形体中の炭素分を珪素化することを特徴とする均質多孔
性再結晶炭化珪素体の製造方法。」あるいは(3)特開
昭58−122016号公報で開示されている「高分子
発泡体材料に炭化珪素素地泥漿を含浸し、該高分子発泡
体材料を麟処理により消失せしめて炭化珪素素地スケル
トン構造体を形成し、該構造体を1900〜2800″
Cの温度においてアルゴン中にて一次焼成し、次いで1
600〜2100°Cの温度にて1〜200気圧の窒素
ガス中にて二次焼成し、その後その両端に耐熱性!極を
形成し通電可能として成る通電発#LLII■能な炭化
珪素フィμりの製造法。」等が知られている。
Conventionally, as a method for manufacturing a porous silicon carbide sintered body, (1)
A method of manufacturing by mixing coarse silicon carbide particles and fine silicon carbide particles, molding the mixture, and then firing it in a high temperature range equal to or higher than the recrystallization temperature of silicon carbide, (2) Disclosed in JP-A-48-39515 "By adding #j2 elemental binder to silicon carbide powder with or without addition of carbon powder, and adding a stoichiometric amount of silicone powder that reacts with this carbon powder and free carbon from the binder produced during firing. A method for producing a homogeneous porous recrystallized silicon carbide body, which comprises shaping the body, and then heating the body in carbon powder at 1900 to 2400°C to silicify the carbon content in the body. Alternatively, (3) a silicon carbide skeleton structure is disclosed in Japanese Patent Application Laid-Open No. 58-122016 by impregnating a polymeric foam material with a silicon carbide matrix slurry and removing the polymeric foam material by a rinsing treatment. 1900~2800″
Primary calcination in argon at a temperature of
Secondary firing is performed in nitrogen gas at 1 to 200 atm at a temperature of 600 to 2100°C, and then heat resistant on both ends! A method for producing a silicon carbide film capable of generating electricity by forming a pole and being able to conduct electricity. ” etc. are known.

しかしながら、上述の(1)および(2)の方法で製造
される多孔質炭化珪素焼結体の構造を図示すれば第2図
に示すように炭化珪素質骨材fA+と骨材を被覆して骨
材同志を結合する炭化珪素質結合材あるいは炭素質結合
剤+B+および間隙(C1とから構成される。前記間隙
(C1すなわち気孔は殆ど成形時の骨材の配置によって
決定され、焼結体中に占める気孔率は30〜40%程度
であり比較的小さい。このため、これらの焼結体を流体
が通過する際の抵抗は著しく高いものとなる。一方、焼
結体中の気孔率を大きくしようとすると、骨材粒子相互
の接触点が少なくなるため焼結体の強度が著しく低下し
、流体との接触面積は著しく小さくなる傾向があろうこ
れらの方法によれば、比較的大きい気孔径断面積を有す
る焼結体とするためには大きな骨材を必要とし、このた
め粒子の接触点が少なくなり粒子相互の結合強度が低下
するため、焼結体の強度は著しく低いものとなる。一方
、比較的小さい断面積を持つ気孔を有する焼結体とする
ためには骨材の粒度配合を粗粒と中程度の粒子および/
または微粒子とを適度に混合し成形することが必要であ
り、成形体の気孔率は著しく小さくなり、極端な場合一
部の気孔が閉塞してしまう傾向がある。このため、この
ような焼結体を流体が通過する際の抵抗は著しく高いも
のとなる。また、上述の(3)の方法で製造される焼結
体の構造は、いわゆるスケルトン構造体と呼ばれる大小
のセル状骨格で構成されているため、その気孔断面積は
比較的大きく、特に微細な気孔断面積を有する焼結体を
製造することは困雌であった。
However, if the structure of the porous silicon carbide sintered body produced by the above methods (1) and (2) is illustrated in Figure 2, it is coated with silicon carbide aggregate fA+ and aggregate. It is composed of a silicon carbide binder or carbonaceous binder +B+ that binds the aggregates together, and gaps (C1).The gaps (C1, or pores) are mostly determined by the arrangement of the aggregates during molding, and are formed in the sintered body. The porosity of the sintered body is about 30 to 40%, which is relatively small.For this reason, the resistance when fluid passes through these sintered bodies is extremely high.On the other hand, if the porosity of the sintered body is increased, According to these methods, relatively large pore diameter In order to form a sintered body with a cross-sectional area, a large aggregate is required, which reduces the number of contact points between the particles and reduces the bonding strength between the particles, resulting in a significantly low strength of the sintered body. On the other hand, in order to obtain a sintered body with pores having a relatively small cross-sectional area, the particle size composition of the aggregate should be changed to coarse particles, medium particles, and/or coarse particles.
Alternatively, it is necessary to appropriately mix the molded product with fine particles and mold it, and the porosity of the molded product becomes extremely small, and in extreme cases, some of the pores tend to become clogged. Therefore, the resistance when fluid passes through such a sintered body becomes extremely high. In addition, the structure of the sintered body produced by method (3) above is composed of large and small cellular frameworks called a so-called skeleton structure, so the cross-sectional area of the pores is relatively large. It has been difficult to produce a sintered body with a pore cross-sectional area.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、前述の如き方法で得られる焼結体はいず几も
比較的均一な気孔径を有するものであり、特に広い粒度
分布を有する粒子を懸濁している懸濁1&あるいは浮遊
している気体から粒子を濾過分離するフィシターとして
適用しようとすると沖過速度が極めて遅いばかりでなく
比較的少量の濾過量で目詰りが生じ易い欠点があった。
By the way, all sintered bodies obtained by the above-mentioned method have relatively uniform pore diameters, and in particular particles with a wide particle size distribution are suspended from suspended particles and/or suspended gas. When applied as a ficitor for separating particles by filtration, not only the filtration speed is extremely slow, but also the filtration rate is easily clogged with a relatively small amount of filtration.

前述の如き欠点を改響する方法としては、気孔径の大き
さを連続的に変えた焼結体をフィルターとして適用する
ことが考えられるが、このような目的に適合し之気孔径
の大きさを連続的に変化させた焼結体少よびその製造方
法は従来知られていなη為ワた。
One possible way to correct the above-mentioned drawbacks is to use a sintered body with continuously varying pore diameters as a filter. A sintered body in which the value of the sintered body is continuously changed and a method for manufacturing the same have not been previously known.

〔問題点を解決するための手段〕[Means for solving problems]

ところで、本発明者は先に、外部に対し通気性を有する
多孔質炭化珪素焼結体であって種々の用途に応じて任意
の気孔径と気孔率を有し、流体の分離、吸着、吸収等の
物質移動、熱移動あるいは化学反応等を有効に働かすこ
とのできる多孔’i#j2化珪素焼結体を製造すること
のできる方法を新規に知見するに至り、特願昭59−2
12645号により[主として炭化ケイ素よりなる焼結
体であって、平均アスペクト比が3〜50であり、かつ
長軸方向の平均長さが0.5〜1000μmの炭化ケイ
素質板状結晶から主として構成されてなる三次元網目構
造を有し、前記網目構造の開放気孔の平均断面積2>E
o、01〜250000μばである多孔質炭化ケイ素焼
結体。」とその製造方法に係る発明を提案している。
By the way, the present inventor has previously proposed a porous silicon carbide sintered body that is permeable to the outside and has arbitrary pore diameters and porosity according to various uses, and is suitable for fluid separation, adsorption, and absorption. We have discovered a new method for manufacturing porous silicon dioxide sintered bodies that can effectively utilize mass transfer, heat transfer, chemical reactions, etc.
No. 12645 [a sintered body mainly made of silicon carbide, mainly composed of silicon carbide plate crystals having an average aspect ratio of 3 to 50 and an average length in the major axis direction of 0.5 to 1000 μm] The average cross-sectional area of open pores in the network structure is 2>E.
A porous silicon carbide sintered body having a diameter of 0.01 to 250000 μm. ” and the invention related to its manufacturing method.

そこで、本発明者は上述の問題点を解決することを目的
とし、前記多孔vm化ケイ素焼結体とその製造方法につ
いてさらに研究を重ねた結果、炭化珪素質板状結晶から
主として構成されてなる三次元網目構造の開放気孔の平
均断面積が連続的に変化する遷移at有する多孔′IR
炭化珪素焼結体とその製造方法を新規に知見するに至り
、本発明を完成した。
Therefore, with the aim of solving the above-mentioned problems, the inventors of the present invention conducted further research on the porous vm silicon sintered body and its manufacturing method, and found that it is composed mainly of silicon carbide plate crystals. Porous IR with a transition at which the average cross-sectional area of open pores of a three-dimensional network structure changes continuously
The present invention has been completed by newly discovering a silicon carbide sintered body and a method for manufacturing the same.

本発明は、主として炭化珪素よりなる焼結体であって、
平均アスペクト比が3〜50の範囲内であり、かつ長軸
方向の平均長さが0.5〜1000μmの範囲内の炭化
珪素質板状結晶から主として構成されてなる三次元網目
構造を有し、前記網目構造の気孔の平均断面積が連続的
に変化する遷移層を有していることを特徴とする多孔質
炭化珪素焼結体とその製造方法でるる。
The present invention is a sintered body mainly made of silicon carbide,
It has a three-dimensional network structure mainly composed of silicon carbide plate crystals with an average aspect ratio in the range of 3 to 50 and an average length in the major axis direction in the range of 0.5 to 1000 μm. , a porous silicon carbide sintered body characterized by having a transition layer in which the average cross-sectional area of the pores of the network structure changes continuously, and a method for producing the same.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明の多孔質炭化珪素焼結体(以下本発明の
多孔質炭化珪素焼結体金単に多孔質体と称す)の1例を
a祭した走査型電子顕微鏡写真(75倍)である。第1
図から明らかなように本発明の多孔質体はアスペクト比
が4〜12の炭化珪素質板状結晶が多方向に複雑に絡み
合った三次元網目構造を有し、さらに気孔が連続しかつ
直線的でない気孔であって、しかも前記気孔の断面積お
よび炭化珪素質板状結晶の長さが連続的に変化する遷移
層t?存している。
Figure 1 is a scanning electron micrograph (75x magnification) of an example of the porous silicon carbide sintered body of the present invention (hereinafter referred to simply as the porous body). It is. 1st
As is clear from the figure, the porous body of the present invention has a three-dimensional network structure in which silicon carbide plate crystals with an aspect ratio of 4 to 12 are intricately intertwined in multiple directions, and the pores are continuous and linear. A transition layer t?, in which the cross-sectional area of the pores and the length of the silicon carbide plate-like crystals continuously change. Exists.

ナオ、ここでいう炭化珪素質板状結晶のアスペクト比(
R)は焼結体の任意の断面において観察される個々の板
状結晶の最大長さくX)と(Y)との比であり、すなわ
ち、R=X/Yで表わされる値である。
Nao, the aspect ratio of the silicon carbide plate crystals here (
R) is the ratio of the maximum length X) of each plate crystal observed in an arbitrary cross section of the sintered body and (Y), that is, it is a value expressed by R=X/Y.

本発明の多孔質体は平均アスペクト比が3〜50の炭化
珪素質板状結晶で構成された三次元の網目構造となって
いることが必要である。前記多孔質体の平均アスペクト
比を8以上とする理由は炭化珪素質板状結晶によって構
成される気孔が結晶の占める容積に比べて大きな多孔質
体、すなわら高い気孔率を有する多孔質体となすためで
ある。
The porous body of the present invention needs to have a three-dimensional network structure composed of silicon carbide plate crystals having an average aspect ratio of 3 to 50. The reason why the average aspect ratio of the porous body is set to 8 or more is that the pores formed by the silicon carbide plate crystals are larger than the volume occupied by the crystals, that is, the porous body has a high porosity. This is to accomplish this.

な2従来の多孔質膨化珪素焼結体は第2図に示したよう
に底形時の骨材の配置によってその構造が決定されてお
り、本発明の如き板状結晶が発達した多孔質体と異なり
、その結晶のアスペクト比はせいぜい2前後に過ぎず、
高い気孔率を宵していない。一方、前記多孔質体の平均
アスペクト比を50以下とする理由は平均アスペクト比
が50よりも大きい板状結晶で構成された多孔質体は結
晶相互の接合部が少ないため、多孔電体自体の強度が低
いからである。なかでも前記板状結晶の平均アスペクト
比は5〜aOであることがより好適であり、この範囲内
で本発明の多孔質体を種々の用途に応じて選択すること
ができる。
2. As shown in Fig. 2, the structure of the conventional porous expanded silicon sintered body is determined by the arrangement of the aggregate at the time of the bottom shape. Unlike, the aspect ratio of the crystal is only around 2 at most,
Does not have high porosity. On the other hand, the reason why the average aspect ratio of the porous body is set to be 50 or less is that a porous body composed of plate-shaped crystals with an average aspect ratio larger than 50 has few joints between the crystals, so the porous electric body itself This is because the strength is low. Among these, it is more preferable that the average aspect ratio of the plate crystals is 5 to aO, and the porous body of the present invention can be selected within this range depending on various uses.

ところで従来、比較的板状結晶が発達した構造を有する
焼結体がたとえば、US?、 ?!1L4004984
およびJournal Am@rican Ceram
ic 5ociety59巻pl)、sss −48(
1976)に示されている。
By the way, conventionally, a sintered body having a structure in which plate crystals are relatively developed is, for example, US? , ? ! 1L4004984
and Journal Am@rican Ceram
ic 5ociety volume 59 pl), sss -48 (
1976).

しかし前記焼結体は比較的緻密化した炭化珪素焼結体で
あり、その板状結晶は緻密化に伴って生じるものである
。したがって本発明の如く板状結晶のみを発達させた焼
結体とは構造がまったく異なっている。
However, the sintered body is a relatively densified silicon carbide sintered body, and the plate-like crystals are generated as the sintered body becomes densified. Therefore, the structure is completely different from a sintered body in which only plate crystals are developed as in the present invention.

また、前記板状結晶の長袖方向の平均長さは0.5〜1
000μ属であることが必要である。その理由は長袖方
向の平均長さが0.5μmより小さいと前記板状結晶に
より形成さ几る気孔が小さく、場合によっては気孔の一
部が独立気孔になっていることがあり、流体の通過抵抗
が大さいためである。
Further, the average length of the plate crystals in the long sleeve direction is 0.5 to 1
It is necessary to belong to the genus 000μ. The reason for this is that when the average length in the long sleeve direction is smaller than 0.5 μm, the pores formed by the plate-like crystals are small, and in some cases, some of the pores may become independent pores, allowing fluid to pass through. This is because the resistance is large.

一方、1000μmより長くなると、板状結晶の接合部
の強度が小さく、多孔電体自体の強度が低いためである
。なかでも、前記板状結晶の長袖方向の平均長さは1〜
800μ島であることがより好適であり、このm回内で
本発明の多孔質体を種々の用途に応じて選択することが
できる。なお、ここでいう板状結晶の長さは焼結体の任
意の断面において観察される個々の板状結晶の最大長さ
である。
On the other hand, if the length is longer than 1000 μm, the strength of the joint between the plate crystals is low, and the strength of the porous electric body itself is low. Among them, the average length of the plate crystals in the long sleeve direction is 1 to
It is more preferable to have an island of 800 μm, and the porous body of the present invention can be selected within this range according to various uses. Note that the length of the plate-like crystals referred to here is the maximum length of each plate-like crystal observed in an arbitrary cross section of the sintered body.

本発明の多孔質体は、板状結晶から主として構成されて
なる三次元網目構造の気孔の平均断面積が連続的に変化
する遷移層を有していることが特徴である。その理由は
、本発明の多孔質体は、例えばメッキ液中に混入してい
るスラッジあるいは硫酸、塩酸等の腐食性液体中に混入
している異物を除去するためのフィルターの如き用途に
使用さ汎るものであり、気孔の平均断面積の大きい端面
側から小さい端面側、C流体を通過させることによって
流体中に含有される異物種子を高効率にしかも迅速に分
離することができるからである。また、気孔の平均断面
積が連続的に変化していることから多孔管体内に補集さ
ルた粒子は逆洗して除去脱離させることによって極めて
容易にクイlレターとしての機能を回復させることがで
きる。
The porous body of the present invention is characterized in that it has a transition layer in which the average cross-sectional area of pores in a three-dimensional network structure mainly composed of plate crystals changes continuously. The reason is that the porous body of the present invention can be used in applications such as filters to remove sludge mixed in plating solutions or foreign substances mixed in corrosive liquids such as sulfuric acid and hydrochloric acid. This is because foreign matter seeds contained in the fluid can be separated with high efficiency and quickly by passing the C fluid from the end surface side where the average cross-sectional area of the pores is large to the end surface side where the average cross-sectional area is small. . In addition, since the average cross-sectional area of the pores changes continuously, the particles collected inside the porous tube can be backwashed and removed, making it extremely easy to restore the function as a quill letter. be able to.

なお、本発明において定義さ几る遷移層は気孔の平タノ
断面積の貧化率すなわち下記第(1)式によ1て示され
る値(V)が少なくとも1.5である部分である。
The transition layer defined in the present invention is a portion where the depletion rate of the flat cross-sectional area of the pores, that is, the value (V) expressed by the following equation (1), is at least 1.5.

v=vIT/L・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・(1)但し、X:任意の平行
な2つの面のそれぞれに存在する気孔の平均断面積の比
v=vIT/L・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・(1) However, X: Ratio of the average cross-sectional area of pores existing on each of two arbitrary parallel planes.

(但しXン1の値を用いる。) L:任意の平行な2つの面の間の最短距#1!(α) また、前記網目構造の気孔の平均断面積は0、O1〜2
50000μRの範囲内であることが好ましい。その理
由は気孔の平均断面積が0.O1μd以上であると、流
体の通過抵抗が小さいためである。
(However, use the value of X-1.) L: Shortest distance #1 between any two parallel surfaces! (α) Also, the average cross-sectional area of the pores in the network structure is 0, O1-2
It is preferably within the range of 50,000 μR. The reason is that the average cross-sectional area of pores is 0. This is because when it is O1 μd or more, the passage resistance of the fluid is small.

一方、気孔の平均断面積が250000μイより大きい
と、多孔電体自体の強度が低く、なかでも前記網目構造
の気孔の平均断面積は0.25〜90000μばである
ことがより有利であり、この範囲内で本発明の多孔質体
tm々の用途に応じて選択することができる。
On the other hand, if the average cross-sectional area of the pores is larger than 250,000μ, the strength of the porous electric body itself is low, and it is more advantageous that the average cross-sectional area of the pores in the network structure is between 0.25 and 90,000μ. It can be selected within this range depending on the use of the porous material tm of the present invention.

そして前記多孔質体の結晶100重量部のうち3〜50
のアスペクト比を有する板状結晶は少くとも20][蓋
部を占めることが好ましい。ところで、前記板状結晶の
含有量は結晶の構造写真を解析することにより求められ
る。ここで、前記多孔質体が20貞量部以上のa〜50
のアスペクト比を有する板状結晶で占められていること
が好ましい理由は、前記板状結晶が20重量部より少い
と、アスペクト比の小さい炭化ケイ素結晶が多く含まれ
ることになり、流体の通過抵抗が大きいからである。な
かでも前記板状結晶は前記多孔質体の結晶100重量部
のうち少なくとも40重量部を占めることが有利である
and 3 to 50 parts by weight of 100 parts by weight of crystals in the porous body.
The plate-like crystals having an aspect ratio of at least 20][preferably occupy the lid portion. Incidentally, the content of the plate crystals can be determined by analyzing a structural photograph of the crystals. Here, the porous body contains 20 parts or more of a to 50 parts by weight.
The reason why it is preferable that the plate crystals be occupied by plate crystals having an aspect ratio of This is because it is large. In particular, it is advantageous for the plate crystals to account for at least 40 parts by weight of 100 parts by weight of the crystals in the porous body.

そして、前記多孔質体の三次元網目構造の気孔率は焼結
体の全′g積に対し20〜96容櫃%であることが好ま
しい。その理出は気孔率が20容積%よりも小さいと気
孔の一部が独立気孔となり易く、多孔質体内を流体が通
過する時の抵抗が大きいからであり、一方95容積%よ
りも大きいと、多孔質体内を流体が通過する時の抵抗は
小さい反面、前記多孔質体の強度が低く、使用が困難と
なるためであり、なかでも前記多孔質体の気孔率は焼結
体の全容積に対し30〜90容積%であることが有利で
ある。
The porosity of the three-dimensional network structure of the porous body is preferably 20 to 96% by volume based on the total g area of the sintered body. The reason for this is that when the porosity is less than 20% by volume, some of the pores tend to become independent pores, and the resistance when fluid passes through the porous body is large.On the other hand, when the porosity is more than 95% by volume, This is because although the resistance when a fluid passes through a porous body is small, the strength of the porous body is low, making it difficult to use. Advantageously, the amount is between 30 and 90% by volume.

本発明の多孔質体は、@記フィルターの如き用途の他に
例えば含油軸受や複合化骨材などの用途に対しても有利
に適用することができ、含油軸受として適用する場合に
は軸受面である外壁部の気孔の平均断面積を小さくかつ
密度を高めて耐摩耗性を向上させるとともに内部の気孔
の平均断面積を大きくかつ気孔率を高めて含油性を向上
させた多孔質体が有利であり、一方複合化骨材として適
用する場合には中心部の気孔の平均断面積を小さくかつ
密度を高めて強度を向上させるとともに外部の気孔の平
均断面積を大きくかつ気孔率を高めて複合化する相手材
との結合性を向上させた多孔質体が有利である。また、
本発明の多孔質体は必要に応じて異なる方向に気孔の平
均断面積の変化率を有する遷移層を交互に変化させた構
造の多孔質体となすこともできる。
The porous body of the present invention can be advantageously applied to applications such as oil-impregnated bearings and composite aggregates in addition to applications such as the filter mentioned above. It is advantageous to have a porous material that has a smaller average cross-sectional area and higher density of the pores in the outer wall to improve wear resistance, and a larger average cross-sectional area of the internal pores and higher porosity to improve oil receptivity. On the other hand, when applied as a composite aggregate, the average cross-sectional area of the pores in the center is made smaller and the density is increased to improve strength, while the average cross-sectional area of the outer pores is increased and the porosity is increased. A porous body with improved bonding properties with a mating material is advantageous. Also,
The porous body of the present invention may have a structure in which transition layers having a rate of change in the average cross-sectional area of the pores are alternately varied in different directions, if necessary.

次に本発明の三次元網目構造の気孔の平均断面積が連続
的に変化する遷移層(以下単に気孔遷移層と称す)を有
する多孔質体の製造方法について説明する。
Next, a method for producing a porous body having a three-dimensional network structure and a transition layer (hereinafter simply referred to as a pore transition layer) in which the average cross-sectional area of pores of the present invention changes continuously will be described.

本発明によれば、平均粒径が10μm以下の炭化珪素粉
末を正体とする出発原料を所望の形状の生成形体に成形
した後、前記生成形体を耐熱性の容器内に装入して外気
の侵入を遮断しつつ1700〜2300℃の4度範囲内
で焼成し、三次元網目構造の気孔を有する多孔質体を製
造するに際し、下記第(1)群に示される元素あるいは
それらの化合物のなかから選ばれるいずれか少なくとも
1種を生成形体内に濃度勾配が生じるように存在させる
ことによって、前記網目構造の気孔の平均断面積が連続
的に変化する遷移層を形成場せた多孔雀炭化珪素焼結体
t−製造することができる。
According to the present invention, after a starting material consisting of silicon carbide powder with an average particle size of 10 μm or less is molded into a green body of a desired shape, the green body is charged into a heat-resistant container and exposed to outside air. When producing a porous body having pores with a three-dimensional network structure by firing within a range of 1700 to 2300°C while blocking penetration, one of the elements shown in the following group (1) or their compounds is used. A porous silicon carbide in which a transition layer in which the average cross-sectional area of the pores of the network structure continuously changes is formed by allowing at least one selected from the following to exist in the formed body so as to create a concentration gradient. A sintered body can be produced.

(1)  アルミニウム、ホウ素、カルシウム、クロム
、鉄、ランタン、リチウム、チタン、イツトリウム、珪
素、窒素、酸素、戻累。
(1) Aluminum, boron, calcium, chromium, iron, lanthanum, lithium, titanium, yttrium, silicon, nitrogen, oxygen, back deposits.

本発明によれば、前記第(1)群に示される元素あるい
はそれらの化合物(以下単に遷移層形成助剤と称す)の
なかから選ばれるいずれか少なくとも1種を生成形体内
に9M勾配が生じるように存在させることが必要である
。その理由は、前記物質のうちアルミニウム、ホウ素、
カルシウム、クロム、鉄、ランタン、リチウム、チタン
、イツトリウムは炭化珪素の結晶粒成長の速度を速める
働きを有しており、これらの物質の存在する箇所では極
めて多くの板状結晶の核が生成され、各々の部分で板状
結晶の発達が起る結果、形成される板状結晶の大きさが
制限されるため、これらの物質が多く存在する箇所はど
細かい組織の三次元網目構造となすことができるからで
あり、一方前記物質のうち珪素、窒素、酸素、炭素は上
記物質とは逆に炭化珪素の結晶粒成長の速度を遅くする
働きを有して2す、こ几らの物質の存在する箇所では板
状結晶の核生成が抑制され、形成される板状結晶の数が
相対的に少なくなる結果、それぞれの板状結晶が比較的
大きく成長するため、これらの物質が多く存在する箇所
はど大きな組織の三次元網目構造となすことができるか
らであると考えられる。
According to the present invention, a 9M gradient is generated in the formed body by at least one selected from the elements shown in the above group (1) or their compounds (hereinafter simply referred to as transition layer forming aids). It is necessary to make it exist like this. The reason is that among the above substances, aluminum, boron,
Calcium, chromium, iron, lanthanum, lithium, titanium, and yttrium have the function of accelerating the growth rate of silicon carbide crystal grains, and where these substances exist, extremely large numbers of plate-like crystal nuclei are generated. As a result of the development of plate-like crystals in each part, the size of the plate-like crystals formed is limited, so areas where many of these substances exist should form a three-dimensional network structure with a very fine structure. On the other hand, among the above substances, silicon, nitrogen, oxygen, and carbon have the function of slowing down the crystal grain growth rate of silicon carbide, contrary to the above substances. Nucleation of plate crystals is suppressed where they exist, and the number of plate crystals formed is relatively small.As a result, each plate crystal grows relatively large, so many of these substances exist. This is thought to be because the locations can be formed into a three-dimensional network structure of a large tissue.

前記遷移層形成助剤は、焼結体中に多量に残存すると炭
化珪素本来の特性が失なわルるため、なるべく少ないこ
とが囁ましく焼結体中におけるその残存歓は炭化珪素1
00班量部に対し10重量部以下であることが有利であ
り、なかでも5重量部以下であることがエリ好適である
If the transition layer forming aid remains in a large amount in the sintered body, the original properties of silicon carbide will be lost, so it is best to minimize the amount of the transition layer forming aid remaining in the sintered body.
It is advantageous that the amount is 10 parts by weight or less per 00 parts by weight, and particularly preferably 5 parts by weight or less.

ところで、前記遷移層形成助剤を生成形体内に濃度勾配
が生じるように存在させる方法としては種々の方法を適
用することができるが、外壁部に沿って気孔遷移層を形
成させる場合には例えば前記生成形体の気孔遷移層を形
成することを目的とする箇所の外壁部に前記遷移層形成
助剤の含有率が異なる成形体を隣接させる方法あるいは
前記生成形体の気孔遷移層を形成することを目的とする
箇所の外壁部に前記遷移層形成助剤を塗布する方法を適
用することが有利であり、一方、内部に気孔遷移層を形
成させる場合には例えば生成形体を成形せしめるに際し
、あらかじめ前記生成形体の気孔遷移層を形成すること
を目的とする箇所に前記遷移層形成助剤を充填するかあ
るいは前記遷移層形成助41の含有量の異なる炭化珪素
粉末を充填する方法を適用することが有利である。
By the way, various methods can be applied to make the transition layer forming aid exist so as to create a concentration gradient within the formed body, but when forming a pore transition layer along the outer wall, for example, A method in which molded bodies having different contents of the transition layer forming aid are placed adjacent to each other on the outer wall of a portion of the formed body where the pore transition layer is intended to be formed, or a method of forming a pore transition layer of the formed body. It is advantageous to apply the transition layer forming aid to the outer wall of the desired location.On the other hand, when forming the pore transition layer inside, for example, when molding the formed body, apply the transition layer forming aid in advance. It is possible to apply a method of filling the transition layer forming aid 41 into a portion of the formed body where the purpose is to form a pore transition layer, or filling a silicon carbide powder with a different content of the transition layer forming aid 41. It's advantageous.

炭化珪素粉末は従来機々の結晶系のものが知られている
が、本発明の多孔質体を製造するための出発原料として
は、α型結晶、β型結晶および非晶質のいずれをも使用
することができる。
Various types of crystalline silicon carbide powders have been known in the past, but any of α-type crystals, β-type crystals, and amorphous silicon carbide powders can be used as a starting material for producing the porous body of the present invention. can be used.

しかしながら、特に気孔の平均断面積の大きい多孔質体
例えば、前記平均断面積が400〜250000μm2
の範囲内の多孔質体を製造する場合には、低温安定型の
β型結晶、2H型結晶および非晶質の炭化珪素の含有率
の合計が少なくとも60重量%の炭化珪素粉末を出発原
料として使用することが有利である。
However, particularly in porous materials having a large average cross-sectional area of pores, for example, the average cross-sectional area is 400 to 250,000 μm2.
When producing a porous body within the range of , silicon carbide powder with a total content of low temperature stable β type crystals, 2H type crystals and amorphous silicon carbide of at least 60% by weight is used as a starting material. It is advantageous to use

本発明によれば、前記出発原料は平均粒径が10μm以
下の微粉末であることが必要である。平均粒径が10μ
mよりも小さい粉末は、粒子相互の接触点が比較的多く
、また炭化珪素の焼成温度において、熱的活性が大であ
り、炭化珪素粒子間での原子の移動が著しく大きいため
、炭化珪素粒子相互の結合が極めて起り易く、しかも板
状結晶の成長性が著しく高い。特に、前記出発原料の平
均粒径は5μIn以下であることが板状結晶の成長性に
より好ましい結果を与える。
According to the present invention, the starting material needs to be a fine powder with an average particle size of 10 μm or less. Average particle size is 10μ
Powder smaller than m has a relatively large number of contact points between the particles, and at the firing temperature of silicon carbide, the thermal activity is large and the movement of atoms between silicon carbide particles is extremely large, so the silicon carbide particles Mutual bonding is extremely likely to occur, and the growth rate of plate crystals is extremely high. In particular, it is preferable that the average particle size of the starting material is 5 μIn or less, which gives more favorable results for the growth of plate-like crystals.

本発明によnば、炭化珪素粉末を主体とする出発原料會
所望の形状の生成形体に成形した後、前記生成形体を耐
熱性の容器内に装入して外気の侵入を遮断しつつ170
0〜2800 ℃の温度範囲内で焼成することが必要で
ある。このように耐熱性の容器内に装入して外気の侵入
tS断しつつ焼成を行う理由は、隣接する炭化珪素結晶
同志を融合させかつ板状結晶の成長を促進させることが
できるからである。前述の如く耐熱性の容器内に装入し
て外気の侵入を遮断しつつ焼成することによって隣接す
る炭化珪素結晶同志を融合させ板状結晶の成長を促進さ
せることのできる理由は、炭化珪素粒子間における炭化
珪素の蒸発−再凝縮および/または表面拡散による移動
全促進することができるためと考えられる。これに対し
、従来知られている常圧焼結、雰囲気加圧焼結あるいは
減圧下における焼結法を試みたところ、板状結晶の成長
が困難であるばかりでなく炭化珪素粒子の接合部がネッ
ク状にくびれだ形状となり、焼結体の強度が低くなうた
。前記耐熱性の容器としては、黒鉛、炭化珪素、炭化タ
ングステン、モリブデン、炭化モリブデンのうち少くと
も1種以上の材質からなる耐熱性容器を使用することが
より好適である。
According to the present invention, after a starting material mainly composed of silicon carbide powder is molded into a formed body of a desired shape, the formed body is charged into a heat-resistant container and kept for 170 minutes while blocking the intrusion of outside air.
It is necessary to fire within the temperature range of 0 to 2800°C. The reason why the material is charged into a heat-resistant container and fired while cutting off the intrusion of outside air is that it is possible to fuse adjacent silicon carbide crystals and promote the growth of plate-shaped crystals. . The reason why it is possible to fuse adjacent silicon carbide crystals and promote the growth of plate-shaped crystals by charging them in a heat-resistant container and firing them while blocking the intrusion of outside air as described above is because the silicon carbide particles This is thought to be because the movement of silicon carbide between evaporation and recondensation and/or surface diffusion can be fully promoted. In contrast, when conventional pressureless sintering, atmospheric pressure sintering, or sintering under reduced pressure was tried, not only was it difficult to grow plate-shaped crystals, but the joints of silicon carbide particles were It has a constricted neck shape, which reduces the strength of the sintered body. As the heat-resistant container, it is more preferable to use a heat-resistant container made of at least one material selected from graphite, silicon carbide, tungsten carbide, molybdenum, and molybdenum carbide.

不発明によれば、前記生成形体を外気を遮断することの
できる耐熱性容器中に装入して焼成することにより、焼
成時における炭化珪素の揮散率を5M量%以下とするこ
とが有利である。
According to the invention, it is advantageous to charge the formed body into a heat-resistant container that can shut off outside air and fire it, so that the volatilization rate of silicon carbide during firing is 5 M% or less. be.

本発明によれば、比較的大きな変化率を有する気孔遷移
!IIを有する多孔質体を得るには、前記遷移層形成助
剤の濃度勾配を大きくしたり、焼成時の昇温速度を比較
的速くすることが有利であり、一方比較的小さな変化率
を有する気孔遷移層を有する多孔質体を得るには、前記
遷移層形成助剤の濃度勾配を小さくしたり、焼成時の昇
温速度を比較的ゆ1く、りとした速度で焼成することが
有利である。
According to the invention, stomatal transitions with a relatively large rate of change! In order to obtain a porous body having II, it is advantageous to increase the concentration gradient of the transition layer forming auxiliary agent or to relatively increase the temperature increase rate during firing, while having a relatively small rate of change. In order to obtain a porous body having a pore transition layer, it is advantageous to reduce the concentration gradient of the transition layer forming aid and to increase the temperature during firing at a relatively slow rate. It is.

また、本発明によれば1700〜2800℃の温度範囲
で焼成することが必要である。この理由は焼成温度が1
700’Cよりも低いと粒子の成長が不十分であり、高
い強度を有する多孔質体を有することが困難であり、2
800 ”Cよりも高い温度になると炭化珪素の昇華が
盛んになり、発達した板状結晶が逆にやせ細ってしまい
、その結果高い強度を持った多孔質体を得ることが困難
となるためであり、なかでも1800〜2250℃の間
で焼成することがより好適である。
Further, according to the present invention, it is necessary to perform firing at a temperature range of 1700 to 2800°C. The reason for this is that the firing temperature is 1
If it is lower than 700'C, the growth of particles is insufficient and it is difficult to have a porous body with high strength.
This is because when the temperature is higher than 800"C, the sublimation of silicon carbide increases, and the developed plate-like crystals become thinner, making it difficult to obtain a porous body with high strength. Among these, firing at a temperature of 1800 to 2250°C is more preferable.

次に本発明を!lIi!施例および比較例によって説明
する。
Next, the invention! lIi! This will be explained by examples and comparative examples.

実施例1 出発原料として使用した炭化珪素微粉末は94.6fi
童%がβ型結晶で残部が実質的に2H型結晶よりなり、
0.89重量%の遊離炭素、0.17重金形の酸素、0
.03重量%の鉄、0.08重量%のアlレミニウムを
主として含有し、0.28μ舅の平均粒イを有していた
Example 1 The silicon carbide fine powder used as the starting material was 94.6 fi
% consists of β-type crystals and the remainder consists essentially of 2H-type crystals,
0.89 wt% free carbon, 0.17 heavy metal oxygen, 0
.. It mainly contained 0.03% by weight of iron, 0.08% by weight of aluminum, and had an average grain size of 0.28μ.

前記炭化珪素微粉末100M量部に対し、ポリビニルア
ルコ−/v5重量部蓋部800重量部を配合し、ボーl
レミp中で5時間混合した後乾燥した。
To 100 M parts of the silicon carbide fine powder, 800 parts by weight of polyvinyl alcohol/v5 parts by weight were blended, and a bowl was prepared.
After mixing in Remi P for 5 hours, it was dried.

この乾燥混合物を適量採取し、顆粒化した後金属製押し
型を用いて50 kfl/eAの圧力で成形した。
An appropriate amount of this dry mixture was taken, granulated, and then molded using a metal mold at a pressure of 50 kfl/eA.

この生成形体の密度は1.2 Vc4、乾燥重量は21
ノであった。
The density of this product is 1.2 Vc4, and the dry weight is 21
It was no.

次いで、前記生成形体を密度が98.6%でホウ素を0
.7重量%、アルミニウムを0.05重量%含有する板
状の緻そ質炭化珪素の上に載せた状態で外気を遮断する
ことのできる黒鉛ルツボに装入し、タンマン型焼成炉を
使用して1気圧のアルゴンガス雰囲気中で焼成した。な
お、前記黒鉛製ルツボは内容積が5(1+tのものを使
用した。
Next, the resulting formed body has a density of 98.6% and 0 boron.
.. The graphite crucible was placed on a plate-shaped dense silicon carbide containing 7% by weight and 0.05% by weight of aluminum, and placed in a graphite crucible that can be shut off from the outside air. Firing was performed in an argon gas atmosphere of 1 atm. The graphite crucible used had an internal volume of 5 (1+t).

焼成は2.5°C/分で2200°Cまで昇温し、最高
温度2200°Cで6時間保持した。
For firing, the temperature was raised to 2200°C at a rate of 2.5°C/min and maintained at the maximum temperature of 2200°C for 6 hours.

得られた焼結体の重量は19.6Fであり、その結晶構
造は第1図の走査型電子顕微鏡写真(75倍)に示した
ように緻密質炭化珪素に接した側の気孔の平均断面積の
小さい層(A層)から緻密質炭化珪素に接した側と反対
側の気孔の断面積の大きい層(B層)に向かって約0.
4絹の厚さで気孔の平均断面積が連続的に大きくなって
いる気孔遷移層が存在しており、前記気孔遷移層におけ
る平均断面積の変化率は約200であることが認められ
た。
The weight of the obtained sintered body was 19.6F, and its crystal structure was determined by the average cross section of the pores on the side in contact with dense silicon carbide, as shown in the scanning electron micrograph (75x magnification) in Figure 1. From the layer with a small area (layer A) to the layer with a large cross-sectional area of pores on the side opposite to the side in contact with dense silicon carbide (layer B), it increases by about 0.
It was found that there was a pore transition layer in which the average cross-sectional area of the pores continuously increased with the thickness of 4 silks, and the rate of change in the average cross-sectional area in the pore transition layer was about 200.

なお、A層およびB層の特性は第1表に示した。The characteristics of layer A and layer B are shown in Table 1.

第1表 この多孔質体をフィルターとして使用し、B層側からA
層側へ0.4〜100μmの粒度分布の炭化珪素粒子f
t5重量%懸濁している懸濁液を0.14kvf、/l
−01の濾過圧力で通水したところ初期の通水量は1O
09ゴ’/Hr−ゴであり、このフィルターの100%
捕集径は0.8 tlrrL、 95%捕集径は0.5
μm、:FMめて優れたフィtvター特性を有していた
Table 1 Using this porous material as a filter, from the B layer side to the A
Silicon carbide particles f with a particle size distribution of 0.4 to 100 μm toward the layer side
0.14kvf,/l of a suspension containing 5% by weight
When water was passed at a filtration pressure of -01, the initial water flow rate was 1O
09 Go'/Hr-Go, and 100% of this filter
Collection diameter is 0.8 tlrrL, 95% collection diameter is 0.5
μm:FM had excellent fitter characteristics.

また、このフィルターを上記条件で80時間使用したと
ころ濾過圧力は1.1 kyf/eAまで上昇したを殆
ど回復させることができた。
Further, when this filter was used for 80 hours under the above conditions, the filtration pressure increased to 1.1 kyf/eA, but was able to almost recover.

比較例1 実施例1と同様の方法であるが、緻密質炭化珪素を用い
ることなく焼結し多孔質体を得た。
Comparative Example 1 A porous body was obtained by sintering in the same manner as in Example 1, but without using dense silicon carbide.

得られた焼結体の重量は19.1’であり、平均アスペ
クト比が12で長軸方向の平均長さが880μmの板状
結晶が多方向に複雑に絡み合った三次元網目構造を有し
ており、3〜5Gのアスペクト比を有する板状結晶の含
有量は多孔管体全重量の98%であった。また、この多
孔質体の開放気孔率は全容積の64%であり、開放気孔
の平均断面積は72500μばてあった。
The weight of the obtained sintered body was 19.1', and it had a three-dimensional network structure in which plate-shaped crystals with an average aspect ratio of 12 and an average length in the major axis direction of 880 μm were intricately intertwined in multiple directions. The content of plate crystals having an aspect ratio of 3 to 5G was 98% of the total weight of the porous tube. Further, the open porosity of this porous body was 64% of the total volume, and the average cross-sectional area of the open pores was 72,500 μm.

次いで、5J!施例1と同様の方法で濾過試験を行った
ところ、100%捕集径は15μm195%捕集径は8
μm+1であり、0.14 kgfMの一過圧力で通水
したところ初期の通水量は14.1 td/ Hr−m
’であった。
Next, 5J! When a filtration test was conducted in the same manner as in Example 1, the 100% collection diameter was 15 μm and the 195% collection diameter was 8
μm+1, and when water was passed at a transient pressure of 0.14 kgfM, the initial water flow rate was 14.1 td/Hr-m.
'Met.

比較例2 実施例1と同様の方法であるが、出発原料として95.
8重量%がβ型結晶で残部が来賓的に2H型結晶よりな
り、0.32fl量%の遊alllj2素、0,15血
量%の酸素、0.03重量%の鉄、O,Oa重量形のア
ルミニウム、0.5重量%のホウ素を主として含有し、
0027μmの平均粒径を有する炭化珪素微粉末を使用
し、7.5°C/iの昇温速度で2200”Cまで昇温
し、最高温度2200″Cで3時間保持して焼結体を得
た。
Comparative Example 2 A method similar to Example 1, but using 95% as the starting material.
8% by weight consists of β-type crystals and the rest consists of 2H-type crystals, 0.32fl amount% free allj2 element, 0.15% blood amount oxygen, 0.03% iron, O, Oa weight aluminum in the form, mainly containing 0.5% by weight of boron,
Using silicon carbide fine powder with an average particle size of 0.0027 μm, the temperature was raised to 2200"C at a heating rate of 7.5°C/i and held at the maximum temperature of 2200"C for 3 hours to form a sintered body. Obtained.

得られた焼結体の重量は19.’lであり、平均アスペ
クト比が7で長軸方向の平均長さが25μ風の板状結晶
が多方向に複雑に絡み合った三次元網目構造を有してお
り3〜50のアスペクト比を有する板状結晶の含有量は
多孔管体全重量の95%であった。また、この多孔質体
の開放気孔率は全容積の57%であり、開放気孔の平均
断面積は760μ扉であった。
The weight of the obtained sintered body was 19. It has a three-dimensional network structure in which plate-like crystals with an average aspect ratio of 7 and an average length in the major axis direction of 25μ are intricately intertwined in multiple directions, and have an aspect ratio of 3 to 50. The content of plate crystals was 95% of the total weight of the porous tube. Further, the open porosity of this porous body was 57% of the total volume, and the average cross-sectional area of open pores was 760 μm.

次いで、実施例1と同様の方法で濾過試験を行ったとこ
ろ、100%捕集径はO,aμm、95%捕集径は0.
4μmであり、0.14#μdの濾過圧力で油水したと
ころ初期の通水量は8.4 Ml/ Hr−n/であっ
た。
Next, a filtration test was conducted in the same manner as in Example 1, and the 100% collection diameter was O.a.mu.m, and the 95% collection diameter was 0.a.mu.m.
When the filter was filtered with oil and water at a filtration pressure of 0.14 #μd, the initial water flow rate was 8.4 Ml/Hr-n/.

また、この−過試験によれば、濾過圧力は約4時間で1
.1#μ−まで上昇してしまった。
Also, according to this filtration test, the filtration pressure increased to 1 in about 4 hours.
.. It has increased to 1#μ-.

実施例2 実施例1と同様にして成形した生成形体の表面に窒化ホ
ウ素粉末をまぶして黒鉛製ルツボに装入し、5°C/i
の昇温速度で2150℃まで昇温し、最高温度215Q
”Cで4時間保持して焼結体を得た。
Example 2 The surface of a green body molded in the same manner as in Example 1 was sprinkled with boron nitride powder, placed in a graphite crucible, and heated at 5°C/i.
The temperature was raised to 2150℃ at a heating rate of
A sintered body was obtained by holding at C for 4 hours.

得らnた焼結体の重量は19.61であり、開放。The weight of the obtained sintered body was 19.61, and it was released.

気孔率は全容積の58%であった。その結晶構造は表面
から内部に向かうて約0.5Hの厚さで気孔の平均断面
積の小さい層が形成され、さらに内部に向かって約0.
411jの厚さで気孔の平均断面積が連続的に大きくな
っている気孔遷移層が存在しており、前記気孔遷移層に
おける平均断面積の変化率は約180であることが認め
られた。なお、それぞれの部分の特性は第2表に示した
The porosity was 58% of the total volume. Its crystal structure is such that a layer with a thickness of about 0.5H and a small average cross-sectional area of pores is formed from the surface to the inside, and then about 0.5H thick toward the inside.
It was found that there was a pore transition layer with a thickness of 411j in which the average cross-sectional area of the pores was continuously increasing, and the rate of change in the average cross-sectional area in the pore transition layer was about 180. The characteristics of each part are shown in Table 2.

第2表 この焼結体を外径が8011IJ+1内径が15闘のリ
ング状に加工した後、スピンドル油を含浸させた。
Table 2 This sintered body was processed into a ring shape with an outer diameter of 8011 IJ+1 and an inner diameter of 15 mm, and then impregnated with spindle oil.

次いで、この多孔質体のステンレスw4(SUS804
)に対する摺動試験を15i/seeの摺動速度で摺動
させるリングオンリング法で10 &fμ−の端面荷重
を負荷して行ったところ、摩擦係数は0、1〜0.12
と極めて優また摺動特性を有していることが認められた
。約1000時間の摺動試験後の摩耗量は相方共0.4
μmと極めて少なかった。
Next, this porous body stainless steel w4 (SUS804
) was carried out using the ring-on-ring method at a sliding speed of 15 i/see with an end face load of 10 &fμ-, and the friction coefficient was 0, 1 to 0.12.
It was found that the material had extremely good sliding properties. The amount of wear after approximately 1000 hours of sliding test was 0.4 for both partners.
It was extremely small, µm.

実施例3 実施例1と同様であるが、生成形体を成形するに際し、
金属性押し型に実施例1で使用した乾燥混合物を2.5
1.つづいて比較例2で使用した乾燥混合物を5f、最
後に再び実施例1で使用した乾燥混合物を2.5ノを装
入し、50 kg/edの圧力で仮成形した後1800
 #/dの圧力で静水圧プレスを行った。得られた生成
形体は直径が40fl、厚さが30111であった。
Example 3 Same as Example 1, but when molding the formed body,
2.5% of the dry mixture used in Example 1 was applied to a metal mold.
1. Subsequently, 5f of the dry mixture used in Comparative Example 2 and finally 2.5f of the dry mixture used in Example 1 were charged, and after preforming at a pressure of 50 kg/ed, 1800
Hydrostatic pressing was performed at a pressure of #/d. The resulting green body had a diameter of 40 fl and a thickness of 30,111 mm.

次いで、前記生成形体を外気の侵入を遮断することので
きる黒鉛製ルツボに装入し、タンマン型焼成炉を使用し
て1気圧のアルゴンガス雰囲禦中で焼成した。なお前記
黒鉛製ルツボは内容積が50mのものを使用した。
Next, the resulting green body was placed in a graphite crucible that can block the intrusion of outside air, and fired in an argon gas atmosphere at 1 atm using a Tammann type firing furnace. The graphite crucible used had an internal volume of 50 m.

焼成は5°C/mで2100℃まで昇温し、2100°
Cで4時間保持した。その後さらに2.5°C/ xi
sで2200℃まで昇温し、2200”Cで2時間保持
した。
For firing, the temperature was raised to 2100°C at 5°C/m, and the temperature was increased to 2100°C.
It was held at C for 4 hours. Then another 2.5°C/xi
The temperature was raised to 2200° C. at 2200° C. and held at 2200” C for 2 hours.

得られた焼結体は表面から内部に向かって約0、601
11の厚さで気孔の平均断面積の大きい層が形成され、
さらに内部に向かって約0.7 gmlの厚さで気孔の
平均断面積が連続的に小さくなっている気孔遷移層が存
在しており、前記気孔遷移層における平均断面積の変化
率は約197であることが認められた。なお、表層部と
中心部の特性は第8表に示した。
The obtained sintered body has a diameter of about 0.601 from the surface to the inside.
11, a layer with a large average cross-sectional area of pores is formed,
Furthermore, there is a pore transition layer in which the average cross-sectional area of the pores decreases continuously with a thickness of about 0.7 gml toward the inside, and the rate of change in the average cross-sectional area in the pore transition layer is about 197 gml. It was recognized that Note that the characteristics of the surface layer portion and the center portion are shown in Table 8.

第3表 〔発明の効果〕 以上述べた如く、本発明の完孔径の大きさを連続的に変
化させた多孔質体は高温雰囲気、酸化性雰囲気および/
またけ腐食性雰囲気で使用される濾過フィルター、酸化
発塵反応あるいは高温下における化学反応用の触媒ある
いは触媒担体、摺動材料および複合体用骨材等の用途に
優れた材料であって産業上極めて有用である。
Table 3 [Effects of the Invention] As described above, the porous body of the present invention in which the size of the complete pore diameter is continuously changed can be used in a high temperature atmosphere, an oxidizing atmosphere, and/or an oxidizing atmosphere.
It is also an excellent material for industrial applications such as filtration filters used in corrosive atmospheres, catalysts or catalyst supports for oxidative dusting reactions or chemical reactions at high temperatures, sliding materials, and aggregates for composites. Extremely useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は笑施例1に記載の焼結体の結晶構造を示す走査
型電子顕微鏡写真(75倍)、第2図は従来法による多
孔質炭化珪素焼結体の構造を示す模式図である。 A・・・・・炭化珪素質骨材、B・・・・・・結合剤、
C・・・・・・多孔質体の間隙。
Figure 1 is a scanning electron micrograph (75x magnification) showing the crystal structure of the sintered body described in Example 1, and Figure 2 is a schematic diagram showing the structure of the porous silicon carbide sintered body obtained by the conventional method. be. A...Silicon carbide aggregate, B...Binder,
C: Gaps in the porous body.

Claims (1)

【特許請求の範囲】 1、主として炭化珪素よりなる焼結体であって、平均ア
スペクト比が3〜50の範囲内であり、かつ長軸方向の
平均長さが0.5〜1000μmの範囲内の炭化珪素質
板状結晶から主として構成されてなる三次元網目構造を
有し、前記網目構造の開放気孔の平均断面積が連続的に
変化する遷移層を有していることを特徴とする多孔質炭
化珪素焼結体。 2、前記多孔質炭化珪素焼結体の網目構造の開放気孔の
平均断面積は0.01〜250000μm^2の範囲内
である特許請求の範囲第1項記載の多孔質炭化珪素焼結
体。 3、前記多孔質炭化珪素焼結体100重量部のうち3〜
50のアスペクト比を有する板状結晶は少なくとも20
重量部である特許請求の範囲第1あるいは2項記載の多
孔質炭化珪素焼結体。 4、前記網目構造の開放気孔率は焼結体の全容積に対し
20〜95容積%である特許請求の範囲第1〜3項のい
ずれかに記載の多孔質炭化珪素焼結体。 5、平均粒径が10μm以下の炭化珪素粉末を主体とす
る出発原料を所望の形状の生成形体に成形した後、前記
生成形体を耐熱性の容器内に装入して外気の侵入を遮断
しつつ1700〜2300℃の温度範囲内で焼成し、三
次元網目構造の開放気孔を有する多孔質炭化珪素焼結体
を製造するに際し、下記第(1)群に示される元素ある
いはそれらの化合物のなかから選ばれるいずれか少なく
とも1種を生成形体内に濃度勾配が生じるように存在さ
せ、前記網目構造の開放気孔の平均断面積が連続的に変
化する遷移層を形成することを特徴とする多孔質炭化珪
素焼結体の製造方法。 (1)アルミニウム、ホウ素、カルシウム、クロム、鉄
、ランタン、リチウム、チタン、 イットリウム、珪素、窒素、酸素、炭素。 6、前記多孔質炭化珪素焼結体は、平均アスペクト比が
3〜50の範囲内、長軸方向の平均長さが0.5〜10
00μmの範囲内の炭化珪素質板状結晶から主として構
成されてなる三次元網目構造を有し、前記網目構造の開
放気孔の平均断面積が0.01〜250000μm^2
の範囲内である特許請求の範囲第5項記載の製造方法。
[Scope of Claims] 1. A sintered body mainly made of silicon carbide, having an average aspect ratio within the range of 3 to 50 and an average length in the major axis direction within the range of 0.5 to 1000 μm. A porous material having a three-dimensional network structure mainly composed of silicon carbide plate-like crystals, and having a transition layer in which the average cross-sectional area of open pores of the network structure changes continuously. High quality silicon carbide sintered body. 2. The porous silicon carbide sintered body according to claim 1, wherein the average cross-sectional area of the open pores of the network structure of the porous silicon carbide sintered body is within the range of 0.01 to 250000 μm^2. 3. 3 to 100 parts by weight of the porous silicon carbide sintered body
Plate crystals with an aspect ratio of 50 are at least 20
The porous silicon carbide sintered body according to claim 1 or 2, which is in parts by weight. 4. The porous silicon carbide sintered body according to any one of claims 1 to 3, wherein the open porosity of the network structure is 20 to 95% by volume based on the total volume of the sintered body. 5. After molding the starting material mainly consisting of silicon carbide powder with an average particle size of 10 μm or less into a green body of a desired shape, the green body is placed in a heat-resistant container to block the intrusion of outside air. When producing a porous silicon carbide sintered body having open pores with a three-dimensional network structure by firing within a temperature range of 1,700 to 2,300°C, one of the elements shown in the following group (1) or their compounds may be used. A porous material characterized in that at least one selected from the following is present so as to create a concentration gradient within the formed body, forming a transition layer in which the average cross-sectional area of the open pores of the network structure changes continuously. A method for producing a silicon carbide sintered body. (1) Aluminum, boron, calcium, chromium, iron, lanthanum, lithium, titanium, yttrium, silicon, nitrogen, oxygen, carbon. 6. The porous silicon carbide sintered body has an average aspect ratio in the range of 3 to 50 and an average length in the major axis direction of 0.5 to 10.
It has a three-dimensional network structure mainly composed of silicon carbide plate crystals with a diameter of 0.00 μm, and the average cross-sectional area of open pores in the network structure is 0.01 to 250000 μm^2.
The manufacturing method according to claim 5, which is within the scope of.
JP60030800A 1985-02-19 1985-02-19 Porous silicon carbide sintered body and manufacture Granted JPS61191575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60030800A JPS61191575A (en) 1985-02-19 1985-02-19 Porous silicon carbide sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60030800A JPS61191575A (en) 1985-02-19 1985-02-19 Porous silicon carbide sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPS61191575A true JPS61191575A (en) 1986-08-26
JPH0379310B2 JPH0379310B2 (en) 1991-12-18

Family

ID=12313752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60030800A Granted JPS61191575A (en) 1985-02-19 1985-02-19 Porous silicon carbide sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS61191575A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238304A (en) * 1985-04-17 1986-10-23 Ngk Insulators Ltd Ceramic filter and its preparation
JPH01252580A (en) * 1988-04-01 1989-10-09 Toshiba Corp Production of sic part
JPH02256971A (en) * 1989-03-29 1990-10-17 Showa Denko Kk Sliding member and manufacture thereof
JPH0492873A (en) * 1990-08-09 1992-03-25 Oriental Sangyo Kk Porous ceramic body and production thereof
US5497620A (en) * 1988-04-08 1996-03-12 Stobbe; Per Method of filtering particles from a flue gas, a flue gas filter means and a vehicle
JP2000342918A (en) * 1999-06-03 2000-12-12 Mitsubishi Rayon Co Ltd Filter and water purifier
WO2006095564A1 (en) * 2005-03-08 2006-09-14 Bridgestone Corporation Porous body composed of silicon carbide sintered body and method for manufacturing same
WO2011108973A1 (en) * 2010-03-01 2011-09-09 Westinghouse Electric Sweden Ab A neutron absorbing component and a method for producing of a neutron absorbing component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5394875B2 (en) 2009-09-30 2014-01-22 日清紡テキスタイル株式会社 Woven knitting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255671A (en) * 1984-05-29 1985-12-17 イビデン株式会社 High strength porous silicon carbide sintered body and manufacture
JPS60264365A (en) * 1984-06-13 1985-12-27 イビデン株式会社 Porous silicon carbide sintered body and manufacture
JPS6191076A (en) * 1984-10-12 1986-05-09 イビデン株式会社 Porous silicon carbide sintered body and manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255671A (en) * 1984-05-29 1985-12-17 イビデン株式会社 High strength porous silicon carbide sintered body and manufacture
JPS60264365A (en) * 1984-06-13 1985-12-27 イビデン株式会社 Porous silicon carbide sintered body and manufacture
JPS6191076A (en) * 1984-10-12 1986-05-09 イビデン株式会社 Porous silicon carbide sintered body and manufacture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238304A (en) * 1985-04-17 1986-10-23 Ngk Insulators Ltd Ceramic filter and its preparation
JPH0378130B2 (en) * 1985-04-17 1991-12-12 Ngk Insulators Ltd
JPH01252580A (en) * 1988-04-01 1989-10-09 Toshiba Corp Production of sic part
US5497620A (en) * 1988-04-08 1996-03-12 Stobbe; Per Method of filtering particles from a flue gas, a flue gas filter means and a vehicle
JPH02256971A (en) * 1989-03-29 1990-10-17 Showa Denko Kk Sliding member and manufacture thereof
JPH0492873A (en) * 1990-08-09 1992-03-25 Oriental Sangyo Kk Porous ceramic body and production thereof
JP2000342918A (en) * 1999-06-03 2000-12-12 Mitsubishi Rayon Co Ltd Filter and water purifier
WO2006095564A1 (en) * 2005-03-08 2006-09-14 Bridgestone Corporation Porous body composed of silicon carbide sintered body and method for manufacturing same
WO2011108973A1 (en) * 2010-03-01 2011-09-09 Westinghouse Electric Sweden Ab A neutron absorbing component and a method for producing of a neutron absorbing component

Also Published As

Publication number Publication date
JPH0379310B2 (en) 1991-12-18

Similar Documents

Publication Publication Date Title
US4777152A (en) Porous silicon carbide sinter and its production
US7648932B2 (en) Molded porous ceramic article containing beta-SiC and process for the production thereof
US6815038B2 (en) Honeycomb structure
US20070032371A1 (en) Silicon carbide based, porous structural material being heat-resistant and super-lightweight
JP3548914B2 (en) Method for producing catalyst carrier
PL209724B1 (en) Silicon carbide based porous article and method for preparation thereof
JPS61191575A (en) Porous silicon carbide sintered body and manufacture
FI90059C (en) A rigid ceramic piece and process for making a ceramic piece
JPS6311589A (en) Heat resistant tool and manufacture
JPS6191076A (en) Porous silicon carbide sintered body and manufacture
JPH0229637B2 (en)
JP2001247381A (en) Porous silicon carbide and method for producing the same
JPH01145378A (en) Silicon carbide honeycomb structure and production thereof
KR0165868B1 (en) Method and device for sintered body
JPH01145377A (en) Silicon carbide honeycomb structure and production thereof
JPH0228548B2 (en)
JPH07100633B2 (en) Porous silicon carbide sintered body and method for producing the same
JP4041879B2 (en) Ceramic porous body and method for producing the same
JPS6264543A (en) Multilayer body consisting of porous silicon carbide sintered body
EP0277902A1 (en) Assembly for making ceramic composite structures and method of using the same
JPS62138377A (en) Silicon carbide base composite material
JPS6046981A (en) Ceramic porous body
FI89586B (en) Foerfarande Foer att infoera mycket finfoerdelat fyllnadsaemne i en keramisk mossansatt artikkelel oct product som framstaells med foerfarandet
JP4468541B2 (en) Method for producing recrystallized SiC
JPH0615044B2 (en) Catalyst carrier composed of porous silicon carbide sintered body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term