WO2006095564A1 - Porous body composed of silicon carbide sintered body and method for manufacturing same - Google Patents

Porous body composed of silicon carbide sintered body and method for manufacturing same Download PDF

Info

Publication number
WO2006095564A1
WO2006095564A1 PCT/JP2006/302994 JP2006302994W WO2006095564A1 WO 2006095564 A1 WO2006095564 A1 WO 2006095564A1 JP 2006302994 W JP2006302994 W JP 2006302994W WO 2006095564 A1 WO2006095564 A1 WO 2006095564A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbide
sintered
porous body
producing
pore diameter
Prior art date
Application number
PCT/JP2006/302994
Other languages
French (fr)
Japanese (ja)
Inventor
Fumio Odaka
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Publication of WO2006095564A1 publication Critical patent/WO2006095564A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00413Materials having an inhomogeneous concentration of ingredients or irregular properties in different layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

A porous body composed of a silicon carbide sintered body is characterized in that a surface layer having a pore diameter of 10-50μm is arranged on one side surface in a thickness direction on the silicon carbide sintered body having a pore diameter of 50-200μm.

Description

炭化ケィ素焼結体からなる多孔体及びその製造方法  Porous body made of sintered carbide and method for producing the same
技術分野  Technical field
[0001] 本発明は、炭化ケィ素焼結体力 なる多孔体及びその製造方法に関する。さらに 詳しくは排気ガスフィルター用炭化ケィ素焼結体力 なる多孔体及びその製造方法 に関する。  TECHNICAL FIELD [0001] The present invention relates to a porous body having a strength of sintered carbonized carbide and a method for producing the same. More particularly, the present invention relates to a porous body having a sintered carbon carbide strength for exhaust gas filters and a method for producing the same.
背景技術  Background art
[0002] 排気ガスフィルターには強度と耐熱性が要求されることより、その 1態様としてセラミ ックス力 なる多孔体が用いられている(例えば、特許文献 1、 2参照。;)。例えば特許 文献 1には、気孔率 60〜92%の繊維強化セラミックス多孔体力もなる第 1層と、気孔 率 70〜95%の同一マトリックス多孔体力もなる複数の層とを備え、上記多孔体は表 面に向力つて気孔径が小さくなり、各層の密度が異なる多層構造の軽量セラミックス 吸音材が開示されている。また特許文献 2には、気孔径の大きいセラミックス層から気 孔径の小さいセラミックス層へ、順次厚さ方向に積層してなるセラミックス多孔体が開 示されている。  [0002] Since exhaust gas filters are required to have strength and heat resistance, a porous body having a ceramic force is used as one mode (for example, see Patent Documents 1 and 2). For example, Patent Document 1 includes a first layer that has a fiber reinforced ceramic porous body force with a porosity of 60 to 92%, and a plurality of layers that have the same matrix porous body force with a porosity of 70 to 95%. A light-weight ceramic sound-absorbing material having a multilayer structure in which the pore diameter is reduced by the force on the surface and the density of each layer differs is disclosed. Patent Document 2 discloses a ceramic porous body in which a ceramic layer having a large pore diameter is sequentially laminated in a thickness direction from a ceramic layer having a small pore diameter.
[0003] しかし、特許文献 1, 2にかかる多孔体の製造には複雑な工程を必要とすることから 製造工程の簡略ィ匕が求められていた。また特許文献 1にかかる発明は、第 1層とその 他の層の成分が異なり、焼成時にクラックが生じるおそれがあり信頼性の向上が求め られていた。さらに特許文献 2にかかる発明は、スラリー粉体の粒径の違いにより生じ る沈降速度差を利用して気孔傾斜構造を形成するため、大粒部と小粒部とで収縮率 が異なるため寸法精度の向上が求められていた。  [0003] However, since the manufacturing of the porous body according to Patent Documents 1 and 2 requires a complicated process, there has been a demand for simplification of the manufacturing process. In the invention according to Patent Document 1, the components of the first layer and the other layers are different from each other, and there is a possibility that cracks may occur during firing. Furthermore, in the invention according to Patent Document 2, since the pore gradient structure is formed using the difference in the sedimentation rate caused by the difference in the particle size of the slurry powder, the shrinkage rate is different between the large and small parts, so that the dimensional accuracy is improved. There was a need for improvement.
特許文献 1:特開平 11― 291403号公報  Patent Document 1: Japanese Patent Laid-Open No. 11-291403
特許文献 2:特開平 4— 209772号公報  Patent Document 2: Japanese Patent Laid-Open No. 4-209772
発明の開示  Disclosure of the invention
課題を解決するための手段  Means for solving the problem
[0004] 即ち、本発明は、以下の記載事項に関する。 [0004] That is, the present invention relates to the following description items.
(1)気孔径が 50〜200 mである炭化ケィ素焼結体の厚さ方向の 1側表面に、気孔 径が 10〜50 ;ζ ΐηの表面層が設けられた炭化ケィ素焼結体力もなる多孔体。 (1) On one side surface in the thickness direction of the sintered carbide carbide body having a pore diameter of 50 to 200 m, A porous body having a diameter of 10 to 50 and a surface layer of ζ ΐη and also having a sintered carbon carbide strength.
(2)厚さ方向の 1側表面力 他側表面に向力つて気孔径が大きくなる気孔傾斜構造 を備え、第 1層の気孔径が 10〜50 μ m、第 2層以上の気孔径が 50〜200 μ mであ る炭化ケィ素焼結体からなる多孔体。  (2) One-side surface force in the thickness direction Equipped with a slanted pore structure in which the pore diameter increases toward the other side surface, the pore diameter of the first layer is 10-50 μm, and the pore diameter of the second layer or more A porous body made of sintered carbonized carbide having a size of 50 to 200 μm.
(3)曲げ強度が 30MPa以上である上記(1)又は(2)記載の炭化ケィ素焼結体から なる多孔体。  (3) A porous body comprising the sintered carbide body according to the above (1) or (2) having a bending strength of 30 MPa or more.
(4)炭化ケィ素粉体、ほう化アルミニウム及びバインダーを含む団粒を製造する工程 と、上記団粒を成形型に入れ圧縮して仮成形体を得る工程と、上記仮成形体をカー ボンシート上に配置し、 2100°C〜2300°Cで焼いて炭化ケィ素焼結体を得る工程と 、を備える炭化ケィ素焼結体力 なる多孔体の製造方法。  (4) a step of producing aggregates comprising a carbide carbide powder, aluminum boride and a binder, a step of compressing the aggregates into a mold to obtain a temporary molded body, and the temporary molded body as a carbon sheet. And a step of obtaining a sintered carbide body by firing at 2100 ° C. to 2300 ° C. and producing a porous body having a sintered carbon carbide strength.
(5)上記バインダーは、カルボキシメチルセルロースである上記 (4)記載の炭化ケィ 素焼結体からなる多孔体の製造方法。  (5) The method for producing a porous body comprising the silicon carbide sintered body according to (4), wherein the binder is carboxymethylcellulose.
(6)上記炭化ケィ素焼結体を得る工程にお!ヽて上記仮成形体はアルゴン雰囲気下 で加熱される上記 (4)記載の炭化ケィ素焼結体力 なる多孔体の製造方法。  (6) The method for producing a porous body having the strength of sintered carbonized carbide according to (4), wherein the temporary molded body is heated in an argon atmosphere during the step of obtaining the sintered carbide carbide.
(7)得られる炭化ケィ素焼結体力もなる多孔体の曲げ強度が 30MPa以上である上 記 (4)〜(6)の 、ずれかに記載の炭化ケィ素焼結体力もなる多孔体の製造方法。 (7) The method for producing a porous body having the strength of sintered carbonized carbide according to any one of the above (4) to (6), wherein the obtained porous body having the strength of sintered carbonized carbide has a bending strength of 30 MPa or more. .
(8)上記カルボキシメチルセルロースの添加量は、上記炭化ケィ素粉末 100重量部 に対して、 5重量部以上 10重量部以下である上記(5)記載の炭化ケィ素焼結体から なる多孔体の製造方法。 (8) Production of a porous body comprising the sintered carbonized body according to (5) above, wherein the amount of the carboxymethylcellulose added is 5 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the carbonized carbide powder. Method.
図面の簡単な説明  Brief Description of Drawings
[0005] [図 1]図 1は実施例 1の断面の SEM写真を示す。 FIG. 1 shows a SEM photograph of a cross section of Example 1. FIG.
[図 2]図 2 (a)〜 (e)はそれぞれ実施例 1の断面の SEM写真の一部拡大図を示す。 発明を実施するための最良の形態  [FIG. 2] FIGS. 2 (a) to 2 (e) are partially enlarged views of SEM photographs of the cross section of Example 1. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
[0006] 簡易に製造することができる炭化ケィ素焼結体力 なる多孔体及びその製造方法 が求められていた。以下に実施形態を挙げて本発明を説明する力 本発明が以下の 実施形態に限定されな ヽことは ヽうまでもな ヽ。  [0006] There has been a demand for a porous body having a strength of sintered carbonized carbide that can be easily manufactured and a method for manufacturing the same. The ability to explain the present invention with reference to the embodiments below It goes without saying that the present invention is not limited to the following embodiments.
〔炭化ケィ素焼結体の製造方法に用いられる成分〕  [Ingredients used in the method for producing a sintered carbide body]
まず本発明の実施形態に力かる炭化ケィ素焼結体の製造方法に用いられる成分 について説明する: First, components used in a method for producing a sintered carbide carbide according to an embodiment of the present invention Explain about:
(炭化ケィ素粉末)  (Carbon carbide powder)
炭化ケィ素粉末としては α型、 ι8型、非晶質あるいはこれらの混合物等が挙げられ る。また、高純度の炭化ケィ素焼結体を得るためには、原料の炭化ケィ素粉末として 、高純度の炭化ケィ素粉末を用いることが好ましい。  Examples of the silicon carbide powder include α-type, ι8-type, amorphous, and a mixture thereof. Moreover, in order to obtain a high-purity silicon carbide sintered body, it is preferable to use a high-purity silicon carbide powder as a raw material carbide carbide powder.
この ι8型炭化ケィ素粉末のグレードには特に制限はなぐ例えば、一般に市販され ている ι8型炭化ケィ素を用いることができる。炭化ケィ素粉末の粒径は、高密度の観 点からは、小さいことが好ましぐ具体的には、 0. 01 /ζ πι〜20 /ζ πι程度、さらに好ま しくは、 0. 05 μ m〜10 μ mである。粒径力 0. 01 μ m未満であると、計量、混合等 の処理工程における取扱いが困難となりやすぐ 20 /z mを超えると、比表面積が小さ ぐ即ち、隣接する粉末との接触面積が小さくなり、高密度化し難くなるため好ましく ない。  There is no particular limitation on the grade of this ι8 type carbide powder, for example, commercially available ι8 type carbide can be used. The particle size of the carbide powder is preferably small from the viewpoint of high density. Specifically, it is about 0.01 / ζ πι to 20 / ζ πι, and more preferably 0.05 μm. m to 10 μm. When the particle size force is less than 0.01 μm, handling in processing steps such as weighing and mixing becomes difficult, and when it exceeds 20 / zm, the specific surface area is small, that is, the contact area with the adjacent powder is small. This is not preferable because it is difficult to increase the density.
[0007] 高純度の炭化ケィ素粉末は、例えば、少なくとも 1種以上のケィ素化合物を含むケ ィ素源と、少なくとも 1種以上の加熱により炭素を生成する有機化合物を含む炭素源 と、重合又は架橋触媒と、を溶媒中で溶解し、乾燥した後に得られた粉末を非酸ィ匕 性雰囲気下で焼成する工程により得ることができる。  [0007] The high-purity silicon carbide powder is produced by, for example, polymerizing a carbon source containing at least one or more types of silicon compounds, a carbon source containing at least one or more organic compounds that generate carbon by heating. Or it can obtain by the process of baking the powder obtained after melt | dissolving a crosslinking catalyst in a solvent, and drying in non-acidic atmosphere.
[0008] 上記ケィ素化合物を含むケィ素源 (以下、「ケィ素源」という。)として、液状のものと 固体のものとを併用することができる力 少なくとも 1種は液状のもの力 選ばれなくて はならない。液状のものとしては、アルコキシシラン (モノー、ジー、トリー、テトラー)及 びテトラアルコキシシランの重合体が用いられる。アルコキシシランの中ではテトラァ ルコキシシランが好適に用いられ、具体的には、メトキシシラン、エトキシシラン、プロ ポキシシラン、ブトキシシラン等が挙げられる力 ハンドリングの点からは、エトキシシ ランが好ましい。また、テトラアルコキシシランの重合体としては、重合度が 2〜15程 度の低分子量重合体 (オリゴマー)及びさらに重合度が高 、ケィ酸ポリマーで液状の ものが挙げられる。これらと併用可能な固体状のものとしては、酸化ケィ素が挙げられ る。上記反応焼結法において酸ィ匕ケィ素とは、 SiOの他、シリカゲル (コロイド状超微 細シリカ含有液、内部に OH基やアルコキシル基を含む)、二酸ィ匕ケィ素(シリカゲル 、微細シリカ、石英粉末)等を含む。これらケィ素源は単独で用いてもよいし 2種以上 併用してちょい。 [0008] As a key source containing the above key compound (hereinafter referred to as a "key source"), a force capable of using both a liquid and a solid one is selected. Must-have. As the liquid form, alkoxysilane (mono-, G-, tree, tetra-) and tetraalkoxysilane polymers are used. Among the alkoxysilanes, tetraoxysilane is preferably used. Specifically, methoxysilane, ethoxysilane, propoxysilane, butoxysilane and the like are preferable from the viewpoint of force handling. Examples of the tetraalkoxysilane polymer include a low molecular weight polymer (oligomer) having a degree of polymerization of about 2 to 15, and a polymer having a high degree of polymerization and a liquid of a carboxylic acid polymer. Solid oxides that can be used in combination with these include silicon oxide. In the above reaction sintering method, the acid silicate is silica, silica gel (liquid containing colloidal ultrafine silica, containing OH group or alkoxyl group), diacid silicate (silica gel, fine Silica, quartz powder) and the like. These key sources may be used alone or in combination of two or more Use together.
[0009] これらケィ素源の中でも、均質性ゃノヽンドリング性が良好な観点から、テトラエトキシ シランのオリゴマー及びテトラエトキシシランのオリゴマーと微粉末シリカとの混合物等 が好適である。また、これらのケィ素源は高純度の物質が用いられ、初期の不純物含 有量が 20ppm以下であることが好ましぐ 5ppm以下であることがさらに好ましい。  Among these key sources, tetraethoxysilane oligomers and mixtures of tetraethoxysilane oligomers and finely divided silica are preferred from the viewpoint of good homogeneity and ringing properties. Further, these key sources are high-purity substances, and the initial impurity content is preferably 20 ppm or less, more preferably 5 ppm or less.
[0010] 炭素源として用いられる物質は、酸素を分子内に含有し、加熱により炭素を残留す る高純度有機化合物であることが好ましい。具体的には、フエノール榭脂、フラン榭 脂、エポキシ榭脂、フエノキシ榭脂ゃグルコース等の単糖類、蔗糖等の少糖類、セル ロース、デンプン等の多糖類などの等の各種糖類が挙げられる。これらはケィ素源と 均質に混合するという目的から、常温で液状のもの、溶媒に溶解するもの、熱可塑性 あるいは熱融解性のように加熱することにより軟ィ匕するものあるいは液状となるものが 主に用いられる。なかでも、レゾール型フエノール榭脂ゃノボラック型フエノール榭脂 が好適である。特に、レゾール型フエノール榭脂が好適に使用される。  [0010] The substance used as the carbon source is preferably a high-purity organic compound that contains oxygen in the molecule and retains carbon by heating. Specific examples include monosaccharides such as phenol resin, furan resin, epoxy resin, phenoxy resin and glucose, oligosaccharides such as sucrose, polysaccharides such as cellulose and starch, and the like. . For the purpose of homogeneously mixing with the key source, these may be liquid at room temperature, those that dissolve in a solvent, those that soften or become liquid when heated, such as thermoplastic or heat-melting properties. Used mainly. Of these, resol type phenol resin and novolak type resin resin are preferable. In particular, a resol type phenolic resin is preferably used.
[0011] 高純度の炭化ケィ素粉末の製造に用いられる重合及び架橋触媒としては、炭素源 に応じて適宜選択でき、炭素源がフエノール榭脂ゃフラン榭脂の場合、トルエンスル ホン酸、トルエンカルボン酸、酢酸、しゅう酸、硫酸等の酸類が挙げられる。これらの 中でも、トルエンスルホン酸が好適に用いられる。  [0011] The polymerization and cross-linking catalyst used in the production of high-purity silicon carbide powder can be appropriately selected according to the carbon source. When the carbon source is phenol resin or furan resin, toluenesulfonic acid, toluene Acids such as carboxylic acid, acetic acid, oxalic acid and sulfuric acid can be mentioned. Of these, toluenesulfonic acid is preferably used.
[0012] 高純度炭化ケィ素粉末を製造する工程における、炭素とケィ素の比(以下、 CZSi 比と略記)は、混合物を 1000°Cにて炭化して得られる炭化物中間体を、元素分析す ることにより定義される。化学量論的には、 CZSi比が 3. 0の時に生成炭化ケィ素中 の遊離炭素が 0%となるばずである力 実際には同時に生成する SiOガスの揮散に より低 CZSi比において遊離炭素が発生する。この生成炭化ケィ素粉末中の遊離炭 素量が焼結体等の製造用途に適当でない量にならないように予め配合を決定するこ とが重要である。通常、 1気圧近傍で 1600°C以上での焼成では、 CZSi比を 2. 0〜 2. 5にすると遊離炭素を抑制することができ、この範囲を好適に用いることができる。 CZSi比を 2.55以上にすると遊離炭素が顕著に増加するが、この遊離炭素は結晶 成長を抑制する効果を持っため、得ようとする結晶成長サイズに応じて CZSi比を適 宜選択しても良い。但し、雰囲気の圧力を低圧又は高圧とする場合は、純粋な炭化 ケィ素を得るための czsi比は変動するので、この場合は必ずしも上記 czsi比の 範囲に限定するものではない。 [0012] The ratio of carbon to silicon (hereinafter abbreviated as CZSi ratio) in the process of producing high purity carbide powder is the elemental analysis of the carbide intermediate obtained by carbonizing the mixture at 1000 ° C. It is defined by Stoichiometrically, the force that free carbon in the generated carbide should be 0% when the CZSi ratio is 3.0. Actually, it is released at a low CZSi ratio due to volatilization of the SiO gas generated at the same time. Carbon is generated. It is important to determine the blending in advance so that the amount of free carbon in the generated carbon carbide powder does not become an amount that is not suitable for the purpose of manufacturing a sintered body or the like. Usually, in firing at 1600 ° C or higher near 1 atm, free carbon can be suppressed by setting the CZSi ratio to 2.0 to 2.5, and this range can be suitably used. When the CZSi ratio is 2.55 or more, free carbon increases remarkably, but this free carbon has the effect of suppressing crystal growth, so the CZSi ratio may be selected appropriately according to the crystal growth size to be obtained. . However, if the atmospheric pressure is low or high, pure carbonization Since the czsi ratio for obtaining the key fluctuates, this is not necessarily limited to the above range of czsi ratio.
[0013] (助剤及びバインダー)  [0013] (auxiliary and binder)
助剤としては、ほうィ匕アルミニウム (A1B 2 )を加えることが好ましい。理由は特に定か ではな!/、が、ほう化アルミニウムを添加することで多孔体のガラス化が進み多孔体の 緻密性が向上するからである。また、ほう化アルミニウムをカ卩えることにより液相化と粒 成長を同時に行わせることができ、カーボンシート (炭素源)が配置される側の炭化ケ ィ素焼結体の表面が緻密になる力らである。ほう化アルミニウムの添加量は炭化ケィ 素粉末 100重量部に対して 0. 1〜5重量部が好ましぐ 0. 2〜0. 5重量部がさらに 好ましい。  As an auxiliary agent, it is preferable to add boron aluminum (A1B 2). The reason is not particularly clear! /, But the addition of aluminum boride promotes vitrification of the porous body and improves the density of the porous body. In addition, by covering aluminum boride, liquid phase formation and grain growth can be performed at the same time, and the surface of the sintered carbonized carbide on the side where the carbon sheet (carbon source) is arranged becomes dense. That's it. The amount of aluminum boride added is preferably 0.1 to 5 parts by weight and more preferably 0.2 to 0.5 parts by weight with respect to 100 parts by weight of the silicon carbide powder.
[0014] バインダーとしてはカルボキシメチルセルロース(CMC)をカ卩えることが好まし 、。 C MCを添加することで加熱乾燥で成形体の強度が増し取扱 、が容易になるからであ る。また CMCをカ卩えることにより、液状としてバインダー機能を持たせ乾燥により賦形 性を与えることができるからである。 CMCの添加量は炭化ケィ素粉末 100重量部に 対して 3〜20重量部が好ましぐ 5〜10重量部がさらに好ましい。  [0014] It is preferable to use carboxymethyl cellulose (CMC) as the binder. This is because by adding CMC, the strength of the molded body is increased by heating and drying becomes easier. Moreover, by covering the CMC, it can have a binder function as a liquid and formability can be given by drying. The amount of CMC added is preferably 3 to 20 parts by weight and more preferably 5 to 10 parts by weight with respect to 100 parts by weight of the carbide carbide powder.
[0015] さらに適宜分散剤をカ卩えてもよい。分散剤としてはエタノール、メタノール等の低級 アルコールが挙げられる。炭化ケィ素とほう化アルミニウムを均一に分散させることが できるからである。分散剤を加える場合は混合物を数時間アルコールが蒸発するま で放置することが好ましい。  [0015] Further, a dispersant may be appropriately provided. Examples of the dispersant include lower alcohols such as ethanol and methanol. This is because silicon carbide and aluminum boride can be uniformly dispersed. When adding a dispersant, it is preferable to leave the mixture for several hours until the alcohol has evaporated.
[0016] 〔炭化ケィ素焼結体からなる多孔体〕 [Porous body made of sintered carbonized carbide]
本発明の実施形態としては、気孔径が 50〜200 mである炭化ケィ素焼結体の厚 さ方向の 1側表面に、気孔径が 10〜50 mの表面層が設けられた炭化ケィ素焼結 体からなる多孔体が提供される。  As an embodiment of the present invention, a sintered carbide carbide in which a surface layer having a pore diameter of 10 to 50 m is provided on one surface in the thickness direction of a sintered carbide carbide body having a pore diameter of 50 to 200 m. A porous body comprising a body is provided.
本発明の実施形態の変形例としては、厚さ方向の 1側表面力 他側表面に向かつ て気孔径が大きくなる気孔傾斜構造を備え、第1層の気孔径が10〜50 111、第 2層 以上の気孔径が 50〜200 μ mである炭化ケィ素焼結体力もなる多孔体が提供され る。  As a modification of the embodiment of the present invention, a one-side surface force in the thickness direction is provided with a pore inclination structure in which the pore diameter increases toward the other surface, and the first layer has a pore diameter of 10 to 50 111, A porous body having a carbon carbide sintered body strength in which the pore diameter of two or more layers is 50 to 200 μm is provided.
[0017] 本発明の実施形態に力かる炭化ケィ素焼結体力 なる多孔体は、曲げ強度は 30 MPa以上、好ましい態様において 50MPa以上である。空隙率は 1%〜32%、好ま しくは 5%〜29%である。さらに、本発明の実施形態に力かる炭化ケィ素焼結体から なる多孔体は、高純度、高密度、高靭性の特性を備える。本発明の実施形態にかか る炭化ケィ素焼結体力ゝらなる多孔体は、上記特性を有することより、例えば排気ガス フィルタ一として好適に使用することができる。 [0017] The porous body made of sintered carbonized carbide that is effective in the embodiment of the present invention has a bending strength of 30. MPa or more, and in a preferred embodiment, 50 MPa or more. The porosity is 1% to 32%, preferably 5% to 29%. Furthermore, the porous body made of the sintered carbonized carbide that is effective in the embodiment of the present invention has characteristics of high purity, high density, and high toughness. Since the porous body made of sintered carbonized carbide according to the embodiment of the present invention has the above characteristics, it can be suitably used as an exhaust gas filter, for example.
[0018] 〔炭化ケィ素焼結体の製造方法〕  [0018] [Method for producing sintered carbide body]
(ィ)まず、炭化ケィ素粉体、ほう化アルミニウム (A1B )及びバインダーを含む団粒を  (Ii) First, agglomerates containing silicon carbide powder, aluminum boride (A1B) and binder
2  2
製造する。その際エイリツヒ (Eirich)グラニューダーを用いて直接顆粒ィ匕法により製 造することが好ましい。所望により上記成分に加えて分散剤を加えてもよい。  To manufacture. In that case, it is preferable to produce by the direct granulation method using an Eirich granulator. If desired, a dispersant may be added in addition to the above components.
[0019] (口)得られた団粒を成形型に入れ圧縮して仮成形体を得る。その際一軸プレス機等 を用いて面圧 100〜300kgZcm2で圧縮して仮成形体を得ることが好まし 、。上記 下限値よりも圧力が低いと後の工程において仮成形体としての形状を維持することが 困難となり、上記上限値よりも圧力が高くなると得られる効果は同一なので効率的で はないからである。 (Mouth) The obtained aggregate is put into a mold and compressed to obtain a temporary molded body. In this case, it is preferable to obtain a temporary molded body by compressing it with a surface pressure of 100 to 300 kgZcm 2 using a uniaxial press machine or the like. If the pressure is lower than the above lower limit value, it will be difficult to maintain the shape as a temporary molded body in a later step, and if the pressure is higher than the upper limit value, the obtained effect is the same, so it is not efficient. .
[0020] (ハ)次に得られた仮成形体をカーボンシート上に配置する。カーボンシート中の炭 素源が仮成形体の表面と接触することで表面を緻密化させる力 である。カーボンシ ートとしては炉床板として機能するものであれば特に制限なく商業的に入手可能なも のを用いることができる。そして 2100°C以上、好ましくは 2200°C〜2300°Cで加熱 する。 2100°C以上としたのは気孔傾斜構造を有する炭化ケィ素焼結体が得られな V、からである。即ち液状化現象と粒成長が生じず炭化ケィ素の熱分解でケィ素が飛 散する力らである。また加熱温度の上限を 2300°Cとしたのは 2300°C以上では加熱 炉が壊れるおそれがあるからである。また加熱温度が 2100°C〜2300°Cの範囲から 外れると強度が低下するため、この温度範囲内の一定の温度まで加熱することが好 ましい。その際、強度が増加する観点からは、一定の温度に達した後、アルゴン (Ar) ガス雰囲気下その温度条件に 0. 5〜8時間保持することが好ましい。アルゴンガス雰 囲気下で加熱する理由は、窒素 (N)ガス雰囲気で加熱した場合 Si Nが形成される  (C) Next, the obtained temporary molded body is placed on a carbon sheet. This is the force that densifies the surface by contacting the carbon source in the carbon sheet with the surface of the temporary molded body. Any commercially available carbon sheet can be used as long as it functions as a hearth plate. Then, heating is performed at 2100 ° C or higher, preferably 2200 ° C to 2300 ° C. The reason why the temperature is set to 2100 ° C or higher is because V is a sintered carbonized carbide body having an inclined pore structure. In other words, the liquefaction phenomenon and grain growth do not occur, and the force of the scattering of the carbon by the thermal decomposition of the carbide. The upper limit of the heating temperature is set to 2300 ° C because the heating furnace may be destroyed at temperatures above 2300 ° C. Also, if the heating temperature is out of the range of 2100 ° C to 2300 ° C, the strength decreases, so it is preferable to heat to a certain temperature within this temperature range. At that time, from the viewpoint of increasing the strength, it is preferable that the temperature is maintained for 0.5 to 8 hours in an argon (Ar) gas atmosphere after reaching a certain temperature. The reason for heating in an argon gas atmosphere is that Si N is formed when heated in a nitrogen (N) gas atmosphere.
3 4  3 4
おそれがあるが、アルゴンガス雰囲気であればそのおそれはな 、からである。  This is because there is a possibility that the atmosphere is an argon gas atmosphere.
以上の工程により、 1側表面に緻密な表面層を有し、内部力 表面に向力つて気孔 傾斜構造を備える炭化ケィ素焼結体からなる多孔体が得られる。 Through the above process, a fine surface layer is formed on the surface on one side, and internal force A porous body made of a sintered carbide carbide having an inclined structure is obtained.
[0021] 以上、実施形態を挙げて説明してきたが、本発明は上記実施形態に限定されるも のではない。従って本発明の加熱条件を満たしうるものであれば、特に製造装置等 に制限はなぐ公知の加熱炉内ゃ反応装置を使用することができる。  [0021] Although the embodiments have been described above, the present invention is not limited to the above embodiments. Therefore, as long as the heating conditions of the present invention can be satisfied, a known heating furnace reactor can be used, with no particular restrictions on the production apparatus.
実施例  Example
[0022] 以下に本発明の実施例を示すが、本発明はこれら実施例に何ら制限されない。  Examples of the present invention are shown below, but the present invention is not limited to these examples.
(実施例 1)  (Example 1)
団粒を製造する工程:炭化ケィ素粉末として、中心粒径 5 μ mの高純度炭化ケィ素 粉末 (特開平 9一 48605号に記載の製造方法に準じて製造された不純物含有量 5p pm以下の炭化ケィ素 Zl. 5重量%のシリカを含有) 100重量部に対して、ほう化ァ ルミ-ゥム(A1B ) 0. 3重量部、カルボキシメチルセルロース(CMC) 5重量部を添カロ  Aggregate production process: high purity carbon carbide powder with a central particle size of 5 μm as the carbide carbide powder (impurity content of 5 p pm or less produced according to the production method described in JP-A-9-48605 Carbohydrate Zr. 5% by weight silica) 100 parts by weight, 0.3 parts by weight boron boride (A1B), 5 parts by weight carboxymethylcellulose (CMC)
2  2
し、さらに分散剤としてポリビュルアルコール(PVA) 100重量部を、エイリツヒ(Eirich )グラニューダ一に充填し振動造粒を行い団粒を製造した。その後 3時間放置してァ ルコールを蒸発し造粒して団粒を得た。団粒を直径 210mmの金型に入れ、ー軸プ レス機により面圧 200kgZcm2で圧縮し仮成形体を得た。 Further, 100 parts by weight of polybulal alcohol (PVA) as a dispersing agent was charged into an Eirich granulator and subjected to vibration granulation to produce aggregates. After standing for 3 hours, the alcohol was evaporated and granulated to obtain aggregates. The aggregate was put into a mold having a diameter of 210 mm, and compressed with a surface press of 200 kgZcm 2 by a shaft press to obtain a temporary molded body.
焼結体を得る工程:得られた仮成形体を黒鉛製のるつぼ内のカーボンシート上に 配置した。そしてアルゴン雰囲気下で 600°Cまで 5時間かけて昇温し、その後 150°C Z 1時間で 2200°Cまで加熱し 2200°Cに 6時間保持した。  Step of obtaining a sintered body: The obtained temporary molded body was placed on a carbon sheet in a graphite crucible. The temperature was raised to 600 ° C over 5 hours under an argon atmosphere, and then heated to 2200 ° C at 150 ° C Z for 1 hour and held at 2200 ° C for 6 hours.
成形工程:フライス加工機を用いて、直径 200mm、厚み 10mmの円板になるように 表面加工を行った。  Molding process: Using a milling machine, surface processing was performed to form a disk with a diameter of 200 mm and a thickness of 10 mm.
得られた炭化ケィ素多孔体の切断表面を走査型電子顕微鏡 (SEM)で分析した。 得られた結果を図 1、 2に示す。また得られた炭化ケィ素多孔体について後に説明す る基準に従って、曲げ強度、力さ密度、熱伝導率、表面気孔径、内部気孔径を調べ た。得られた実験結果を表 1に示す。尚、表中「PVA」はポリビニルアルコールを示 す。  The cut surface of the obtained porous carbide body was analyzed with a scanning electron microscope (SEM). The results obtained are shown in FIGS. Further, the obtained porous carbide body was examined for bending strength, force density, thermal conductivity, surface pore diameter, and internal pore diameter according to the criteria described later. The experimental results obtained are shown in Table 1. In the table, “PVA” indicates polyvinyl alcohol.
[表 1]
Figure imgf000010_0001
[table 1]
Figure imgf000010_0001
[0023] (評価) [0023] (Evaluation)
表 1に掲げる項目につ 、て以下の基準に基づ 、て評価を行った:  The items listed in Table 1 were evaluated based on the following criteria:
曲げ強度は、 50mm X 8mm X 6mm寸法の試料を切り出し、スノ ン 30、クロスへッ ドスピード 0. 5mmZminの条件で 3点曲げ強度試験を行うことにより求めた。  The bending strength was determined by cutting a 50mm x 8mm x 6mm sample and conducting a three-point bending strength test under the conditions of 30 and a crosshead speed of 0.5mmZmin.
気孔径は、表面層と内部層におけるそれぞれの最小値と最大値を測定した。  As for the pore diameter, the minimum value and the maximum value of the surface layer and the inner layer were measured.
力さ密度は、 JIS R1634に従って、アルキメデス法により測定した。  The force density was measured by Archimedes method according to JIS R1634.
熱伝導率は、フライス力卩工機を用いて直径 10mm、厚み 2mmの円板になるよう〖こ 炭化ケィ素多孔体に表面加工を行った後、かかる炭化ケィ素多孔体についてレーザ 一フラッシュ法により熱拡散率及び比熱を測定し、熱拡散率 X比熱 X密度の式から 算出した。尚、測定にはアルバック理工株式会社製レーザーフラッシュ熱測定装置を 用いた。  The thermal conductivity was measured using a milling force machine to form a disk with a diameter of 10 mm and a thickness of 2 mm. After the surface treatment was performed on the porous carbon carbide body, the laser-flash method was applied to the porous carbon carbide body. Then, the thermal diffusivity and specific heat were measured and calculated from the formula of thermal diffusivity X specific heat X density. For measurement, a laser flash heat measuring device manufactured by ULVAC-RIKO Inc. was used.
[0024] (実施例 2〜7) (比較例 1〜3)  (Examples 2 to 7) (Comparative Examples 1 to 3)
実験条件を表 1に示す条件にしたことを除き、実施例 1と同様に実験を行った。得ら れた実験結果を表 1に示す。  The experiment was performed in the same manner as in Example 1 except that the experimental conditions were set as shown in Table 1. The experimental results obtained are shown in Table 1.
図 1、 2及び表 1に示すように、実施例 1は 1側表面に気孔径が 12〜28 /ζ πιの表面 層を有し、内部から表面に向かって気孔傾斜構造を有することが確認された。また実 施例 1は良好な曲げ強度、かさ密度及び熱伝導率を有していた。実施例 2について も実施例 1と同様に、緻密な表面層と気孔傾斜構造が形成され、良好な曲げ強度、 かさ密度及び熱伝導率を有することが確認された。実施例 3, 4については、緻密な 表面層と気孔傾斜構造が形成されたが、曲げ強度や熱伝導率が実施例 1よりも低か つた ο  As shown in FIGS. 1 and 2 and Table 1, Example 1 has a surface layer with a pore diameter of 12 to 28 / ζ πι on one side surface, and has a pore gradient structure from the inside to the surface. It was done. In addition, Example 1 had good bending strength, bulk density and thermal conductivity. In Example 2, as in Example 1, a dense surface layer and a pore gradient structure were formed, and it was confirmed that they had good bending strength, bulk density, and thermal conductivity. In Examples 3 and 4, a dense surface layer and an inclined pore structure were formed, but the bending strength and thermal conductivity were lower than in Example 1.
一方、比較例 1〜3については気孔傾斜構造が観察されず、また曲げ強度、力さ密 度及び熱伝導率のいずれの項目についても実施例 1〜4よりも劣る結果となった。以 上の結果から、ほう化アルミニウム及び CMCを含む団粒をアルゴン雰囲気で加熱す ることにより、緻密な表面層と気孔傾斜構造を有し、良好な曲げ強度を有する炭化ケ ィ素焼結体力 なる多孔体が得られることが確認された。  On the other hand, the pore gradient structure was not observed for Comparative Examples 1 to 3, and all items of bending strength, strength density and thermal conductivity were inferior to Examples 1 to 4. From the above results, heating the aggregates containing aluminum boride and CMC in an argon atmosphere results in a sintered body of silicon carbide having a dense surface layer and pore gradient structure and good bending strength. It was confirmed that a porous body was obtained.
[0025] 本出願は、同出願人により先にされた日本国特許出願、すなわち、特願 2005— 6 4503 (出願日平成 17年 3月 8日)及び特願 2006— 27331 (出願日平成 18年 2月 3 日)に基づく優先権主張を伴うものであって、これらの明細書を参照のためにここに 組み込むものとする。 [0025] This application is a Japanese patent application filed earlier by the same applicant, ie, Japanese Patent Application 2005-6 4503 (filing date March 8, 2005) and Japanese Patent Application 2006- 27331 (filing date 2006). February 3 With the priority claim based on (Japan), and these specifications are incorporated herein by reference.
産業上の利用の可能性 Industrial applicability
簡易に製造することができる炭化ケィ素焼結体力 なる多孔体及びその製造方法 が提供される。  A porous body having a sintered carbon carbide strength that can be easily produced and a method for producing the same are provided.

Claims

請求の範囲 The scope of the claims
[1] 気孔径が 50〜200 /ζ mである炭化ケィ素焼結体の厚さ方向の 1側表面に、気孔径 が 10〜50 111の表面層が設けられたことを特徴とする炭化ケィ素焼結体力もなる多 孔体。  [1] A carbonized cage characterized in that a surface layer having a pore diameter of 10 to 50 111 is provided on one side surface in the thickness direction of a sintered carbide carbide body having a pore diameter of 50 to 200 / ζ m. A porous material that also has a sintered body strength.
[2] 厚さ方向の 1側表面力 他側表面に向力つて気孔径が大きくなる気孔傾斜構造を 備え、第 1層の気孔径が 10〜50 μ m、第 2層以上の気孔径が 50〜200 μ mである ことを特徴とする炭化ケィ素焼結体力 なる多孔体。  [2] One-side surface force in the thickness direction Equipped with an inclined pore structure in which the pore diameter increases as the force is applied to the other-side surface, the pore diameter of the first layer is 10-50 μm, and the pore diameter of the second layer or more A porous body having a strength of sintered carbonized carbide, characterized by being 50 to 200 μm.
[3] 曲げ強度が 30MPa以上であることを特徴とする請求項 1又は 2記載の炭化ケィ素 焼結体からなる多孔体。  [3] The porous body comprising the sintered carbonized carbide according to claim 1 or 2, wherein the bending strength is 30 MPa or more.
[4] 炭化ケィ素粉体、ほう化アルミニウム及びバインダーを含む団粒を製造する工程と 前記団粒を成形型に入れ圧縮して仮成形体を得る工程と、  [4] A step of producing aggregates containing a carbonized carbide powder, aluminum boride and a binder, a step of putting the aggregates into a mold and compressing to obtain a temporary molded body,
前記仮成形体をカーボンシート上に配置し、 2100°C〜2300°Cで焼 、て炭化ケィ 素焼結体を得る工程と、  Placing the temporary molded body on a carbon sheet and firing at 2100 ° C to 2300 ° C to obtain a silicon carbide sintered body;
を備えることを特徴とする炭化ケィ素焼結体からなる多孔体の製造方法。  A method for producing a porous body comprising a sintered carbonized carbide, comprising:
[5] 前記バインダーは、カルボキシメチルセルロースであることを特徴とする請求項 4記 載の炭化ケィ素焼結体力 なる多孔体の製造方法。 [5] The method for producing a porous body according to claim 4, wherein the binder is carboxymethylcellulose.
[6] 前記炭化ケィ素焼結体を得る工程において前記仮成形体はアルゴン雰囲気下で 加熱されることを特徴とする請求項 4記載の炭化ケィ素焼結体からなる多孔体の製造 方法。 6. The method for producing a porous body made of a sintered carbide body according to claim 4, wherein in the step of obtaining the sintered carbide body, the temporary molded body is heated in an argon atmosphere.
[7] 得られる炭化ケィ素焼結体力 なる多孔体の曲げ強度が 30MPa以上であることを 特徴とする請求項 4〜6のいずれかに記載の炭化ケィ素焼結体力 なる多孔体の製 造方法。  7. The method for producing a porous body having a sintered body of sintered carbonized carbide according to any one of claims 4 to 6, wherein the obtained porous body having a sintered body of sintered carbonized carbide has a bending strength of 30 MPa or more.
[8] 前記カルボキシメチルセルロースの添カ卩量は、前記炭化ケィ素粉末 100重量部に 対して、 5重量部以上 10重量部以下であることを特徴とする請求項 5記載の炭化ケィ 素焼結体からなる多孔体の製造方法。  [8] The sintered body of silicon carbide according to claim 5, wherein the amount of added carboxymethyl cellulose is 5 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the carbonized carbide powder. A method for producing a porous body comprising:
PCT/JP2006/302994 2005-03-08 2006-02-21 Porous body composed of silicon carbide sintered body and method for manufacturing same WO2006095564A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-064503 2005-03-08
JP2005064503 2005-03-08
JP2006027331A JP2006282496A (en) 2005-03-08 2006-02-03 Porous body composed of silicon carbide sintered body and method for manufacturing the same
JP2006-027331 2006-02-03

Publications (1)

Publication Number Publication Date
WO2006095564A1 true WO2006095564A1 (en) 2006-09-14

Family

ID=36953165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302994 WO2006095564A1 (en) 2005-03-08 2006-02-21 Porous body composed of silicon carbide sintered body and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2006282496A (en)
WO (1) WO2006095564A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112221251A (en) * 2020-09-29 2021-01-15 潘锡丹 Ceramic filter plate forming processing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167475A (en) * 1982-03-29 1983-10-03 イビデン株式会社 Manufacture of high strength silicon carbide sintered body
JPS60255671A (en) * 1984-05-29 1985-12-17 イビデン株式会社 High strength porous silicon carbide sintered body and manufacture
JPS6191076A (en) * 1984-10-12 1986-05-09 イビデン株式会社 Porous silicon carbide sintered body and manufacture
JPS61191575A (en) * 1985-02-19 1986-08-26 イビデン株式会社 Porous silicon carbide sintered body and manufacture
JPS61238304A (en) * 1985-04-17 1986-10-23 Ngk Insulators Ltd Ceramic filter and its preparation
JPS63123867A (en) * 1986-11-10 1988-05-27 三井東圧化学株式会社 Manufacture of silicon carbide formed body for sintering
JPH01145378A (en) * 1987-11-30 1989-06-07 Ibiden Co Ltd Silicon carbide honeycomb structure and production thereof
JPH01145377A (en) * 1987-11-30 1989-06-07 Ibiden Co Ltd Silicon carbide honeycomb structure and production thereof
JPH02256971A (en) * 1989-03-29 1990-10-17 Showa Denko Kk Sliding member and manufacture thereof
JPH04209772A (en) * 1990-11-30 1992-07-31 Toshiba Ceramics Co Ltd Ceramic porous material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167475A (en) * 1982-03-29 1983-10-03 イビデン株式会社 Manufacture of high strength silicon carbide sintered body
JPS60255671A (en) * 1984-05-29 1985-12-17 イビデン株式会社 High strength porous silicon carbide sintered body and manufacture
JPS6191076A (en) * 1984-10-12 1986-05-09 イビデン株式会社 Porous silicon carbide sintered body and manufacture
JPS61191575A (en) * 1985-02-19 1986-08-26 イビデン株式会社 Porous silicon carbide sintered body and manufacture
JPS61238304A (en) * 1985-04-17 1986-10-23 Ngk Insulators Ltd Ceramic filter and its preparation
JPS63123867A (en) * 1986-11-10 1988-05-27 三井東圧化学株式会社 Manufacture of silicon carbide formed body for sintering
JPH01145378A (en) * 1987-11-30 1989-06-07 Ibiden Co Ltd Silicon carbide honeycomb structure and production thereof
JPH01145377A (en) * 1987-11-30 1989-06-07 Ibiden Co Ltd Silicon carbide honeycomb structure and production thereof
JPH02256971A (en) * 1989-03-29 1990-10-17 Showa Denko Kk Sliding member and manufacture thereof
JPH04209772A (en) * 1990-11-30 1992-07-31 Toshiba Ceramics Co Ltd Ceramic porous material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112221251A (en) * 2020-09-29 2021-01-15 潘锡丹 Ceramic filter plate forming processing method

Also Published As

Publication number Publication date
JP2006282496A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4086936B2 (en) Dummy wafer
JP4012287B2 (en) Sputtering target panel
US20060046920A1 (en) Silicon carbide sintered product and method for production thereof
JP4260629B2 (en) Method for producing sintered silicon carbide
EP1691398B1 (en) Ceramic heater unit
JPH1167427A (en) Heater component
JP4490304B2 (en) Susceptor
JPH1067565A (en) Sintered silicon carbide body and its production
WO2006095564A1 (en) Porous body composed of silicon carbide sintered body and method for manufacturing same
WO2006057404A1 (en) Heater unit
JP2008074667A (en) Silicon carbide sintered compact sheet and method of manufacturing the same
JP2008143748A (en) Silicon carbide sintered compact free from warp and method for producing the same
JP4619118B2 (en) Sputtering target and manufacturing method thereof
WO2005000765A2 (en) Dummy wafer and method for manufacture thereof
JPH1179843A (en) Production of silicon carbide structure and silicon carbide structure obtained by the same production
JP4491080B2 (en) Method for producing sintered silicon carbide
JP2008156169A (en) Silicon carbide granule, method for producing silicon carbide sintered compact using it and silicon carbide sintered compact
JP2001130971A (en) Silicon carbide sintered body and method for producing the same
JP2007277030A (en) Silicon carbide sintered compact for heater and method of manufacturing the same
JP4002325B2 (en) Method for producing sintered silicon carbide
JP5130099B2 (en) Method for producing sintered silicon carbide
JP2000154063A (en) Production of silicon carbide sintered body
JP2006248807A (en) Silicon carbide sintered compact having silicon carbide surface rich layer
JP2002128566A (en) Silicon carbide sintered compact and electrode
JP4627577B2 (en) Method for producing sintered silicon carbide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714134

Country of ref document: EP

Kind code of ref document: A1