JPH01145377A - Silicon carbide honeycomb structure and production thereof - Google Patents

Silicon carbide honeycomb structure and production thereof

Info

Publication number
JPH01145377A
JPH01145377A JP62299834A JP29983487A JPH01145377A JP H01145377 A JPH01145377 A JP H01145377A JP 62299834 A JP62299834 A JP 62299834A JP 29983487 A JP29983487 A JP 29983487A JP H01145377 A JPH01145377 A JP H01145377A
Authority
JP
Japan
Prior art keywords
honeycomb structure
silicon carbide
partition walls
network structure
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62299834A
Other languages
Japanese (ja)
Other versions
JPH0657623B2 (en
Inventor
Kiyotaka Tsukada
輝代隆 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP62299834A priority Critical patent/JPH0657623B2/en
Publication of JPH01145377A publication Critical patent/JPH01145377A/en
Publication of JPH0657623B2 publication Critical patent/JPH0657623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title honeycomb structure freed from developing melt damage or thermal shock fracture when heated for the purpose of its reuse, by forming partition walls made of porous material having three-dimensional network structure, and also forming the mean size of the open pores in said network structure so as to become gradually larger from the partition walls located at the center of the structure towards those walls located on the periphery. CONSTITUTION:The objective silicon carbide honeycomb structure in which numerous penetrating holes 1a are arranged side by side in the axis direction through thin partition walls 1b. The constitution of this honeycomb structure is as follows: the partition walls 1b are made of a porous material having three-dimensional network structure composed mainly of lamellar crystals with an average aspect ratio of 2-50, and the average size of the open pores in said network structure is formed so as to become stepwise or continuously larger from the partition walls located at the center of the structure towards those walls located on the periphery (in the direction expressed by the arrow).

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は炭化ケイ素質ハニカム構造体及びその製造方法
に関し、更に詳しくは、ハニカム構造体の隔壁表面で生
じる熱移動、化学反応、物質移動等を効率よく行なうこ
とができ、さらに再使用時の加熱によるハニカム構造体
の溶損あるいは熱衝撃破壊を防ぐことができる炭化ケイ
素質ハニカム構造体及びその製造方法に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Field of Application) The present invention relates to a silicon carbide honeycomb structure and a method for manufacturing the same, and more specifically relates to a silicon carbide honeycomb structure and a method for manufacturing the same. The present invention relates to a silicon carbide honeycomb structure that can efficiently carry out reactions, mass transfer, etc., and that can prevent melting damage or thermal shock destruction of the honeycomb structure due to heating during reuse, and a method for manufacturing the same.

(従来の技術) 例えば第1図、第2図に示すような薄い隔壁tbを介し
て蜂の巣状に連なる無数の貫通孔の一方の端面を例えば
縦横−つおきに封止材2を充填し封止し、この封止した
貫通孔に隣接している貫通孔の他端面に封止材3を充填
し封止した多孔質隔壁からなるセラミック質のハニカム
構造体は、自動車のディーゼルエンジンを初めとして各
種燃焼機器の排ガス中に含まれる微粒炭素を吸着して浄
化する排ガス浄化装置として知られている。
(Prior art) For example, one end surface of countless through holes connected in a honeycomb shape through thin partition walls tb as shown in FIGS. A ceramic honeycomb structure consisting of a porous partition wall in which the other end surface of the through hole adjacent to the sealed through hole is filled with a sealing material 3 and sealed is used in automobile diesel engines and other applications. It is known as an exhaust gas purification device that adsorbs and purifies particulate carbon contained in exhaust gas from various combustion devices.

かかるハニカム構造体には、従来、コージェライトや炭
化ケイ素質を主成分とするものが多く用いられているが
、コージェライトを主成分とするものにあっては、押出
し成形される際に隔壁のセラミック粒子が押出し方向に
配向し易いため、流体物が隔壁を通過し難く圧力損失が
大きくなり、また、セラミック粒子が板状で表面が比較
的平滑であるために、粒体物の接触面積が少なく、上記
した熱移動等を効率よく行なうことができないという問
題がある。
Conventionally, honeycomb structures mainly composed of cordierite or silicon carbide have often been used, but in the case of honeycomb structures mainly composed of cordierite, the partition walls are formed during extrusion molding. Ceramic particles are easily oriented in the extrusion direction, making it difficult for fluid to pass through the partition wall, resulting in a large pressure loss.Also, since ceramic particles are plate-shaped and have a relatively smooth surface, the contact area of the granules is small. However, there is a problem in that the heat transfer described above cannot be carried out efficiently.

一方、炭化ケイ素を主成分とするものは、隔壁中に存在
する気孔の占める割合が30〜40%と比較的少ないた
め、通気抵抗が大きくなり気体や液体の粒体物との接触
有効面積が少ないので触媒担体やフィルターなどの用途
には適さないものが多いという問題がある。
On the other hand, with silicon carbide as the main component, the ratio of pores in the partition walls is relatively small at 30 to 40%, so the ventilation resistance is large and the effective contact area with gas or liquid particles is reduced. There is a problem that many of them are not suitable for uses such as catalyst carriers and filters because of their small amount.

本発明者は、このような問題を解決するハニカム構造体
として、先に、板状結晶が多方向に複雑な状態で絡み合
い三次元の網目構造が形成され、気孔部の占める割合が
比較的高い炭化ケイ素質多孔質隔壁を有するハニカム構
造体を特願昭59−143235号として提案している
The present inventor first developed a honeycomb structure that solves these problems by creating a three-dimensional network structure in which plate crystals intertwine in a complex manner in multiple directions, and the proportion of pores is relatively high. A honeycomb structure having silicon carbide porous partition walls has been proposed in Japanese Patent Application No. 59-143235.

(発明が解決しようとする問題点) このハニカム構造体は、従来のものに比し、有効比表面
積が大きくハニカムの軸方向の流れから流体を積極的に
多孔質内に取り込み易く、しかも、隔壁表面で生じる流
体の流れが乱流となるため、流れ内における拡散、攪拌
等による均一化が促進され、隔壁表面に生じる熱移動、
化学反応。
(Problems to be Solved by the Invention) This honeycomb structure has a larger effective specific surface area than conventional ones, and can easily take fluid into the porous structure from the flow in the axial direction of the honeycomb. Since the fluid flow generated on the surface becomes turbulent, uniformity due to diffusion, stirring, etc. within the flow is promoted, and heat transfer occurring on the partition wall surface,
Chemical reaction.

物質移動等を有効に行なわしめるという効果がある。ま
た、炭化ケイ素を主成分としているため、コージェライ
トを主成分とするものよりも融点が高く再使用時の加熱
の際に高温に耐え得るという特性もある。
This has the effect of effectively carrying out mass transfer, etc. Furthermore, since it is mainly composed of silicon carbide, it has a higher melting point than those whose main component is cordierite, and has the property of being able to withstand high temperatures when heated for reuse.

しかしながら、かかる場合、すなわちハニカム構造体を
再使用する目的で隔壁上に吸着、回収された微粒炭素を
バーナーあるいはヒーターによって加熱した場合1回収
された炭素自体の燃焼熱が往々として中央部分に蓄積し
易く、炭化ケイ素を主成分とするとはいえ該部分の貫通
孔を形成している薄い隔壁を溶損あるいは熱衝撃破壊さ
せ、その後の使用を不能にする場合があるという問題が
ある。
However, in such cases, i.e., when fine particulate carbon adsorbed and collected on the partition wall is heated with a burner or heater for the purpose of reusing the honeycomb structure, the combustion heat of the collected carbon itself often accumulates in the central part. Although the main component is silicon carbide, there is a problem in that the thin partition walls forming the through-holes in the portions may be melted or destroyed by thermal shock, making subsequent use impossible.

本発明は、上記した炭化ケイ素質ハニカム構造体の効果
を減少せしめることなく、再使用を目的とする加熱に対
しても溶損あるいは熱衝撃破壊する虞れのない新規な炭
化ケイ素質ハニカム構造体及びその製造方法を提供する
ことを目的とする。
The present invention provides a novel silicon carbide honeycomb structure that does not reduce the effects of the silicon carbide honeycomb structure described above and is free from melting damage or thermal shock destruction even when heated for the purpose of reuse. The purpose is to provide a method for producing the same.

[発明の構成] (問題点を解決するための手段) 本発明の炭化ケイ素質ハニカム構造体は、薄い隔壁を隔
てて軸方向に多数の貫通孔が隣接している炭化ケイ素質
ハニカム構造体において、該隔壁が、平均アスペクト比
2〜50の範囲内の板状結晶を主体として構成される三
次元の網目構造を有する多孔質体からなり、かつ、前記
網目構造の開放気孔の平均気孔径が、ハニカム構造体中
央部隔壁から外周部隔壁に向かうにつれ、段階的又は連
続的に大きくなるように形成されていることを特徴とす
る。
[Structure of the Invention] (Means for Solving the Problems) The silicon carbide honeycomb structure of the present invention has a silicon carbide honeycomb structure in which a large number of through holes are adjacent to each other in the axial direction with thin partition walls in between. , the partition wall is made of a porous body having a three-dimensional network structure mainly composed of plate crystals with an average aspect ratio in the range of 2 to 50, and the average pore diameter of the open pores of the network structure is , the honeycomb structure is characterized in that it is formed to increase in size stepwise or continuously as it goes from the central partition wall to the outer peripheral partition wall.

隔壁において、板状結晶が複雑な状態で絡み合い三次元
の網目構造が形成されるのは、焼結を後述する所定の条
件下で進行せしめるためである。
The reason why the plate-like crystals intertwine in a complicated state to form a three-dimensional network structure in the partition wall is that sintering is allowed to proceed under predetermined conditions, which will be described later.

平均アスペクト比を2〜50としたのは、2未満の場合
には、炭化ケイ素結晶によって構成される気孔が、結晶
の占める容積に比べて小さくなり、高い気孔率と大きな
気孔径を有することが困難となるためである。一方、5
0を超えた場合には、板状結晶の接合部の強度が低くな
るため、多孔質体向体の強度が著しく低いものとなり、
その結果、ハニカム構造体の保形をも困難にするからで
ある。より好ましいアスペクト比は3〜30の範囲であ
る。
The reason why the average aspect ratio is set to 2 to 50 is because when it is less than 2, the pores formed by the silicon carbide crystals become smaller compared to the volume occupied by the crystals, and it is possible to have a high porosity and a large pore diameter. This is because it becomes difficult. On the other hand, 5
If it exceeds 0, the strength of the joint between the plate crystals will be low, and the strength of the porous body will be extremely low.
This is because, as a result, it becomes difficult to maintain the shape of the honeycomb structure. A more preferable aspect ratio is in the range of 3-30.

なお、ここでいう炭化ケイ素質板状結晶の7スペクト比
(R)は焼結体の任意の断面において観察される個々の
板状結晶の最大長さ(X)と平均短軸方向の厚み(Y)
との比であり、すなわち、R−X/Yで表わされる値で
ある。
Note that the 7 spectral ratio (R) of the silicon carbide plate crystals referred to here is the maximum length (X) of each plate crystal observed in an arbitrary cross section of the sintered body and the average thickness in the minor axis direction ( Y)
In other words, it is the value expressed as RX/Y.

また、板状結晶の平均短軸方向の厚みは1〜500μm
であることが好ましく、なかでも3〜300Qであるこ
とがより好ましい、その理由は、Igより小さいと前記
板状結晶により形成される気孔が小さくなり流量が小さ
くなるためであり、500−よりも大きいと板状結晶の
接合部の数が少なく接合強度が小さくなり、その結果、
保形し難くなるためである。
In addition, the average short axis thickness of the plate crystals is 1 to 500 μm.
is preferable, and 3 to 300Q is more preferable, because if it is smaller than Ig, the pores formed by the plate-like crystals become smaller and the flow rate becomes smaller. If it is large, the number of joints in the plate crystals will be small and the joint strength will be low, and as a result,
This is because it becomes difficult to retain the shape.

そして、前記板状結晶は前記多孔質体100重量部に対
し、少なくとも20重量部を占めることが好ましい、2
0重量部未満の場合には結晶によって形成される気孔が
、結晶の占める容量に対して少なくなり、前記熱移動、
化学反応あるいは物質移動の行なわれる有効面積が少な
くなる。また、板状結晶の接合面積が少なくなるため、
多孔質体向体の機械的強度が著しく低下するからである
。なかでも、少なくとも40重量部であることが最も好
ましい。
Preferably, the plate crystals account for at least 20 parts by weight based on 100 parts by weight of the porous body.
When the amount is less than 0 parts by weight, the number of pores formed by the crystal becomes smaller than the capacity occupied by the crystal, and the heat transfer and
The effective area for chemical reactions or mass transfer to take place is reduced. In addition, since the bonding area of the plate crystals decreases,
This is because the mechanical strength of the porous body is significantly reduced. Among these, it is most preferable that the amount is at least 40 parts by weight.

本発明の炭化ケイ素質ハニカム構造体は、上記した三次
元の網目構造を有する多孔質体から成る隔壁を有し、さ
らに、前記網目構造の開放気孔の平均気孔径がハニカム
構造体中央部隔壁から外周部隔壁に向かうにつれ、段階
的又は連続的に大きくなるように形成されていることを
特徴とする。
The silicon carbide honeycomb structure of the present invention has partition walls made of a porous material having the above-described three-dimensional network structure, and further, the average pore diameter of the open pores of the network structure is It is characterized in that it is formed to become larger stepwise or continuously as it approaches the outer peripheral partition wall.

その理由は1.上記したように、ハニカム構造体を構成
する多孔質体よりなる隔壁の平均気孔径が構造体全部に
亘り均一のものにあっては再使用する際の燃焼熱が中央
部に蓄積し易いのに対し、本発明の如く、中央部から外
周部に向かうにつれ平均気孔径を大きくしたものは、か
かる燃焼熱が中央部に留まることなく外周部に円滑に放
散されるため、再使用の際の加熱に伴なう隔壁の溶損あ
るいは熱衝撃破壊を防ぐことができるからである。
The reason is 1. As mentioned above, if the average pore diameter of the partition walls made of porous material constituting a honeycomb structure is uniform throughout the structure, combustion heat during reuse tends to accumulate in the center. On the other hand, in the case of the present invention, in which the average pore diameter increases from the center to the outer periphery, the combustion heat does not remain in the center but is smoothly dissipated to the outer periphery, so that heating during reuse is possible. This is because it is possible to prevent melting damage or thermal shock destruction of the partition walls caused by.

前記網目構造の気孔の平均気孔径は、1〜50μmの範
囲内であることが好ましい。1−未満の場合には、流体
の通過抵抗が小さくなり、一方、50−を超える場合に
は多孔質体向体の強度が低くなるからである。好ましく
は2〜30μmの範囲である。なお、前記平均気孔径の
値は、水銀圧入法により得られる値である。
The average pore diameter of the pores in the network structure is preferably within the range of 1 to 50 μm. This is because if it is less than 1-, the resistance to fluid passage becomes small, while if it exceeds 50-, the strength of the porous body to which it faces is reduced. Preferably it is in the range of 2 to 30 μm. In addition, the value of the average pore diameter is a value obtained by mercury intrusion method.

したがって、本発明のハニカム構造体の隔壁を構成して
いる多孔質体の平均気孔径は、上記した範囲内で、第1
図及びwfJz図矢線図示線ように、ハニカム構造体の
中央部を最小とし、外周部に向かうにつれ段階的又は連
続的に大きくなっている。
Therefore, the average pore diameter of the porous body constituting the partition walls of the honeycomb structure of the present invention is within the above range.
As shown by the arrows in the figures and the arrows in the wfJz figures, the honeycomb structure has its minimum size at the center and gradually or continuously increases in size toward the outer periphery.

また、前記網目構造の開放気孔率は20〜95容量%で
あることが好ましい、これは、20容量%よりも小さい
場合には、気孔の一部が独立気孔化し、前記有効表面積
が小さくなるためであり、95容量%よりも大きいと、
有効表面積は大きくなるが、ハニカム構造体の保形性が
保てなくなるためである。なかでも30〜90容量%で
あることがより好ましい。
Further, the open porosity of the network structure is preferably 20 to 95% by volume. This is because if it is smaller than 20% by volume, some of the pores become independent pores and the effective surface area becomes smaller. , and if it is larger than 95% by volume,
This is because although the effective surface area increases, the shape retention of the honeycomb structure cannot be maintained. Among these, 30 to 90% by volume is more preferable.

さらに、前記炭化ケイ素質隔壁の比表面積が少なくとも
0.05m″/gであることが好ましく、さらには、0
.2rn’/gであることが最も好ましい、ここで比表
面積は窒素吸収によるBET法によって求められる値で
ある。
Furthermore, it is preferable that the specific surface area of the silicon carbide partition wall is at least 0.05 m''/g, and further preferably 0.05 m''/g.
.. Most preferably, it is 2rn'/g, where the specific surface area is the value determined by the BET method using nitrogen absorption.

次に本発明の炭化ケイ素質ハニカム構造体の製造方法に
ついて説明する。
Next, a method for manufacturing a silicon carbide honeycomb structure of the present invention will be explained.

本発明の炭化ケイ素質ハニカム構造体の製造方法は、炭
化ケイ素粉末を出発原料とし必要により結晶成長助剤を
添加し混合物を得る第一工程;該混合物に成形用結合剤
を添加しハニカム状に成形した成形体を得る第二工程;
該成形体を耐熱性の容器内に挿入して外気の侵入を遮断
しつつ2000〜2500℃の温度範囲内で焼成する第
三工程;とからなる隔壁に三次元網目構造の開放気孔を
有する炭化ケイ素質ハニカム構造体の製造方法において
、前記第二工程における成形体を得るに際し、アルミニ
ウム、ホウ素、カルシウム、クロム、鉄、ランタン、リ
チウム、イツトリウム、珪素、窒素、酸素、炭素の中か
ら選ばれる少なくとも一種の元素又はそれらの化合物(
以下、場合により単に「遷移層形成功剤」と称す、)を
成形体内に濃度勾配が生じるように存在せしめ、前記網
目構造の開放気孔の平均気孔径がハニカム構造体中央部
隔壁から外周部隔壁に向かうにつれ1段階的又は連続的
に大きくなるように形成することを特徴とする。
The method for producing a silicon carbide honeycomb structure of the present invention includes a first step of using silicon carbide powder as a starting material and adding a crystal growth aid if necessary to obtain a mixture; adding a molding binder to the mixture and forming it into a honeycomb shape. A second step of obtaining a molded body;
a third step of inserting the molded body into a heat-resistant container and firing it within a temperature range of 2000 to 2500°C while blocking the intrusion of outside air; In the method for producing a silicon honeycomb structure, when obtaining the formed body in the second step, at least one selected from aluminum, boron, calcium, chromium, iron, lanthanum, lithium, yttrium, silicon, nitrogen, oxygen, and carbon is used. A type of element or a compound thereof (
(hereinafter simply referred to as "transition layer formation success agent" in some cases) is present in the molded body so as to create a concentration gradient, and the average pore diameter of the open pores of the network structure varies from the central partition wall to the outer peripheral partition wall of the honeycomb structure. It is characterized by being formed so that it becomes larger stepwise or continuously as it approaches.

まず、第一工程において、炭化ケイ素粉末を出発原料と
することが好ましい理由は、β型の炭化ケイ素結晶は比
較的低温で合成される低温安定型結晶であり、焼結に際
し、その一部が4H,6Hあるいは15R型等の高温安
定型のα型結晶に相転移して板状結晶を形成し易く、し
かも結晶の成長性にも優れているからである。特に60
重量%以上がβ型炭化ケイ素からなる出発原料を用いる
ことにより本発明の目的とする多孔質体を好適に製造す
ることができる。なかでも、70重量%以上のβ型炭化
ケイ素を含有する出発原料を使用することが有利である
First, the reason why it is preferable to use silicon carbide powder as the starting material in the first step is that β-type silicon carbide crystals are low-temperature stable crystals that are synthesized at relatively low temperatures. This is because it easily undergoes a phase transition to a high temperature stable α type crystal such as 4H, 6H or 15R type to form a plate-shaped crystal, and also has excellent crystal growth properties. Especially 60
By using a starting material containing at least % by weight of β-type silicon carbide, the porous body targeted by the present invention can be suitably produced. Among these, it is advantageous to use a starting material containing 70% by weight or more of β-type silicon carbide.

結晶成長助剤としては、例えば、アルミニウム、ホウ素
、鉄、炭素等が挙げられる。
Examples of crystal growth aids include aluminum, boron, iron, carbon, and the like.

次に、第二工程において、第一工程において得られた混
合物にメチルセルロース、ポリビニルアルコール、水ガ
ラス等の成形用結合剤を添加し、押出し成形、シート成
形、プレス成形等の方法によりハニカム状の成形体を得
る。そして、アルミニウム、ホウ素、カルシウム、クロ
ム、鉄、ランタン、リチウム、イツトリウム、珪素、窒
素、酸素、炭素の中から選ばれる少なくとも一種の元素
又はそれらの化合物を成形体内に濃度勾配が生じるよう
に存在させる。その方法は、前記成形体に直接前記化合
物を含有した溶液を塗布したり、前記成形体の成形用結
合剤を除去し多孔質とした後、同様に含浸したりする方
法で行なう。
Next, in the second step, a molding binder such as methyl cellulose, polyvinyl alcohol, or water glass is added to the mixture obtained in the first step, and the mixture is formed into a honeycomb shape by extrusion molding, sheet molding, press molding, etc. Get a body. At least one element selected from aluminum, boron, calcium, chromium, iron, lanthanum, lithium, yttrium, silicon, nitrogen, oxygen, and carbon or a compound thereof is present so as to create a concentration gradient within the molded body. . This method is carried out by directly applying a solution containing the compound to the molded body, or by removing the molding binder from the molded body to make it porous, and then impregnating it in the same manner.

濃度勾配が生じるのは、上記した物質のうち、アルミニ
ウム、ホウ素、カルシウム、−クロム、鉄、ランタン、
リチウム、イツトリウムは、炭化ケイ素の結晶粒成長の
速度を速くする働きを有しており、これらの物質の存在
する箇所では極めて多くの板状結晶の核が生成され、各
々の部分で板状結晶の発達が起こる結果、形成される板
状結晶の大きさが制限され、これらの物質が多く存在す
る箇所はど細かい組織の三次元網目構造となすことがで
きるからである。
Among the substances mentioned above, concentration gradients occur in aluminum, boron, calcium, chromium, iron, lanthanum,
Lithium and yttrium have the function of accelerating the growth rate of crystal grains in silicon carbide, and where these substances exist, a large number of plate-like crystal nuclei are generated, and plate-like crystals are formed in each part. As a result of this development, the size of the plate-like crystals that are formed is restricted, and areas where a large amount of these substances are present can form a three-dimensional network structure with a very fine structure.

これに対し、珪素、窒素、酸素、炭素は上記物質とは逆
に炭化ケイ素の結晶粒成長の速度を遅くする働きを有し
ており、これらの物質の存在する箇所では板状結晶の核
生成が抑制され、形成される板状結晶の数が相対的に少
なくなる結果、それぞれの板状結晶が比較的大きく成長
するため、これらの物質が多く存在する箇所はど大きな
組織の三次元網目構造となすことができるからである。
On the other hand, silicon, nitrogen, oxygen, and carbon act to slow down the growth rate of silicon carbide crystal grains, contrary to the above substances, and where these substances exist, plate crystal nucleation occurs. As a result, each plate crystal grows relatively large, and the areas where many of these substances exist form a large three-dimensional network structure. This is because it can be done.

したがって、網目構造の開放気孔の平均気孔径がハニカ
ム構造体中央部隔壁から外周部隔壁に向かうにつれ、段
階的又は連続的に大きくなるように形成された炭化ケイ
素質ハニカム構造体を得るためには、上記遷移層形成助
剤のうち、アルミニウム、ホウ素、カルシウム、クロム
、鉄、ランタン、リチウム、イツトリウムをハニカム成
形体中央部付近に含有させて後述する方法により焼結す
る方法、あるいは、珪素、窒素、酸素、炭素をハニカム
成形体の外周部付近に含有させて後述する方法により焼
結する方法、さらには、両方法を併用する方法が挙げら
れる。
Therefore, in order to obtain a silicon carbide honeycomb structure formed such that the average pore diameter of the open pores of the network structure increases stepwise or continuously from the central partition wall to the outer peripheral partition wall of the honeycomb structure. Among the above transition layer forming aids, aluminum, boron, calcium, chromium, iron, lanthanum, lithium, and yttrium are contained near the center of the honeycomb formed body and sintered by the method described below, or silicon, nitrogen , a method in which oxygen and carbon are contained near the outer periphery of the honeycomb formed body and sintered by the method described below, and a method in which both methods are used in combination.

なお、前記遷移層形成助剤は、焼結体中に多量に残存す
ると炭化ケイ素本来の特性が失われるため、なるべく少
ないことが望ましく焼結体中におけるその残存量は炭化
ケイ素100重量部に対し10重量部以下であることが
好ましく、なかでも5重量部以下であることがより好ま
しい。
Note that if a large amount of the transition layer forming aid remains in the sintered body, the inherent properties of silicon carbide will be lost, so it is desirable that the amount remaining in the sintered body be as small as possible. It is preferably 10 parts by weight or less, and more preferably 5 parts by weight or less.

次に、第三工程として、得られた成形体を耐熱性の容器
内に封入し、外気の侵入を遮断しつつ2000〜250
0℃の温度範囲内で焼成する。
Next, as a third step, the obtained molded body is sealed in a heat-resistant container and heated to a
Calcinate within a temperature range of 0°C.

耐熱性の容器内に封入し、外気の侵入を遮断しつつ焼成
を行なう理由は、隣接する炭化ケイ素結晶同士を融合さ
せ、かつ、板状結晶の成長を促進させることができ、板
状結晶が複雑な状態で絡み合い三次元の網目構造が形成
されるからである。
The reason why baking is performed while sealing in a heat-resistant container and blocking outside air from entering is that it allows adjacent silicon carbide crystals to fuse together and promotes the growth of plate-shaped crystals. This is because they intertwine in a complex manner to form a three-dimensional network structure.

なお、板状結晶の成長を促進させることができるのは、
炭化ケイ素粒子間における炭化ケイ素の蒸発−再凝縮お
よび/または表面拡散による移動を促進することができ
るためと考えられる。
In addition, the growth of plate crystals can be promoted by:
This is thought to be because movement of silicon carbide between silicon carbide particles by evaporation-recondensation and/or surface diffusion can be promoted.

これに対し、従来知られている常圧焼結、雰囲気加圧焼
結あるいは減圧下における焼結法を試みたところ、板状
結晶の成長が困難であるばかりか炭化ケイ素粒子の接合
部がネック状にくびれだ形状となり、焼結体の強度が偲
くなった。
In contrast, when conventional pressureless sintering, atmospheric pressure sintering, or sintering under reduced pressure was tried, not only was it difficult to grow plate-shaped crystals, but the joints of silicon carbide particles became a bottleneck. The shape became constricted, and the strength of the sintered body decreased.

前記耐熱性の容器としては、黒鉛、炭化ケイ素、炭化タ
ングステン、モリブデン、炭化モリブデンのうち少なく
とも1種以上の材質からなる耐熱性容器を使用すること
が好ましい。
As the heat-resistant container, it is preferable to use a heat-resistant container made of at least one material selected from graphite, silicon carbide, tungsten carbide, molybdenum, and molybdenum carbide.

また、焼成温度を2000〜2500℃とするのは、2
000℃より低い場合には粒子の成長が不十分で、隔壁
を高い強度を有する多孔質体とすることが困難なためで
あり、2500℃よりも高い場合には炭化ケイ素の昇華
が盛んになり、発達した板状結晶が逆にやせ細ってしま
い、その結果高い強度を有する多孔質体を得ることが困
難となるためである。より好ましくは2100〜230
0℃の範囲内である。
In addition, setting the firing temperature to 2000 to 2500°C is 2
If it is lower than 000℃, the growth of particles is insufficient and it is difficult to make the partition wall into a porous body with high strength.If it is higher than 2500℃, the sublimation of silicon carbide becomes active. This is because the developed plate-like crystals conversely become thinner, and as a result, it becomes difficult to obtain a porous body with high strength. More preferably 2100-230
It is within the range of 0°C.

[実施例] 支墓1」 出発原料として使用した炭化ケイ素微粉末は、80重量
%がβ型結晶からなるものを用いた。この出発原料には
不純物としてBが0.01.Cが0.5、Anが0.0
1.Nが0.2、Feが0.08原子量部、その他の元
素は痕跡着合まれており、これらの不純物総量は0.8
1原子量部であった。また、この出発原料の平均粒径は
0 、3 )us 、比表面積は18 、7m″/gで
あった。
[Example] Burial 1" The silicon carbide fine powder used as the starting material was one in which 80% by weight consisted of β-type crystals. This starting material contains 0.01% of B as an impurity. C is 0.5, An is 0.0
1. N is 0.2, Fe is 0.08 atomic weight part, and traces of other elements are incorporated, and the total amount of these impurities is 0.8
It was 1 part by atomic weight. Further, the average particle size of this starting material was 0.3) us, and the specific surface area was 18.7 m''/g.

この出発原料に成形用結合剤としてメチルセルロースを
10重量部、水分を20重量部添加した。これを混練し
て、押出し成形法により直径130■謬、長さ120m
5、貫通孔の隔壁の厚さ0.3+ue、1平方インチ当
りの貫通孔数的200の炭化ケイ素質ハニカム成形体を
得た。
To this starting material were added 10 parts by weight of methylcellulose as a molding binder and 20 parts by weight of water. This was kneaded and extrusion molded to a diameter of 130mm and a length of 120m.
5. A silicon carbide honeycomb molded body was obtained in which the thickness of the partition walls of the through holes was 0.3+ue and the number of through holes was 200 per square inch.

この成形体を1℃/分の昇温速度で500℃まで酸化雰
囲気中で加熱して、前記有機結合剤を酸化除去した0次
いで成形体の外周部から20mmの部分に40%のフェ
ノールレジン、アルコール溶液を含浸させ、その後乾燥
させた。この結果、外周部より20腸■の部分では遊離
炭素は8%含まれ内側に向かうにつれて連続的に徐々に
減少し中央部より20■lの部分では遊離炭素は0.3
%含まれていた。
This molded body was heated to 500°C at a heating rate of 1°C/min in an oxidizing atmosphere to remove the organic binder by oxidation.Then, 40% phenol resin was applied to a portion 20 mm from the outer periphery of the molded body. It was impregnated with alcohol solution and then dried. As a result, free carbon is contained at 8% in a portion 20 μl from the outer periphery, and gradually decreases toward the inside, and in a portion 20 μl from the center, free carbon is 0.3%.
% was included.

その後、この成形体を気孔率20%の黒鉛ルツボに入れ
、1気圧のArガス雰囲気中で焼成L7た。
Thereafter, this molded body was placed in a graphite crucible with a porosity of 20%, and fired L7 in an Ar gas atmosphere at 1 atm.

焼成は、2℃/分で2150℃まで昇温し、最高温度で
4時間保持した。
For firing, the temperature was raised to 2150°C at a rate of 2°C/min and held at the maximum temperature for 4 hours.

2〜5   1〜4 実施例1と同様であるが、フェノールレジンの添加に加
えて、中央部より20m■径の間にアルミナゾル(0,
05−粒子)水溶液を添加し、Anの含有量を0.2重
量%とした場合(実施例2)、フェノールレジンの添加
を行なわずにBN微粉末(粒径0 、2.)を中央部よ
り20mm径の間に塗布し、Bの含有量を0.1重量%
とじた場合(実施例3)、実施例1と同様であるがフェ
ノールレジンの添加を行なわなかった場合(比較例1)
、全体にBを0.4重量%添加した場合(比較例2)、
実施例1と同様であるが焼成温度を2300℃の最高温
度での保持時間を10時間とした場合(実施例4)、焼
成温度を2050℃の最高温度での保持時間を2時間と
した場合(実施例5)、焼成温度を1800℃とした場
合(比較例3)、焼成温度を2550℃とした場合(比
較例4)のハニカム構造体の隔壁構造、性能等の結果を
次光に示す、なお、表中aはハニカム構造体の中央部付
近に位置する隔壁の、bはその外周部に位置する隔壁の
、Cはさらにその外周部に位置する隔壁を示す。
2-5 1-4 Same as Example 1, but in addition to adding phenol resin, alumina sol (0,
05-particles) When an aqueous solution was added to make the An content 0.2% by weight (Example 2), BN fine powder (particle size 0, 2. 20mm diameter, and the B content is 0.1% by weight.
The case of binding (Example 3), the same as Example 1 but without the addition of phenol resin (Comparative Example 1)
, when 0.4% by weight of B was added to the whole (Comparative Example 2),
Same as Example 1, but when the firing temperature was 2300°C and the holding time was 10 hours (Example 4), and when the firing temperature was 2050°C and the holding time was 2 hours. (Example 5), when the firing temperature was 1800°C (Comparative Example 3), and when the firing temperature was 2550°C (Comparative Example 4), the results of the partition structure, performance, etc. of the honeycomb structure are shown below. In the table, a indicates a partition wall located near the center of the honeycomb structure, b indicates a partition wall located on the outer periphery thereof, and C indicates a partition wall located further on the outer periphery thereof.

表より明らかなように本発明のハニカム構造体は、その
中央部の隔壁から外周部の隔壁に向かうにしたがい次第
に平均気孔径が大きくなっており、しかも、この構造体
を1〜30pIの粒子径を有スるディーゼルエンジンの
パティキュレートトラップフィルターとして使用し排ガ
ス中の微粒子を5時間捕集したところ、積層した微粒子
の厚みは、例えば実施例1では、中央部(a)で0.4
mm、最外周部(C)では0.6W■といったよう微粒
子に、各実施例とも中央部から外周部に向かうにつれて
その厚みは連続的に変化した状態となった。
As is clear from the table, the honeycomb structure of the present invention has an average pore diameter that gradually increases from the partition walls in the center to the partition walls in the outer periphery. When used as a particulate trap filter in a diesel engine with
In each example, the thickness of the particles continuously changed from the center toward the outer periphery.

したがって、本発明に係るハニカム構造体に過剰の02
を加え、800℃で着火させたところ、例えば、実施例
1では外周部の昇温時の温度は1000℃、中央部の昇
温時の温度は1020℃といったように、各実施例とも
極めて温度差が小さく、溶損もなく耐熱衝撃にも全く問
題はなかった。
Therefore, the honeycomb structure according to the present invention has an excess of 02
When ignited at 800℃, for example, in Example 1, the temperature at the outer periphery was 1000℃, and the temperature at the center was 1020℃. The difference was small, there was no melting loss, and there were no problems with thermal shock resistance.

[発明の効果] 本発明の炭化ケイ素質ハニカム構造体によれば、板状結
晶が複雑に絡み合った三次元網目構造を有しているので
、隔壁表面に生じる熱移動、化学反応、・物質移動等が
有効に行なわれるほか、構造体の中央部隔壁から外周部
隔壁に向かうに従い平均気孔径が大きくなっているため
、再使用する目的で加熱した場合であっても、燃焼熱が
中央部に蓄積するようなことがなく隔壁の溶損や熱衝撃
破壊を防ぐことができる。
[Effects of the Invention] The silicon carbide honeycomb structure of the present invention has a three-dimensional network structure in which plate crystals are intricately intertwined, so that heat transfer, chemical reaction, and mass transfer occurring on the partition wall surface are suppressed. In addition, the average pore diameter increases from the central partition wall to the outer peripheral partition wall of the structure, so even when heated for the purpose of reuse, combustion heat will not be transferred to the central part. There is no accumulation and it is possible to prevent melting and thermal shock destruction of partition walls.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のハニカム構造体の平面図であり、第
2図は、その縦断面模式図である。
FIG. 1 is a plan view of the honeycomb structure of the present invention, and FIG. 2 is a schematic vertical cross-sectional view thereof.

Claims (7)

【特許請求の範囲】[Claims] (1)薄い隔壁を隔てて軸方向に多数の貫通孔が隣接し
ている炭化ケイ素質ハニカム構造体において、該隔壁が
、平均アスペクト比2〜50の範囲内の板状結晶を主体
として構成される三次元の網目構造を有する多孔質体か
らなり、かつ、前記網目構造の開放気孔の平均気孔径が
、ハニカム構造体中央部隔壁から外周部隔壁に向かうに
つれ、段階的又は連続的に大きくなるように形成されて
いることを特徴とする炭化ケイ素質ハニカム構造体。
(1) In a silicon carbide honeycomb structure in which a large number of through holes are adjacent to each other in the axial direction across thin partition walls, the partition walls are mainly composed of plate crystals having an average aspect ratio of 2 to 50. The honeycomb structure is made of a porous body having a three-dimensional network structure, and the average pore diameter of the open pores of the network structure increases stepwise or continuously from the central partition wall to the outer peripheral partition wall of the honeycomb structure. A silicon carbide honeycomb structure characterized by being formed as follows.
(2)前記板状結晶の平均短軸方向の厚みが1〜500
μmである特許請求の範囲第1項記載の炭化ケイ素質ハ
ニカム構造体。
(2) The average thickness of the plate crystals in the minor axis direction is 1 to 500.
The silicon carbide honeycomb structure according to claim 1, wherein the silicon carbide honeycomb structure has a diameter of .mu.m.
(3)前記板状結晶が前記多孔質体100重量部に対し
、少なくとも20重量部含まれている特許請求の範囲第
1項または第2項記載の炭化ケイ素質ハニカム構造体。
(3) The silicon carbide honeycomb structure according to claim 1 or 2, wherein the plate crystals are contained in an amount of at least 20 parts by weight based on 100 parts by weight of the porous body.
(4)前記三次元網目構造の開放気孔の平均気孔径が1
〜50μmの範囲である特許請求の範囲第1項〜第3項
いずれか1項に記載の炭化ケイ素質ハニカム構造体。
(4) The average pore diameter of the open pores of the three-dimensional network structure is 1
The silicon carbide honeycomb structure according to any one of claims 1 to 3, which has a thickness of 50 μm.
(5)前記三次元の網目構造開放気孔率が20〜95容
量%である特許請求の範囲第1項〜第4項いずれか1項
に記載の炭化ケイ素質ハニカム構造体。
(5) The silicon carbide honeycomb structure according to any one of claims 1 to 4, wherein the three-dimensional network structure has an open porosity of 20 to 95% by volume.
(6)前記炭化ケイ素質多孔質体の比表面積が少なくと
も0.05m^2/gである特許請求の範囲第1項〜第
5項いずれか1項に記載の炭化ケイ素質ハニカム構造体
(6) The silicon carbide honeycomb structure according to any one of claims 1 to 5, wherein the silicon carbide porous body has a specific surface area of at least 0.05 m^2/g.
(7)炭化ケイ素粉末を出発原料とし必要により結晶成
長助剤を添加し混合物を得る第一工程;該混合物に成形
用結合剤を添加しハニカム状に成形した成形体を得る第
二工程; 該成形体を耐熱性の容器内に挿入して外気の侵入を遮断
しつつ2000〜2500℃の温度範囲内で焼成する第
三工程; とからなる隔壁に三次元網目構造の開放気孔を有する炭
化ケイ素質ハニカム構造体の製造方法において、 前記第二工程における成形体を得るに際し、アルミニウ
ム、ホウ素、カルシウム、クロム、鉄、ランタン、リチ
ウム、イットリウム、珪素、窒素、酸素、炭素の中から
選ばれる少なくとも一種の元素又はそれらの化合物を成
形体内に濃度勾配が生じるように存在せしめ、前記網目
構造の開放気孔の平均気孔径がハニカム構造体中央部隔
壁から外周部隔壁に向かうにつれ、段階的又は連続的に
大きくなるように成形することを特徴とする炭化ケイ素
質ハニカム構造体の製造方法。
(7) A first step of using silicon carbide powder as a starting material and adding a crystal growth aid if necessary to obtain a mixture; a second step of adding a molding binder to the mixture to obtain a honeycomb-shaped body; A third step of inserting the molded body into a heat-resistant container and firing it within a temperature range of 2000 to 2500°C while blocking the intrusion of outside air; In the method for producing a raw honeycomb structure, when obtaining the molded body in the second step, at least one selected from aluminum, boron, calcium, chromium, iron, lanthanum, lithium, yttrium, silicon, nitrogen, oxygen, and carbon. elements or their compounds are present so as to cause a concentration gradient in the molded body, and the average pore diameter of the open pores of the network structure is gradually or continuously as it goes from the central partition wall to the outer peripheral partition wall of the honeycomb structure. 1. A method for manufacturing a silicon carbide honeycomb structure, which is characterized by forming the silicon carbide honeycomb structure so that it becomes larger.
JP62299834A 1987-11-30 1987-11-30 Silicon carbide honeycomb structure and method for manufacturing the same Expired - Fee Related JPH0657623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299834A JPH0657623B2 (en) 1987-11-30 1987-11-30 Silicon carbide honeycomb structure and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299834A JPH0657623B2 (en) 1987-11-30 1987-11-30 Silicon carbide honeycomb structure and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH01145377A true JPH01145377A (en) 1989-06-07
JPH0657623B2 JPH0657623B2 (en) 1994-08-03

Family

ID=17877489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299834A Expired - Fee Related JPH0657623B2 (en) 1987-11-30 1987-11-30 Silicon carbide honeycomb structure and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0657623B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031023A1 (en) * 2001-10-09 2003-04-17 Ngk Insulators,Ltd. Honeycomb filter
US6669751B1 (en) 1999-09-29 2003-12-30 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
EP1498179A1 (en) * 2002-04-25 2005-01-19 Ngk Insulators, Ltd. Ceramics honeycomb structural body and method of manufacturing the structural body
DE10343438A1 (en) * 2003-09-15 2005-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ceramic particle filter partially made from porous silicon carbide for filtering exhaust gases from diesel engines has a surface region made from silicon carbide particles which grow to form a rigid network
WO2006095564A1 (en) * 2005-03-08 2006-09-14 Bridgestone Corporation Porous body composed of silicon carbide sintered body and method for manufacturing same
US7138003B2 (en) * 2003-03-10 2006-11-21 Ngk Insulators, Ltd Honeycomb structure
US7510588B2 (en) 2002-03-29 2009-03-31 Ibiden Co., Ltd. Ceramic filter and exhaust gas decontamination unit
JP2010115634A (en) * 2008-10-14 2010-05-27 Ngk Insulators Ltd Honeycomb structure
JP4932256B2 (en) * 2003-09-12 2012-05-16 イビデン株式会社 Ceramic sintered body and ceramic filter
JP6122534B1 (en) * 2016-06-13 2017-04-26 日本碍子株式会社 Honeycomb structure

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6669751B1 (en) 1999-09-29 2003-12-30 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
US7112233B2 (en) 1999-09-29 2006-09-26 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
WO2003031023A1 (en) * 2001-10-09 2003-04-17 Ngk Insulators,Ltd. Honeycomb filter
US7179516B2 (en) 2001-10-09 2007-02-20 Ngk Insulators, Ltd. Honeycomb filter
US7510588B2 (en) 2002-03-29 2009-03-31 Ibiden Co., Ltd. Ceramic filter and exhaust gas decontamination unit
EP1498179A1 (en) * 2002-04-25 2005-01-19 Ngk Insulators, Ltd. Ceramics honeycomb structural body and method of manufacturing the structural body
EP1498179A4 (en) * 2002-04-25 2007-08-29 Ngk Insulators Ltd Ceramics honeycomb structural body and method of manufacturing the structural body
US7344770B2 (en) 2002-04-25 2008-03-18 Ngk Insulators, Ltd. Ceramics honeycomb structural body and method of manufacturing the structural body
US7138003B2 (en) * 2003-03-10 2006-11-21 Ngk Insulators, Ltd Honeycomb structure
JP4932256B2 (en) * 2003-09-12 2012-05-16 イビデン株式会社 Ceramic sintered body and ceramic filter
DE10343438A1 (en) * 2003-09-15 2005-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ceramic particle filter partially made from porous silicon carbide for filtering exhaust gases from diesel engines has a surface region made from silicon carbide particles which grow to form a rigid network
DE10343438B4 (en) * 2003-09-15 2007-06-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the production of ceramic particle filters and ceramic particle filters
WO2006095564A1 (en) * 2005-03-08 2006-09-14 Bridgestone Corporation Porous body composed of silicon carbide sintered body and method for manufacturing same
JP2010115634A (en) * 2008-10-14 2010-05-27 Ngk Insulators Ltd Honeycomb structure
JP6122534B1 (en) * 2016-06-13 2017-04-26 日本碍子株式会社 Honeycomb structure
JP2017221870A (en) * 2016-06-13 2017-12-21 日本碍子株式会社 Honeycomb structure

Also Published As

Publication number Publication date
JPH0657623B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
EP1493724B1 (en) Porous material and method for production thereof
US6815038B2 (en) Honeycomb structure
US4869944A (en) Cordierite honeycomb-structural body and a method for producing the same
JP4307781B2 (en) Silicon carbide based porous material and method for producing the same
US7244685B2 (en) Silicon carbide porous body, process for producing the same and honeycomb structure
EP1340735A1 (en) Silicon carbide based porous article and method for preparing the same
JP5746986B2 (en) Manufacturing method of exhaust gas purification filter
WO2001079138A1 (en) Honeycomb structure and method for its manufacture
WO2002062726A1 (en) Honeycomb structure and method for preparation thereof
JPH01145378A (en) Silicon carbide honeycomb structure and production thereof
US20030021948A1 (en) Honeycomb structure and method for manufacture thereof
JPH01145377A (en) Silicon carbide honeycomb structure and production thereof
WO2003062611A1 (en) HONEYCOMB STRUCTURE CONTAINING Si AND METHOD FOR MANUFACTURE THEREOF
WO2006035645A1 (en) Method for manufacturing porous article, porous article and honeycomb structure
KR100739409B1 (en) Silicon carbide-based catalytic body and process for producing the same
JP4071381B2 (en) Honeycomb filter and manufacturing method thereof
EP0563261A1 (en) Preparation and use of mullite whisker networks
JP3712785B2 (en) Exhaust gas filter and exhaust gas purification device
WO2002044105A1 (en) Porous sound absorbing material and method of manufacturing the material
AU2007284302A1 (en) An extruded porous substrate having inorganic bonds
JP2004292197A (en) Method of manufacturing honeycomb structure
JPS61191575A (en) Porous silicon carbide sintered body and manufacture
JP2022128501A (en) Ceramics madreporite and manufacturing method thereof, and filter for dust collection
JP2672545B2 (en) Method for manufacturing silicon carbide honeycomb filter
JP2634612B2 (en) Silicon carbide honeycomb filter and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees