JPS6046981A - Ceramic porous body - Google Patents

Ceramic porous body

Info

Publication number
JPS6046981A
JPS6046981A JP58156938A JP15693883A JPS6046981A JP S6046981 A JPS6046981 A JP S6046981A JP 58156938 A JP58156938 A JP 58156938A JP 15693883 A JP15693883 A JP 15693883A JP S6046981 A JPS6046981 A JP S6046981A
Authority
JP
Japan
Prior art keywords
porous body
ceramic
ceramic porous
silicon carbide
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58156938A
Other languages
Japanese (ja)
Inventor
成宮 恒昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP58156938A priority Critical patent/JPS6046981A/en
Publication of JPS6046981A publication Critical patent/JPS6046981A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は内部連通空間を有する三次元網状のセル構造を
なしたセラミック多孔体に関し、特に高温度で使用され
る用途に好適なセラミック多孔体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic porous body having a three-dimensional network cell structure having internal communication spaces, and particularly to a ceramic porous body suitable for use at high temperatures.

内部連通空間を有する三次元網状のセル構造をなしたセ
ラミック多孔体は、溶融金属のP相、触媒担体、ディー
ゼルパティキュレートフィルター、更には通気性断熱材
等とその用途は広く、工業的に有用なものである。しか
し、これらの用途に用いる場合、多くは数百度から十数
百度にも及ぶ温度環境で使用されるので、高温時におけ
る強度の大きいセラミック多孔体が必要とされ、特に、
最近においてtユ、セラミック多孔体の適用範囲を拡大
する目的で高温度での耐クリープ性の向上が要求されて
いた。1 本発明者は上記事情に鑑み、高温度での耐クリープ性に
優れたセラミック多孔体につき鋭意検討を行なった結果
、内部連通空間余有する三次元網状のセル構造をなした
セラミック多孔体の骨格格子の一部もしくは全部會縦化
りイ躯を焼成することによって生成させた酸化ケイ素に
よって形成した場合、優れた高温クリープ性を有し、高
温度での強度が大きく、このためこのセラミック多孔体
が通気性断熱材等の高温度にさらされる用途に対し好適
に使用されることを知見したものである。
Ceramic porous bodies with a three-dimensional network cell structure with internal communication spaces have a wide range of uses, including the P phase of molten metal, catalyst carriers, diesel particulate filters, and even breathable insulation materials, making them industrially useful. It is something. However, when used in these applications, they are often used in environments with temperatures ranging from several hundred degrees to tens of hundreds of degrees, so a ceramic porous body with high strength at high temperatures is required.
Recently, there has been a demand for improved creep resistance at high temperatures in order to expand the range of application of ceramic porous bodies. 1 In view of the above circumstances, the present inventors have conducted intensive studies on ceramic porous bodies that have excellent creep resistance at high temperatures, and have developed a framework for ceramic porous bodies that has a three-dimensional network cell structure with internal communication spaces. When formed from silicon oxide produced by firing a part or all of the lattice structure, it has excellent high-temperature creep properties and high strength at high temperatures, which makes this ceramic porous body It has been found that this material is suitable for use in applications exposed to high temperatures, such as breathable heat insulating materials.

従って、本発明は内部連通空間ケ有する三次元網状のセ
ル構造をなしたセラミック多孔体において、該多孔体の
骨格格子の少なくも表面全構成する主成分が炭化ケイ素
全焼成することによって生成きせた酸化ケイ素であるこ
とを特徴とするセラミック多孔体を提供するものである
Therefore, the present invention provides a ceramic porous body having a three-dimensional network cell structure having internal communication spaces, in which the main component constituting at least the entire surface of the skeletal lattice of the porous body is silicon carbide, which is formed by complete firing. The present invention provides a ceramic porous body characterized by being made of silicon oxide.

ここで、本発明の要点は炭化ケイ素によシ最終のセラミ
ック多孔体形状とした後に酸化して酸化ケイ素とするこ
とであり、たとえ炭化ケイ素を焼成した酸化ケイ素を用
いても、この酸化ケイ素の泥漿を用いてセラミック多孔
体を成形しても高温クリープ件の向上は認められない。
The key point of the present invention is to form silicon carbide into the final ceramic porous body shape and then oxidize it to silicon oxide. Even when ceramic porous bodies are formed using slurry, no improvement in high-temperature creep is observed.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明のセラミック多孔体は、内部連通空間を有する三
次元網状のセル構造tなしたもので、多孔体の骨格格子
の少なくとも表面、好ましくは全体を炭化ケイ素を焼成
することによって生成させた酸化ケイ素を主成分として
形成したもので、これによシセラミック多孔体の高温ク
リープ性を向上させたものである。
The ceramic porous body of the present invention has a three-dimensional network cell structure with internal communication spaces, and at least the surface, preferably the entirety, of the skeletal lattice of the porous body is made of silicon oxide produced by firing silicon carbide. This is a ceramic porous body that has improved high-temperature creep properties.

上述したようなセラミック多孔体全得る場合、セル膜の
ない軟質ポリウレタンフォームにセラミック泥漿を付着
させ、これを焼P″jることにより前記軟質ポリウレタ
ンフォームを炭化除去して製造したものを用いることが
好ましい(このようにセル膜のない軟質ポリウレタンフ
ォームからセラミック多孔体全形成することによシ、正
十二面体の稜の部分の与からなる籠形のセラミック多孔
体が得られ、これは空隙率が大きいので圧力損失が少な
い状態で排気ガスが通過すると共に、内部連通空間が入
り組んでいるので、例えはこのセラミック多孔体音通気
性断熱材の用途に用いる酸2合、排気ガスがこの内部連
通空間を通過する際格子と確実に接触し、熱交換が効率
よく行なわれる。)が、かかる方法でセラミック多づし
体を製造する場合に、例えばアルミナやコージライト質
を主成分とするセラミック泥漿音用い、焼成してセラミ
ック多孔体全形成した後、史に炭化ケイ素を主成分とし
て含むセラミック泥漿をこのセラミック多孔体の骨格格
子を被覆して付着し、これを焼成して炭化ケイ素全酸化
ケイ素に変化尽せることによシ、セラミック多孔体の骨
格格子表面を炭化ケイ素から生成された酸化ケイ素とす
る方法が採用できる。
When obtaining the entire ceramic porous body as described above, it is possible to use a product manufactured by attaching a ceramic slurry to a flexible polyurethane foam without a cell membrane and removing carbonization from the flexible polyurethane foam by baking this. (By forming the entire ceramic porous body from a flexible polyurethane foam without a cell membrane in this way, a cage-shaped ceramic porous body consisting of the edges of a regular dodecahedron is obtained, which has a low porosity. is large, so the exhaust gas passes through with little pressure loss, and the internal communication space is intricate, so for example, if the acid 2 solution used for this ceramic porous sound-breathable insulation material is used, the exhaust gas can pass through this internal communication space. (This ensures reliable contact with the lattice as it passes through the space, allowing efficient heat exchange.) However, when producing a ceramic multilayer body using this method, for example, a ceramic slurry mainly composed of alumina or cordierite is used. After the entire ceramic porous body is formed by heating and firing, a ceramic slurry containing silicon carbide as a main component is coated and adhered to the skeletal lattice of this ceramic porous body, and this is fired to form silicon carbide and total silicon oxide. By making the following changes, it is possible to adopt a method in which the skeletal lattice surface of the ceramic porous body is made of silicon oxide produced from silicon carbide.

しかし、より対マしくにセラミック多孔体の骨格格子全
体を炭化ケイ素よシ生成させた酸化ケイ素とする。この
場合は、炭化ケイ素を主成分とするセラミック泥漿葡セ
ル膜のない軟質ポリウレタンフォームに付着し、乾燥し
、焼成するものであるが、焼成を大気中(酸化雰囲気中
)で行なって、炭化ケイ紫の酸化と焼結を同時に進行さ
せてもよく、1だ焼成を中性又は還元雰囲気中で行なっ
て炭化ケイ素を焼結した後、酸化雰囲気で加熱して炭化
を酸化する方法を採用してもよい。
However, more appropriately, the entire skeleton lattice of the ceramic porous body is made of silicon oxide produced from silicon carbide. In this case, a ceramic slurry containing silicon carbide as a main component is attached to a flexible polyurethane foam without a cell membrane, dried, and fired. Violet oxidation and sintering may proceed simultaneously; a method is adopted in which first calcining is performed in a neutral or reducing atmosphere to sinter the silicon carbide, and then heating is performed in an oxidizing atmosphere to oxidize the carbonization. Good too.

なお、炭化ケイ素を主成分とするセラミック泥漿は、そ
の固体外を炭りしケイ系v与によって形成することもで
き、また炭化ケイ素に加えて粘土やろう石等を混合する
こともでき、粘土やろう万全混合することに、1:り、
泥漿の安定性や泥漿を付着させたときの乾燥強度を増加
妊ぜ、力・つ焼結全促進するので椿めて有効である。こ
の場合、粘土やろう石の混合量は必ずしも制限されない
が、固体外全量に対して炭化ケイ素80重tilr%以
上、粘土10重か゛係以下、ろう石lO重量係以下とす
ることが好適である。更に、炭化ケイ素としては平均粒
子径が10〜100μmのものが好ましい。
Ceramic slurry whose main component is silicon carbide can be formed by carbonizing the solid exterior and adding clay or wax stone in addition to silicon carbide. Let's do a perfect mix. 1: Ri,
It is extremely effective because it increases the stability of the slurry and the dry strength when the slurry is attached, and promotes fertilization, strength, and sintering. In this case, the amount of clay and waxite mixed is not necessarily limited, but it is preferable that the content of silicon carbide is 80% by weight or more, clay is 10% by weight or less, and waxite is 10% by weight or less based on the total amount of solids. . Furthermore, silicon carbide preferably has an average particle diameter of 10 to 100 μm.

本発ψ」のセラミック多孔体は、主として高温ガスや液
体を通過せしめる個所、例えは溶融金属の沖材、触媒担
体、デイゼルノ4ティキュレートフィルター、通気性断
熱材等の用途に好適に用いられ、とりわけ通気性断熱材
として効果的に用いられる。
The ceramic porous body of the present invention ψ is suitable for use in places where high-temperature gases and liquids pass through, such as molten metal offshore materials, catalyst carriers, diesel no. 4 ticulate filters, and breathable heat insulating materials. It is particularly effectively used as a breathable heat insulating material.

本発明のセラミック多孔体を上述したような用途に用い
る場合、セラミック多孔体とし又はその嵩比重が0.2
5〜0.7であり、内部連通空間の雫網目の径が0.3
〜10W!Rでいずれの方向にも目詰シのないものであ
シ、空隙率か75〜95チでらシ、かつ空気の圧力損失
が毎秒風速11rLで1 cnrの厚み全通過するのに
水柱0.1〜30 mであることが好適である。とシわ
け通気性断熱材として使用する場合は、その高比重が0
.25〜0.6、好ましくけ0.25〜0.5、平均直
径が0.2〜10B1好ましくけ0.2〜5市、更に好
ましくは0.3〜1.5助、空隙率が75〜95%、好
ましくは80〜95%、空気の圧力損失が毎秒風速1m
で1錦の厚みを通過するのに水柱0.1〜40tnn、
好ましくは5〜30醋であることが必要でおり、これに
より通気性と断熱性の両者に優れ、効果の高い通気性断
熱材が得られるものである。
When the ceramic porous body of the present invention is used for the above-mentioned purposes, the ceramic porous body is used, or the bulk specific gravity is 0.2.
5 to 0.7, and the diameter of the droplet mesh of the internal communication space is 0.3.
~10W! R, with no clogging in either direction, porosity of 75 to 95, and pressure loss of air passing through a thickness of 1 cnr at a wind speed of 11 rL per second, but a water column of 0. The length is preferably 1 to 30 m. When used as a permeable insulation material, its high specific gravity is 0.
.. 25-0.6, preferably 0.25-0.5, average diameter 0.2-10 B1, preferably 0.2-5, more preferably 0.3-1.5, porosity 75-10 95%, preferably 80-95%, air pressure loss is 1 m/s wind speed
It takes 0.1 to 40 tnn of water to pass through the thickness of one brocade.
Preferably, it needs to be 5 to 30. This makes it possible to obtain a highly effective air-permeable heat insulating material that has both excellent air permeability and heat insulation properties.

以下、実施例と比較例を示すが、本発明は下記の実施例
に限定されるものではない。
Examples and comparative examples will be shown below, but the present invention is not limited to the following examples.

〔実施例、比較例〕[Example, comparative example]

内部連通空間を有する三次元網状構造をなしたセル膜の
ない軟質ポリウレタンフォームを平均粒子径20μmの
炭化ケイ素85%、粘土9%、ろう石5%、バインダー
1%からなる水スラリーに浸漬し、乾燥した後、空気中
でに=i=i=して、骨格格子の主成分が炭化ケイ素か
ら生成された酸化ケイ素からなり、嵩比重0.35 、
網目の径1 tm 、空隙率86%、毎秒風速1rrL
で1 onの厚み全道通するときの圧力損失1.5關水
柱のセラミック多孔体を得た。
A flexible polyurethane foam without a cell membrane having a three-dimensional network structure with internal communication spaces is immersed in a water slurry consisting of 85% silicon carbide, 9% clay, 5% waxite, and 1% binder with an average particle size of 20 μm, After drying, the main component of the skeletal lattice is silicon oxide produced from silicon carbide, and the bulk specific gravity is 0.35.
Mesh diameter 1 tm, porosity 86%, wind speed per second 1rrL
A ceramic porous body with a thickness of 1 on and a pressure loss of 1.5 water columns when passed through the entire passage was obtained.

また比較のため、実施例において水スラII−’(形成
する炭化ケイ素の代りに酸化ケイ素を用いた以外は実施
例と同様の操作全行なって、嵩比重0.36 、網目の
径1 van 、空隙率87%、圧力損失1.6TRM
水柱のセラミック多孔体に’M)だ。
For comparison, in Example 1, all the same operations as in Example were carried out except that silicon oxide was used instead of silicon carbide to form water sliver II-', bulk specific gravity was 0.36, mesh diameter was 1 van, Porosity 87%, pressure loss 1.6TRM
'M) in the ceramic porous body of the water column.

次に、得られたセラミック多孔体の@械的強腹及び熱的
住質を脚べ、第1表に示づ一結果金得た。
Next, the mechanical strength and thermal properties of the obtained porous ceramic body were examined, and the results shown in Table 1 were obtained.

第1表 ※:スノやン120 +w 、 1jilけルレカlk
y/cy+1角荷。
Table 1*: Sunoyan 120 +w, 1jilke Lureka lk
y/cy+1 square load.

1400℃で1時間保持 第1表の結果より、本発明のセラミック多孔体が優れた
耐熱クリープ付を有していることがわかる。
From the results shown in Table 1 after holding at 1400° C. for 1 hour, it can be seen that the ceramic porous body of the present invention has excellent heat-resistant creep properties.

出願人 ブリデストンタイヤ株式会社1代理人 弁理士
 小 島 隆 司
Applicant Brideston Tire Co., Ltd. 1 Agent Patent Attorney Takashi Kojima

Claims (1)

【特許請求の範囲】 1、 内部連通空間を有する三次元網状のセル構造をな
したセラミック多孔体において、該多孔体の骨格格子の
少なくも表面をイ14成する主成分が炭化ケイ素全焼成
することによって生成させた酸化ケイ素であることを特
徴とするセラミック多孔体。 2、 セラミック多孔体の骨格格子の全体を炭化ケイ素
を焼成することによって生成させた酸化ケイ素を主成分
として形成した特許請求の範囲第1項記載のセラミック
多孔体。 3、 セラミック多孔体が、セル膜のない軟質ポリウレ
タンフォームに炭化ケイ素金主成分として含む泥漿全付
着、乾燥し、大気中で焼成して、炭化ケイ素を酸化ケイ
素に変化させることによって得られたものである特許請
求の範囲第2項記載のセラミック多孔体。 4、 セラミック多孔体が、セル膜のない軟質ポリウレ
タンフォームに灰化ケイ系2生成分として含む泥漿を付
着、乾燥し、中性又は還元雰囲気中で焼成して得られた
多孔体′fr:史に大気中で焼成して、炭化ケイ軍ヲ酸
化ケイ素に変化させることによって得られたものでるる
特許請求の範囲第2項記載のセラεツク多孔体 5、 泥漿中に含まれる炭化クイ紫の平均粒子径が10
〜100μmである特許請求の範囲第3項又は第4項記
載のセラミック多孔体。 6 泥漿中の固体成分が炭化ケイ素8ON量チ以上、粘
土10重′j#多以下、ろう石10重射チ以下を含むも
のでるる特許請求の範囲第3項乃至第あり、内部連通空
間がいずれの方向にも目詰pがなく、その網目の径か(
J、3〜10−であp1空気の圧力用失が毎秒風速1f
f+で1mの厚み全通過するのに水柱11〜30mであ
り、かつ空隙率が75〜95%のものである特許請求の
範囲第1項乃至第6項いずれか記載のセラミック多孔体
[Claims] 1. In a ceramic porous body having a three-dimensional network cell structure having internal communication spaces, the main component forming at least the surface of the skeletal lattice of the porous body is silicon carbide which is completely fired. A ceramic porous body characterized by being made of silicon oxide produced by. 2. The ceramic porous body according to claim 1, wherein the entire skeleton lattice of the ceramic porous body is formed mainly of silicon oxide produced by firing silicon carbide. 3. Ceramic porous body obtained by completely adhering slurry containing gold silicon carbide as a main component to a flexible polyurethane foam without a cell membrane, drying, and firing in the atmosphere to change silicon carbide into silicon oxide. A porous ceramic body according to claim 2. 4. A porous ceramic body obtained by adhering a slurry containing a silicon ash-based binary component to a flexible polyurethane foam without a cell membrane, drying it, and firing it in a neutral or reducing atmosphere. Ceramic porous body 5 according to claim 2, which is obtained by firing in the air to convert silicon carbide into silicon oxide; Average particle size is 10
The ceramic porous body according to claim 3 or 4, which has a diameter of 100 μm. 6. Claims 3 to 3 are those in which the solid components in the slurry include silicon carbide in an amount of 8ON or more, clay in an amount of 10J or less, and waxite in an amount of 10J or less, and the internal communication space is There is no clogging p in either direction, and the diameter of the mesh (
J, at 3 to 10- the pressure loss of p1 air is 1f per second
7. The porous ceramic body according to any one of claims 1 to 6, which has a water column of 11 to 30 m to pass through a thickness of 1 m at f+, and has a porosity of 75 to 95%.
JP58156938A 1983-08-26 1983-08-26 Ceramic porous body Pending JPS6046981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58156938A JPS6046981A (en) 1983-08-26 1983-08-26 Ceramic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58156938A JPS6046981A (en) 1983-08-26 1983-08-26 Ceramic porous body

Publications (1)

Publication Number Publication Date
JPS6046981A true JPS6046981A (en) 1985-03-14

Family

ID=15638625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58156938A Pending JPS6046981A (en) 1983-08-26 1983-08-26 Ceramic porous body

Country Status (1)

Country Link
JP (1) JPS6046981A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377548A (en) * 1986-09-10 1988-04-07 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Catalyst and precursor thereof and manufacture thereof
JPH0612393U (en) * 1991-09-06 1994-02-15 正紀 滝尾 Assembled container device
JPH06190223A (en) * 1991-07-01 1994-07-12 Bridgestone Corp Grease filter for kitchen
WO2023272946A1 (en) * 2021-06-30 2023-01-05 武汉工程大学 Sic smoke particle collector and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377548A (en) * 1986-09-10 1988-04-07 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Catalyst and precursor thereof and manufacture thereof
JPH06190223A (en) * 1991-07-01 1994-07-12 Bridgestone Corp Grease filter for kitchen
JPH0612393U (en) * 1991-09-06 1994-02-15 正紀 滝尾 Assembled container device
JP2598349Y2 (en) * 1991-09-06 1999-08-09 正紀 滝尾 Assembling type container device
WO2023272946A1 (en) * 2021-06-30 2023-01-05 武汉工程大学 Sic smoke particle collector and preparation method thereof

Similar Documents

Publication Publication Date Title
US5030398A (en) Method of producing a cordierite honeycomb structural body
JP5379348B2 (en) Ceramic body based on aluminum titanate
JP2005534474A (en) Diesel particulate filter made of mullite / aluminum titanate
KR930012633A (en) High porosity cordierite body and its manufacturing method
JPH0121111B2 (en)
JPH03115163A (en) Porous mullite product with thermal shock resistance and creep resistance and preparation thereof
CA2048502A1 (en) Thermal shock and creep resistant porous mullite articles prepared from topaz and process for manufacture
JPH02502444A (en) Catalyst and its manufacturing method
WO2009158294A1 (en) Method for making porous acicular mullite bodies
EP2046696B1 (en) Imroved diesel particulate filter
WO1992011219A1 (en) Preparation and use of mullite whisker networks
JPH02282442A (en) Aluminide structure
JPH01145378A (en) Silicon carbide honeycomb structure and production thereof
JPS6046981A (en) Ceramic porous body
JP4455786B2 (en) Method for producing porous material and method for producing hollow granules used therefor
JP2001247381A (en) Porous silicon carbide and method for producing the same
JP2651170B2 (en) Ceramics porous body
JPS61191575A (en) Porous silicon carbide sintered body and manufacture
JPH01145377A (en) Silicon carbide honeycomb structure and production thereof
RU2233700C2 (en) Composition of charge for high-porous cellular- structure material for catalyst carriers
JPH0368411A (en) Cordierite-based gas filter and its production
JP3589559B2 (en) Ceramic porous film, ceramic porous body using the same, and methods for producing them
JP4468541B2 (en) Method for producing recrystallized SiC
JPH01141884A (en) Foam
JPH0246544B2 (en)