JP2001247381A - Porous silicon carbide and method for producing the same - Google Patents

Porous silicon carbide and method for producing the same

Info

Publication number
JP2001247381A
JP2001247381A JP2000056928A JP2000056928A JP2001247381A JP 2001247381 A JP2001247381 A JP 2001247381A JP 2000056928 A JP2000056928 A JP 2000056928A JP 2000056928 A JP2000056928 A JP 2000056928A JP 2001247381 A JP2001247381 A JP 2001247381A
Authority
JP
Japan
Prior art keywords
sic
powder
porous body
based porous
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000056928A
Other languages
Japanese (ja)
Inventor
Chihiro Kawai
千尋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000056928A priority Critical patent/JP2001247381A/en
Publication of JP2001247381A publication Critical patent/JP2001247381A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/068Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous SiC having high porosity, mechanical strength and thermal conductivity, provide its production process and provide various filters having excellent permeation performance using the porous SiC. SOLUTION: Si powder is mixed with C powder to obtain a mixture having an Si powder content of 30-61 wt.%. The mixture is sintered and the carbon remaining in the sintered material is eliminated by heating to obtain a porous SiC having a porosity of 61-75% and containing a three-dimensional skeleton texture composed of hexagonal α-SiC particles bonded with each other by sintering necking. Since the porous SiC has high porosity and permeation performance as well as high strength and high thermal conductivity, it is suitable as a filter for liquid filtration and a particulate filter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、食品や医薬品の分
野での濾過や自動車の排気ガス中の浮遊物除去等に使用
されるセラミックスフィルター材料、特に耐熱性が高
く、高強度で、透過性能に優れたSiC系多孔体に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic filter material used for filtration in the field of foods and pharmaceuticals and for removal of suspended solids in exhaust gas from automobiles, and particularly has high heat resistance, high strength and high permeability. The present invention relates to a SiC-based porous material having excellent resistance.

【0002】[0002]

【従来の技術】各種セラミックスの中でも炭化ケイ素
(SiC)は、高強度、高靭性、高耐熱衝撃性、耐薬品
性を持つ構造用セラミックス材料であり、最近では各種
のフィルタ材料として注目されている。その主な用途
は、食品や医薬品分野をはじめ、半導体洗浄液のリサイ
クルと排液処理等に使用する液体濾過用フィルターや、
自動車ディーゼルエンジンの排気ガス浄化用のパティキ
ュレートフィルター等に向けられている。
2. Description of the Related Art Among various ceramics, silicon carbide (SiC) is a structural ceramic material having high strength, high toughness, high thermal shock resistance and chemical resistance, and has recently attracted attention as various filter materials. . Its main applications are in the fields of food and pharmaceuticals, as well as filters for liquid filtration used for semiconductor cleaning liquid recycling and wastewater treatment, etc.
It is directed to a particulate filter for purifying exhaust gas of an automobile diesel engine.

【0003】液体濾過用フィルターの場合には、処理液
中の微細な粒子の捕集能力並びに液の透過処理能力の向
上と共に、処理液に対する高い耐食性が要求される。ま
た、パティキュレートフィルターの場合には、処理ガス
中の微細なパティキュレートの効率的な捕集並びに有害
ガスの分離能力の向上と共に、高温ガス下での耐熱性及
び耐食性が要求される。このため、耐食性及び耐熱性に
優れたセラミックスを用い、その気孔率を上げると共
に、平均細孔径や孔径部分の構造を改良する試みがなさ
れている。
[0003] In the case of a filter for liquid filtration, it is required to improve not only the ability to collect fine particles in the treatment liquid and the permeation treatment ability of the liquid, but also high corrosion resistance to the treatment liquid. Further, in the case of a particulate filter, heat resistance and corrosion resistance under a high-temperature gas are required in addition to efficient collection of fine particulates in a processing gas and improvement of a toxic gas separation ability. For this reason, attempts have been made to use ceramics having excellent corrosion resistance and heat resistance, to increase the porosity, and to improve the average pore diameter and the structure of the pore diameter portion.

【0004】また、このようなセラミック多孔体には、
フィルター等として使用する際に、形状保持のための機
械的な強度が備わっている必要がある。更に、排気ガス
浄化用パティキュレートフィルターでは、フィルター自
体の昇温による基本性能の劣化を抑えるために、高い熱
伝導性を有することも求められている。
In addition, such a porous ceramic body includes:
When used as a filter or the like, it is necessary to have mechanical strength for maintaining the shape. Further, the particulate filter for purifying exhaust gas is also required to have high thermal conductivity in order to suppress deterioration of basic performance due to temperature rise of the filter itself.

【0005】[0005]

【発明が解決しようとする課題】上記したセラミックス
フィルター材料として、SiC粒子を焼結して骨格構造
化したSiC多孔体が提案されている。このSiC多孔
体をフィルターとして用いる場合、まず第1に高い透過
性能が要求される。フィルターの透過性能は、それを構
成するSiC多孔体の気孔率が高いほど高くなる。しか
し、SiC多孔体の気孔率を高くすると、機械的な強度
が低下して破損しやすくなり、熱伝導率も低下するとい
う問題があった。
As the above ceramic filter material, there has been proposed a porous SiC body having a skeleton structure formed by sintering SiC particles. When this SiC porous body is used as a filter, firstly, high permeability is required. The permeation performance of the filter increases as the porosity of the porous SiC body constituting the filter increases. However, when the porosity of the porous SiC body is increased, there is a problem that the mechanical strength is reduced and the porous body is easily broken, and the thermal conductivity is also reduced.

【0006】三次元骨格構造を持つSiC多孔体の製法
として、Al−SiC複合材料用としてではあるが、
「粉体粉末冶金協会講演概要集(平成11年度秋期大
会)」第255頁に記載された方法がある。この方法で
は、SiC粉末をバインダーと共に成形して、不活性ガ
ス中にて2000℃以上の高温で焼成する。この焼成に
よって、SiC粒子の一部が昇華してガス化し、SiC
として再折出するときに、SiC粒子同士が焼結して骨
格構造化したSiC多孔体が得られる。
As a method for producing a porous SiC material having a three-dimensional skeletal structure, although it is for an Al-SiC composite material,
There is a method described on page 255 of “Summary of Powder and Powder Metallurgy Association Lectures (Fall 1999 Meeting)”. In this method, a SiC powder is formed together with a binder and fired at a high temperature of 2000 ° C. or more in an inert gas. Due to this firing, a part of the SiC particles sublimates and gasifies, and
When re-folding, SiC particles are sintered together to obtain a SiC porous body having a skeleton structure.

【0007】しかしながら、このような方法で製造され
た三次元骨格構造を持つSiC多孔体は、気孔率に上限
があり、せいぜい60%までの気孔率しか得られない。
そのため、液体濾過用フィルターとしても、パティキュ
レートフィルターとしても、十分満足すべき透過性能が
得られなかった。
However, a porous SiC body having a three-dimensional skeletal structure manufactured by such a method has an upper limit on the porosity, and can only obtain a porosity of at most 60%.
Therefore, satisfactory permeation performance could not be obtained either as a filter for liquid filtration or as a particulate filter.

【0008】本発明は、かかる従来の事情に鑑み、高い
気孔率を有すると共に、機械的強度や熱伝導率にも優れ
たSiC系多孔体、及びその製造方法、並びにこのSi
C系多孔体を用いて、透過性能に優れた液体濾過用フィ
ルターやパティキュレートフィルターを提供することを
目的とする。
In view of the above circumstances, the present invention provides a porous SiC material having a high porosity and excellent mechanical strength and thermal conductivity, a method for producing the same, and a SiC-based porous material.
An object of the present invention is to provide a liquid filtration filter and a particulate filter having excellent permeation performance using a C-based porous body.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供するSiC系多孔体は、六角板状のα
型SiC粒子が焼結ネッキングした三次元骨格組織を持
ち、気孔率が61〜75%であることを特徴とする。ま
た、本発明のSiC系多孔体は、炭素成分を含むことが
できる。
In order to achieve the above object, a SiC-based porous material provided by the present invention has a hexagonal plate shape α.
The SiC particles have a three-dimensional skeletal structure obtained by sinter necking, and have a porosity of 61 to 75%. Further, the SiC-based porous body of the present invention can include a carbon component.

【0010】また、上記本発明のSiC系多孔体は、平
均細孔径が0.1〜200μmであること、JIS準拠
の3点曲げ強度が100MPa以上であること、又は2
0℃での熱伝導率が15W/m・K以上であること等の
特性を備えている。
The SiC-based porous body of the present invention has an average pore diameter of 0.1 to 200 μm, a JIS three-point bending strength of 100 MPa or more, or 2
It has characteristics such as a thermal conductivity at 0 ° C. of 15 W / m · K or more.

【0011】上記本発明のSiC系多孔体の製造方法
は、Si粉末と炭素粉末をSi粉末量が全体の30〜6
5重量%となるように混合し、その成形体を不活性ガス
雰囲気中において温度2000〜2400℃で熱処理し
てSiCと炭素からなる焼結体を得た後、この焼結体を
酸素含有雰囲気中において300℃以上に加熱して炭素
成分の全部又は一部を消失せしめることを特徴とする。
In the method for producing a porous SiC material according to the present invention, the Si powder and the carbon powder are mixed with each other so that the total amount of the Si powder is 30 to 6%.
5% by weight and heat-treating the formed body at a temperature of 2000 to 2400 ° C. in an inert gas atmosphere to obtain a sintered body made of SiC and carbon. It is characterized in that all or part of the carbon component is eliminated by heating to 300 ° C. or more in the inside.

【0012】更に、本発明は、上記のSiC系多孔体か
らなる液体濾過用フィルター、及び自動車ディーゼルエ
ンジンの排気ガス浄化用パティキュレートフィルターを
提供するものである。
Further, the present invention provides a filter for liquid filtration comprising the above-mentioned porous SiC material, and a particulate filter for purifying exhaust gas of an automobile diesel engine.

【0013】[0013]

【発明の実施の形態】本発明者は、既に特願平11−3
69086号において、優れた機械的強度と高い熱伝導
率を有するSiC多孔体及びその製造方法を提案した。
この方法は、従来のごとくSiC粉末を高温で焼成する
のではなく、原料粉末としてSi粉末と炭素粉末を用
い、特にSi粉末が原料粉末全体の71〜73重量%と
なるように混合して、不活性ガス雰囲気中にて2000
〜2400℃の高温で焼成するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor has already disclosed Japanese Patent Application No. 11-3
No. 69086 proposed a porous SiC body having excellent mechanical strength and high thermal conductivity and a method for producing the same.
In this method, instead of firing SiC powder at a high temperature as in the conventional method, Si powder and carbon powder are used as raw material powders, and in particular, the Si powder is mixed so as to be 71 to 73% by weight of the whole raw material powder, 2000 in an inert gas atmosphere
It is fired at a high temperature of 22400 ° C.

【0014】この方法において、Siと炭素はSiが昇
華する高温で反応して、SiCを形成する。即ち、Si
が溶融する1450℃付近で反応が始まり、液相のSi
と炭素が反応してSiC化する。この時点では結晶系が
立方晶系の3C型SiCが生成するが、更に温度が上が
り2000℃を越えると、生成した3C型SiCは六方
晶系の6H型SiC(α型SiC)に転化して、六角板
状のSiC結晶となる。このSiCの六角板状結晶の生
成と同時に、このSiC粒子が焼結ネッキングして三次
元骨格構造が形成されるのである。
In this method, Si and carbon react at a high temperature at which Si sublimes to form SiC. That is, Si
The reaction starts around 1450 ° C where
And carbon react to form SiC. At this point, 3C-type SiC having a cubic crystal system is generated. However, when the temperature further rises and exceeds 2000 ° C., the generated 3C-type SiC is converted into hexagonal 6H-type SiC (α-type SiC). And a hexagonal plate-like SiC crystal. Simultaneously with the generation of the hexagonal plate crystal of SiC, the SiC particles are sintered and necked to form a three-dimensional skeleton structure.

【0015】しかしながら、この特願平11−3690
86号による方法も主にAl−SiC複合材料を前提に
したものであるため、得られたSiC多孔体は機械的強
度と熱伝導率には優れているものの、その気孔率は低い
ものであった。即ち、Si粉末と炭素粉末の混合原料粉
末中におけるSi粉末量を全体の71〜73重量%とす
ることにより、余剰のSiがガスとなってSiC粒子同
士を強固に焼結ネッキングさせる働きをするが、得られ
るSiC系多孔体の気孔率は30〜60%に過ぎない。
However, this Japanese Patent Application No. 11-3690 is disclosed.
The method according to No. 86 is also based on the premise that an Al-SiC composite material is mainly used, so that the obtained SiC porous body has excellent mechanical strength and thermal conductivity, but low porosity. Was. That is, by setting the amount of the Si powder in the mixed raw material powder of the Si powder and the carbon powder to 71 to 73% by weight, surplus Si becomes a gas and functions to firmly neck the SiC particles. However, the porosity of the obtained SiC-based porous body is only 30 to 60%.

【0016】これに対して、本発明においては、Si粉
末と炭素粉末をSi粉末量が全体の30〜65重量%と
なるように混合する。これにより、図1(a)に示すよ
うに成形体中に過剰の炭素が存在し、この過剰な炭素は
熱処理後も図1(b)に示すごとく未反応のまま残存し
てSiC−C系焼結体が得られる。これを更に酸素含有
雰囲気中で加熱して、図1(c)に示すように炭素成分
を全部又は一部消失させることによって、比較的大きな
細孔が現れ、気孔率の高いSiC系多孔体を得ることが
できる。
On the other hand, in the present invention, Si powder and carbon powder are mixed so that the amount of Si powder is 30 to 65% by weight of the whole. As a result, as shown in FIG. 1A, excess carbon is present in the compact, and the excess carbon remains unreacted after the heat treatment as shown in FIG. A sintered body is obtained. This is further heated in an oxygen-containing atmosphere to remove all or part of the carbon component as shown in FIG. 1 (c), whereby relatively large pores appear and a SiC-based porous body having a high porosity is obtained. Obtainable.

【0017】Si粉末と炭素粉末の混合原料粉末中にお
けるSi粉末の割合が低いほど、未反応の炭素が多くな
るため、最終的に炭素成分を殆ど消失させたSiC系多
孔体の気孔率は高くなる。しかし、Si粉末の割合が3
0重量%未満では、熱処理により生成するSiCが少な
くなり、SiC結晶同士が強固に結合することができな
いため、得られるSiC系多孔体の強度が低下してしま
う。一方、Si粉末の割合が65重量%を越えると、炭
素成分が少なくなって、気孔率の向上が殆ど期待できな
い。
The lower the proportion of the Si powder in the mixed raw material powder of the Si powder and the carbon powder, the more unreacted carbon is. Therefore, the porosity of the SiC-based porous body from which the carbon component is almost completely eliminated finally becomes high. Become. However, the ratio of Si powder is 3
If the amount is less than 0% by weight, the amount of SiC generated by the heat treatment is reduced, and the SiC crystals cannot be firmly bonded to each other, so that the strength of the obtained SiC-based porous body decreases. On the other hand, when the proportion of the Si powder exceeds 65% by weight, the carbon component is reduced, and almost no improvement in porosity can be expected.

【0018】本発明によるSiC系多孔体の気孔率は、
上記混合原料粉末中のSi粉末量以外に、成形体作製時
における成形体の気孔率の制御や、炭素消失処理の程度
等によっても変化する。成形体の気孔率が高いほど、最
終的なSiC系多孔体の気孔率も高くなることは当然で
ある。尚、成形体の気孔率は成形時の圧力を調整するこ
とによって制御できるが、気孔率を高めるため成形圧力
を小さくしすぎると、後の処理中に崩壊しやすいので注
意を要する。また、同じSi粉末量の場合、炭素の消失
量を多くするほど、SiC系多孔体の気孔率が高くな
る。
The porosity of the porous SiC material according to the present invention is:
In addition to the amount of the Si powder in the mixed raw material powder, it varies depending on the control of the porosity of the molded body during the production of the molded body, the degree of the carbon disappearance treatment, and the like. It goes without saying that the higher the porosity of the molded body, the higher the porosity of the final SiC-based porous body. The porosity of the molded body can be controlled by adjusting the pressure at the time of molding. However, if the molding pressure is too small to increase the porosity, caution is required because the molding tends to collapse during the subsequent processing. In the case of the same amount of Si powder, the porosity of the SiC-based porous body increases as the amount of disappeared carbon increases.

【0019】原料粉末であるSiC粉末と炭素粉末につ
いては、含まれる不純物元素が少ないほど、高熱伝導化
のために好ましい。特に、SiC粉末と炭素粉末中のA
lとFeを、それぞれ100ppm以下に低下させるこ
とで、より一層高熱伝導率のSiC系多孔体が得られ
る。また、炭素粉末の平均粒径が大きくなるほど、得ら
れるSiC系多孔体の平均細孔径が大きくなるが、その
一方で強度は低下する。尚、SiC粉末は昇華してガス
化するので、その粒径に制限はない。
Regarding the SiC powder and the carbon powder, which are the raw material powders, the smaller the impurity element contained, the more preferable the higher the thermal conductivity. In particular, A in SiC powder and carbon powder
By lowering l and Fe to 100 ppm or less, respectively, a SiC-based porous body having even higher thermal conductivity can be obtained. Further, as the average particle diameter of the carbon powder increases, the average pore diameter of the obtained SiC-based porous body increases, but on the other hand, the strength decreases. Since the SiC powder is sublimated and gasified, the particle size is not limited.

【0020】Si粉末と炭素粉末の混合原料粉末は、成
形体とした後、不活性ガス雰囲気中で熱処理して焼結す
る。成形圧力が小さいほど成形体の気孔率を大きくでき
るが、成形体が崩壊しやすくなるので注意を要する。ま
た、成形は真空中で行うことが好ましい。焼結温度は2
000℃以上が必要であり、2000℃未満では焼結が
進行しない。また、焼結温度が2400℃を越えると、
SiCの昇華が激しくなるため収率が低下する。焼結時
の不活性ガス雰囲気としては、アルゴンが好ましい。ア
ルゴン中で熱処理することによって、生成したSiC結
晶中に含まれる積層欠陥が消滅しやすくなり、得られる
SiC系多孔体の熱伝導率が高くなるためである。
The mixed raw material powder of the Si powder and the carbon powder is formed into a compact, and then heat-treated in an inert gas atmosphere and sintered. Although the porosity of the molded body can be increased as the molding pressure is reduced, care must be taken because the molded body is easily collapsed. The molding is preferably performed in a vacuum. Sintering temperature is 2
The temperature must be at least 000 ° C, and if it is less than 2000 ° C, sintering does not proceed. When the sintering temperature exceeds 2400 ° C.,
Since the sublimation of SiC becomes intense, the yield decreases. As an inert gas atmosphere during sintering, argon is preferable. This is because, by performing the heat treatment in argon, stacking faults contained in the generated SiC crystal are easily eliminated, and the thermal conductivity of the obtained SiC-based porous body is increased.

【0021】この熱処理により得られるSiC−C系焼
結体は炭素成分を含むので、次に、酸素含有雰囲気中、
好ましくは大気中で加熱して、炭素成分の全部又は一部
をCOガスとして消失させる。加熱温度は300℃以
上が必要であり、SiC系多孔体中に意図的に炭素成分
を残したい場合には低温が好ましい。温度が高いほど炭
素が消失しやすいが、1500℃を越えるとSiC自体
が酸化して、熱伝導率が低下するため好ましくない。通
常は、500℃程度の温度で数時間加熱すれば、炭素成
分は全て消失する。
Since the SiC-C-based sintered body obtained by this heat treatment contains a carbon component, the SiC-C-based sintered body is then subjected to
Preferably, heating is performed in the atmosphere to eliminate all or part of the carbon component as CO 2 gas. The heating temperature needs to be 300 ° C. or higher, and a low temperature is preferable when intentionally leaving a carbon component in the SiC-based porous body. The higher the temperature, the more easily the carbon disappears. However, if the temperature exceeds 1500 ° C., the SiC itself is oxidized and the thermal conductivity decreases, which is not preferable. Normally, if heated at a temperature of about 500 ° C. for several hours, all the carbon components disappear.

【0022】このようにして得られた本発明のSiC系
多孔体は、気孔率が61〜75%にまで改善され、平均
細孔径は0.1〜200μmの範囲となる。また、従来
のSiC粉末を成形及び焼結して作製したSiC多孔体
に比べ、SiC粒子同士がランダムに絡み合って強固に
結合しているため機械的強度が高くなり、原料粉末の平
均粒径を小さく制御すること等により、JIS準拠の3
点曲げ強度が100MPa以上のSiC系多孔体を得る
ことができる。尚、SiC−C系焼結体中に残存する炭
素成分は主にSiC結晶表面に生成するため、炭素成分
を消失させても強度の低下が少ない。
The porosity of the thus obtained porous SiC material of the present invention is improved to 61 to 75%, and the average pore diameter is in the range of 0.1 to 200 μm. In addition, compared to a conventional SiC porous body formed by molding and sintering SiC powder, the mechanical strength is increased because the SiC particles are entangled randomly and strongly bonded, and the average particle size of the raw material powder is reduced. By controlling small, etc., JIS-compliant 3
A SiC-based porous body having a point bending strength of 100 MPa or more can be obtained. In addition, since the carbon component remaining in the SiC-C-based sintered body is mainly generated on the surface of the SiC crystal, a decrease in strength is small even if the carbon component is eliminated.

【0023】更に、本発明のSiC系多孔体は熱伝導率
が高く、原料粉末中の不純物量の制御等により、優れた
ものでは20℃での熱伝導率で15W/m・K以上とな
る。即ち、一般に六角板状のα型SiC結晶の熱伝導率
は結晶軸方向に依存して変化し、板状面と垂直なc軸方
向には熱伝導率が小さく、板状面に平行なa軸方向には
高い。経験的には、c軸方向の熱伝導率はa軸方向の
0.7倍程度である(High Temperatures−High Pressur
es、1997、vol.29、pages73−79参照)。このような理
由により、本発明のSiC系多孔体では、図2に示すよ
うに、主として六角板状のα型SiC結晶の板状面に沿
って熱が伝導するため、高い熱伝導率が得られるものと
考えられる。
Furthermore, the porous SiC material of the present invention has a high thermal conductivity, and the excellent thermal conductivity at 20 ° C. is 15 W / m · K or more by controlling the amount of impurities in the raw material powder. . That is, in general, the thermal conductivity of a hexagonal plate-like α-type SiC crystal changes depending on the crystal axis direction, the thermal conductivity is small in the c-axis direction perpendicular to the plate surface, and a is parallel to the plate surface. High in the axial direction. Empirically, the thermal conductivity in the c-axis direction is about 0.7 times that in the a-axis direction (High Temperatures-High Pressur
es, 1997, vol. 29, pages 73-79). For such a reason, in the SiC-based porous body of the present invention, as shown in FIG. 2, heat is mainly conducted along the plate-shaped surface of the hexagonal plate-shaped α-type SiC crystal, so that a high thermal conductivity is obtained. It is thought that it is possible.

【0024】このように、本発明のSiC系多孔体は、
六角板状のα型SiC粒子が焼結ネッキングした三次元
骨格組織を有し、機械的強度が高く、耐熱性及び耐食性
を有すると共に、高い気孔率を有するので、高透過性能
の各種フィルターとして利用できる。特に、液体濾過用
フィルターや、自動車ディーゼルエンジンの排気ガス浄
化用パティキュレートフィルターとして有効である。
As described above, the SiC-based porous material of the present invention
Hexagonal plate-shaped α-type SiC particles have a three-dimensional skeletal structure with sintered necking, high mechanical strength, heat resistance and corrosion resistance, and high porosity, so they are used as various filters with high permeability performance it can. In particular, it is effective as a filter for liquid filtration or a particulate filter for purifying exhaust gas of an automobile diesel engine.

【0025】しかも、本発明のSiC系多孔体からなる
フィルターは、六角板状のSiC結晶が互いに絡み合い
ながら強固に結合している三次元骨格構造の組織を持つ
ため、水銀圧入法で測定した見掛けの細孔径よりも小さ
な粒径の粒子を捕集することができる。また、熱伝導率
が高いため、ジーゼルエンジンの排気ガス浄化用パティ
キュレートフィルターとして用いたとき、捕集した煤な
どを効率よく燃焼させることができる。
Moreover, since the filter made of the porous SiC material of the present invention has a three-dimensional skeletal structure in which hexagonal plate-like SiC crystals are tightly bound while being entangled with each other, the apparent value measured by the mercury intrusion method is used. Particles having a particle size smaller than the pore size of can be collected. In addition, because of its high thermal conductivity, the collected soot and the like can be efficiently burned when used as a particulate filter for purifying exhaust gas of diesel engines.

【0026】[0026]

【実施例】実施例1 下記表1に示す試料1〜7として、平均粒径0.1μm
又は200μmの市販黒鉛粉末と、平均粒径0.2μm
又は36μmのSi粉末とを、Si粉末量が30〜71
重量%の組成となるように混合した。比較のため、試料
8〜12では、原料粉末として平均粒径0.1μm又は
200μmのSiC粉末を用いた。尚、SiC粉末と黒
鉛粉末中に含まれる不純物のAlとFeの量は、表1に
示したとおりである。
【Example】Example 1  Samples 1 to 7 shown in Table 1 below have an average particle size of 0.1 μm.
Or a commercially available graphite powder of 200 μm and an average particle size of 0.2 μm
Or 36 μm of Si powder, the amount of Si powder is 30 to 71
It was mixed so as to have a composition of weight%. Samples for comparison
In Nos. 8 to 12, the raw material powder has an average particle size of 0.1 μm or
200 μm SiC powder was used. In addition, SiC powder and black
Table 1 shows the amounts of impurities Al and Fe contained in the lead powder.
As shown.

【0027】[0027]

【表1】 Si粒径 C粒径 Al量(ppm) Fe量(ppm) Si粉量 混合原料試料 (μm) (μm) Si粉 C粉 Si粉 C粉 (wt%) 粉末比重 1* 0.2 0.1 120 120 110 110 30 2.214 2 0.2 0.1 120 120 110 110 30 2.214 3 0.2 0.1 120 120 110 110 50 2.212 4* 0.2 0.1 120 120 110 110 71 2.208 5 36 200 12 10 20 10 50 2.212 6 36 200 12 10 20 10 60 2.209 7〜10* 平均粒径0.1μmのSiC粉末 11* 平均粒径200μmのSiC粉末 (注)表中の*を付した試料は比較例である。[Table 1] Si particle size C particle sizeAl content (ppm) Fe content (ppm) Si powder amount Mixed raw materialsample (μm) (μm) Si powder C powder Si powder C powder (wt%) Powder specific gravity  1 * 0.2 0.1 120 120 110 110 30 2.214 2 0.2 0.1 120 120 110 110 30 2.214 3 0.2 0.1 120 120 110 110 50 2.212 4 * 0.2 0.1 120 120 110 110 71 2.208 5 36 200 12 10 20 10 50 2.212 6 36 200 12 10 20 10 60 2.209 7 to 10 * SiC powder with an average particle size of 0.1 μm 11 * SiC powder with an average particle size of 200 μm (Note) Samples marked with * in the table are comparative examples.

【0028】上記表1に示す試料1〜6の各混合原料粉
末を用い、下記表2に示すように、温度1100℃の真
空中にて各種の成形圧力で成形体とし、次に1気圧のA
rガス雰囲気中において2200又は2300℃で熱処
理することにより焼結した。得られた各焼結体の密度と
気孔率を、成形体の密度と気孔率と共に、下記表2に示
した。また、比較例の試料7〜11についても、下記表
2に示す条件以外は上記と同様に成形及び焼結して、従
来のSiC焼結体(そのままSiC多孔体となる)を製
造し、成形体及び焼結体について上記と同様に評価し
た。
Using the mixed raw material powders of Samples 1 to 6 shown in Table 1 above, as shown in Table 2 below, molded bodies were formed at various molding pressures in a vacuum at a temperature of 1100 ° C. A
Sintering was performed by heat treatment at 2200 or 2300 ° C. in an r gas atmosphere. Table 2 below shows the density and porosity of each of the obtained sintered bodies together with the density and porosity of the molded body. Also, for the samples 7 to 11 of the comparative example, molding and sintering were performed in the same manner as described above except for the conditions shown in Table 2 below, to produce a conventional SiC sintered body (as it was to become a SiC porous body) and molding. The body and the sintered body were evaluated in the same manner as described above.

【0029】[0029]

【表2】 成形圧 成形体密度 成形体 焼結温度 焼結体密度 焼結体試料 (MPa) (g/cm) 気孔率(%) (℃) (g/cm) 気孔率(%) 1* 120 1.35 39 2300 1.20 53 2 550 1.80 19 2300 1.90 25 3 120 1.42 36 2300 1.44 49 4* 120 1.50 32 2300 1.75 46 5 120 1.42 36 2200 1.44 49 6 120 1.45 34 2200 1.65 47 7* 30 成形時崩壊 8* 60 成形時崩壊 9* 100 1.30 59 2300 1.30 59 10* 320 1.80 44 2300 1.80 44 11* 420 1.60 50 2200 1.60 50 (注)表中の*を付した試料は比較例である。[Table 2] Molding pressure Molded body density Molded body Sintering temperature Sintered body density Sintered bodysample (MPa) (g / cm 3)  Porosity (%) (℃) (g / cm 3)  Porosity (%)  1 * 120 1.35 39 2300 1.20 53 2 550 1.80 19 2300 1.90 25 3 120 1.42 36 2300 1.44 49 4 * 120 1.50 32 2300 1.75 46 5 120 1.42 36 2200 1.44 49 6 120 1.45 34 2200 1.65 47 7 * 30 Collapse during molding 8 * 60 Collapse during molding 9 * 100 1.30 59 2300 1.30 59 10 * 320 1.80 44 2300 1.80 44 11 * 420 1.60 50 2200 1.60 50 Note: Samples marked with * in the table are comparative examples.

【0030】その後、上記試料1〜6の各焼結体につい
て、炭素を消失させるため500℃の大気中において2
時間加熱して、それぞれSiC多孔体を得た。得られた
各SiC多孔体について、密度と気孔率、平均細孔経、
20℃での熱伝導率、3点曲げ強度を測定し、その結果
を下記表3に示した。また、試料7〜11のSiC多孔
体(上記炭素消失のための加熱処理なし)についても、
同様の測定を行った結果を表3に併せて示した。尚、試
料7〜11のSiC多孔体の密度と気孔率は、前記表2
に示す各焼結体のそれらと同じである。
Thereafter, each of the sintered bodies of Samples 1 to 6 was heated at 500 ° C. in air to eliminate carbon.
Heating was carried out for hours to obtain SiC porous materials. About each obtained SiC porous body, density and porosity, average pore diameter,
The thermal conductivity at 20 ° C. and the three-point bending strength were measured, and the results are shown in Table 3 below. Moreover, about the SiC porous body of the samples 7-11 (the above-mentioned heat treatment for carbon disappearance),
Table 3 also shows the results of the same measurement. The density and porosity of the porous SiC bodies of Samples 7 to 11 are shown in Table 2 above.
Are the same as those of each sintered body shown in FIG.

【0031】[0031]

【表3】 密 度 気孔率 平均細孔径 熱伝導率 曲げ強度試料 (g/cm) (%) (μm) (W/m・K) (MPa) 1* 加熱時崩壊のため測定不能 2 0.80 75 0.11 15 77 3 1.04 68 0.23 21 103 4* 1.75 45 0.18 13 220 5 1.04 68 186 43 19 6 1.25 61 170 67 27 7* 成形時崩壊のため測定不能 8* 成形時崩壊のため測定不能 9* 1.30 59 0.20 14 70 10* 1.80 44 0.16 2 99 11* 1.60 50 180 23 10 (注)表中の*を付した試料は比較例である。[Table 3] Density Porosity Average pore diameter Thermal conductivity Bending strengthsample (g / cm 3)  (%) (μm) (W / m ・ K) (MPa)  1 * Cannot be measured due to collapse during heating 2 0.80 75 0.11 15 77 3 1.04 68 0.23 21 103 4 * 1.75 45 0.18 13 220 5 1.04 68 186 43 19 6 1.25 61 170 67 27 7 * Cannot be measured due to collapse during molding 8 * Cannot be measured due to collapse during molding 9 * 1.30 59 0.20 14 70 10 * 1.80 44 0.16 2 99 11 * 1.60 50 180 23 10 (Note) Samples marked with * in the table are comparative examples.

【0032】上記表3から分かるように、本発明の実施
例によるSiC多孔体は、高い気孔率を有すると共に、
優れた機械的強度と熱伝導率を備えている。しかし、強
度を高めると熱伝導率が低下し、逆に熱伝導率を高める
と強度が低下しやすい傾にある。また、SiC粉末を用
いた比較例では、高気孔率を得るために成形圧力を低下
させると、成形後に崩壊しやすくなる。崩壊しなかった
試料でも、得られたSiC多孔体の強度及び熱伝導率が
低かった。
As can be seen from Table 3, the SiC porous body according to the embodiment of the present invention has a high porosity and
It has excellent mechanical strength and thermal conductivity. However, when the strength is increased, the thermal conductivity decreases, and when the thermal conductivity is increased, the strength tends to decrease. Further, in the comparative example using the SiC powder, if the molding pressure is reduced in order to obtain a high porosity, the material tends to collapse after molding. Even in the sample which did not collapse, the strength and thermal conductivity of the obtained porous SiC body were low.

【0033】実施例2 上記実施例1の各SiC多孔体を用いて、外径8mm、
肉厚0.2mm、長さ5mmに切り出し、その一端を樹
脂で封止してパイプ状フィルターを作製した。この各パ
イプ状フィルターを用いて以下の実験を行い、その結果
を下記表4に示した。ただし、この実施例2の試料番号
は、実施例1の各多孔体の試料番号に合わせてある。
尚、試料1、7、8は途中で崩壊したため、これらの実
験は行っていない。
[0033]Example 2  Using each SiC porous body of Example 1 described above, an outer diameter of 8 mm,
Cut out 0.2mm in thickness and 5mm in length.
A pipe-shaped filter was produced by sealing with a fat. Each of these
The following experiment was performed using an IP filter, and the results were
Are shown in Table 4 below. However, the sample number of this Example 2
Corresponds to the sample number of each porous body in Example 1.
Samples 1, 7, and 8 collapsed on the way.
No tests have been performed.

【0034】(1) パイプ状フィルターの内部から外部
へ、粒径0.05〜200μmの各ポリエチレン粒子の
懸濁液(濃度10ppm)100mlを圧力0.1MP
aで濾過させ、粒子の捕集率を測定した。 (2) パイプ状フィルターの内部から外部へ、純水を圧
力0.1MPaで連続供給して、透過流量を測定した。 (3) 上記実験(1)で粒子を捕集後、フィルターの両端
部に100Wの電力を印加して通電発熱させ、捕集され
たポリエチレン粒子が完全に燃焼し終えるまでの燃焼時
間を測定した。
(1) From the inside to the outside of the pipe-shaped filter, 100 ml of a suspension of polyethylene particles having a particle size of 0.05 to 200 μm (concentration: 10 ppm) was applied at a pressure of 0.1 MPa.
The mixture was filtered through a, and the collection rate of the particles was measured. (2) Pure water was continuously supplied from the inside to the outside of the pipe-shaped filter at a pressure of 0.1 MPa, and the permeation flow rate was measured. (3) After the particles were collected in the above experiment (1), a power of 100 W was applied to both ends of the filter to generate electricity and heat was generated, and the burning time until the collected polyethylene particles were completely burned was measured. .

【0035】[0035]

【表4】 粒子の捕集率(%) 透過流量 燃焼時間試料 0.05μm 0.1μm 40μm 200μm (l/sec/m) (sec) 2 100 100 100 100 0.24 55 3 100 100 100 100 0.22 26 4* 100 100 100 100 0.17 16 5 0 0 100 100 5450 11 6 0 0 100 100 3200 8 9* 25 41 100 100 0.06 54 10* 35 45 100 100 0.05 26 11* 0 0 21 100 770 19 (注)表中の*を付した試料は比較例である。[Table 4]Particle collection rate (%) Permeation flow rate Combustion timesample 0.05μm 0.1μm 40 μm 200 μm (l / sec / m 2 ) (sec)  2 100 100 100 100 0.24 55 3 100 100 100 100 0.22 26 4 * 100 100 100 100 0.17 16 5 0 0 100 100 5450 11 6 0 0 100 100 3200 8 9 * 25 41 100 100 0.06 54 10 * 35 45 100 100 0.05 26 11 * 0 0 21 100 770 19 (Note) Samples marked with * in the table are comparative examples.

【0036】本発明のSiC多孔体から作製したフィル
ターは、従来のSiC粒子を焼結した多孔体で作製した
フィルターに比べて、透過性能に優れていることが分か
る。また、本発明のSiC多孔体は熱伝導率が高いた
め、捕集したポリエチレン粒子の燃焼時間が短く、それ
故にディーゼルエンジン用のパティキュレートフィルタ
として有効であることが分かる。
It can be seen that the filter made of the porous SiC material of the present invention has better permeability than the conventional filter made of porous SiC particles. Further, since the porous SiC body of the present invention has a high thermal conductivity, the burning time of the collected polyethylene particles is short, and therefore, it is understood that the porous body is effective as a particulate filter for a diesel engine.

【0037】[0037]

【発明の効果】本発明によれば、炭素を過剰に配合した
Si粉末と炭素粉末の成形体から、炭素が残留するSi
C−S系焼結体を作製し、これを加熱処理して炭素を消
失させることにより、気孔率の高いSiC系多孔体を得
ることができる。また、このSiC系多孔体は、熱伝導
率の高い六角板状のSiC結晶粒子が強固に結合した骨
格構造を有するので、高い強度と高い熱伝導率とを併せ
持っている。
According to the present invention, from the compact of Si powder and carbon powder in which carbon is excessively mixed, Si
By preparing a CS-based sintered body and subjecting it to a heat treatment to eliminate carbon, a SiC-based porous body having a high porosity can be obtained. In addition, since the SiC-based porous body has a skeleton structure in which hexagonal plate-like SiC crystal particles having high thermal conductivity are firmly bonded, it has both high strength and high thermal conductivity.

【0038】従って、本発明のSiC系多孔体をフィル
ターとして用いると、透過性能に優れると同時に、水銀
圧入法により測定される平均細孔径よりも小さな粒子を
捕集することができる。また、熱伝導率が高いため、捕
集した煤などを効率よく燃焼させることができるので、
ジーゼルエンジンの排気ガス浄化用パティキュレートフ
ィルターとして好適である。
Therefore, when the porous SiC material of the present invention is used as a filter, it is possible to collect particles having an excellent permeation performance and smaller than the average pore diameter measured by a mercury intrusion method. In addition, since the thermal conductivity is high, the collected soot can be burned efficiently,
It is suitable as a particulate filter for purifying exhaust gas of diesel engines.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のSiC系多孔体の製造過程を説明する
概略図であり、(a)は成形体の状態、(b)はSiC
−C焼結体の状態、及び(c)はSiC系多孔体の状態
を示している。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view for explaining a production process of a SiC-based porous body of the present invention.
(C) shows the state of the SiC-based porous body.

【図2】本発明のSiC多孔体を熱が伝わる状態を説明
する概略図である。
FIG. 2 is a schematic diagram illustrating a state where heat is transmitted through a porous SiC body of the present invention.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 六角板状のα型SiC粒子が焼結ネッキ
ングした三次元骨格組織を持ち、気孔率が61〜75%
であることを特徴とするSiC系多孔体。
1. A three-dimensional skeleton structure in which hexagonal plate-like α-type SiC particles are sintered and necked, and have a porosity of 61 to 75%.
A SiC-based porous body, characterized in that:
【請求項2】 炭素成分を含むことを特徴とする、請求
項1に記載のSiC系多孔体。
2. The SiC-based porous body according to claim 1, further comprising a carbon component.
【請求項3】 平均細孔径が0.1〜200μmである
ことを特徴とする、請求項1又は2に記載のSiC系多
孔体。
3. The SiC-based porous body according to claim 1, wherein the average pore diameter is 0.1 to 200 μm.
【請求項4】 JIS準拠の3点曲げ強度が100MP
a以上であることを特徴とする、請求項1〜3のいずれ
かに記載のSiC系多孔体。
4. The JIS-compliant three-point bending strength is 100MP.
The SiC-based porous body according to any one of claims 1 to 3, wherein the SiC-based porous body is at least a.
【請求項5】 20℃での熱伝導率が15W/m・K以
上であることを特徴とする、請求項1〜4のいずれかに
記載のSiC系多孔体。
5. The SiC-based porous body according to claim 1, wherein the thermal conductivity at 20 ° C. is 15 W / m · K or more.
【請求項6】 請求項1〜5のいずれかのSiC系多孔
体からなる液体濾過用フィルター。
6. A filter for liquid filtration, comprising the SiC-based porous body according to claim 1.
【請求項7】 請求項1〜5のいずれかのSiC系多孔
体からなる自動車ディーゼルエンジンの排気ガス浄化用
パティキュレートフィルター。
7. A particulate filter for purifying exhaust gas of an automobile diesel engine comprising the SiC-based porous body according to claim 1.
【請求項8】 請求項1又は2のSiC系多孔体の製造
方法であって、Si粉末と炭素粉末をSi粉末量が全体
の30〜65重量%となるように混合し、その成形体を
不活性ガス雰囲気中において温度2000〜2400℃
で熱処理してSiCと炭素からなる焼結体を得た後、こ
の焼結体を酸素含有雰囲気中において300℃以上に加
熱して炭素成分の全部又は一部を消失せしめることを特
徴とする前記SiC多孔体の製造方法。
8. The method for producing a SiC-based porous body according to claim 1, wherein the Si powder and the carbon powder are mixed so that the amount of the Si powder is 30 to 65% by weight of the whole, and the molded body is formed. 2000 to 2400 ° C in an inert gas atmosphere
And obtaining a sintered body composed of SiC and carbon by heating at a temperature of 300 ° C. or more in an oxygen-containing atmosphere to eliminate all or a part of the carbon component. A method for producing a porous SiC body.
【請求項9】 Si粉末及び炭素粉末中のFe又はAl
の不純物量が100ppm以下であることと特徴とす
る、請求項8に記載のSiC系多孔体の製造方法。
9. Fe or Al in Si powder and carbon powder
The method for producing a SiC-based porous body according to claim 8, wherein the amount of impurities is 100 ppm or less.
JP2000056928A 2000-03-02 2000-03-02 Porous silicon carbide and method for producing the same Pending JP2001247381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000056928A JP2001247381A (en) 2000-03-02 2000-03-02 Porous silicon carbide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000056928A JP2001247381A (en) 2000-03-02 2000-03-02 Porous silicon carbide and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001247381A true JP2001247381A (en) 2001-09-11

Family

ID=18577800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000056928A Pending JP2001247381A (en) 2000-03-02 2000-03-02 Porous silicon carbide and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001247381A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342076A (en) * 2002-05-23 2003-12-03 Ngk Insulators Ltd Process for manufacturing composite material
WO2007025372A1 (en) * 2005-08-31 2007-03-08 Norgen Biotek Corporation Industrial silicon carbide filtration method
WO2008011786A1 (en) * 2006-07-20 2008-01-31 Guangdong Dongpeng Ceramic Company Limited Preparation method of a tile with solid pores as decoration and its product
JPWO2005091393A1 (en) * 2004-03-22 2008-05-22 独立行政法人科学技術振興機構 Porous thermoelectric material and manufacturing method thereof
KR100919271B1 (en) * 2006-09-28 2009-09-30 코바렌트 마테리얼 가부시키가이샤 Method of joining a porous silicon carbide body and a silicon carbide-silicon composite
JP2009544460A (en) * 2006-07-21 2009-12-17 ダウ グローバル テクノロジーズ インコーポレイティド Improved diesel particulate filter
WO2011011586A3 (en) * 2009-07-24 2011-04-28 Saint-Gobain Ceramics & Plastics, Inc. Dry and wet low friction silicon carbide seal
WO2015025951A1 (en) * 2013-08-23 2015-02-26 東洋炭素株式会社 Porous ceramic and method for producing same
WO2016152687A1 (en) * 2015-03-23 2016-09-29 日本碍子株式会社 Ceramic material and method for producing same
WO2017217378A1 (en) * 2016-06-13 2017-12-21 帝人株式会社 Silicon carbide production method and silicon carbide composite material
CN112723904A (en) * 2021-01-29 2021-04-30 湖南三安半导体有限责任公司 Method for producing porous SiC sintered body, and SiC crystal
CN113372121A (en) * 2021-08-03 2021-09-10 哈尔滨科友半导体产业装备与技术研究院有限公司 Method for preparing porous SiC by using waste graphite crucible

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511103B2 (en) * 2002-05-23 2010-07-28 日本碍子株式会社 Manufacturing method of composite material
JP2003342076A (en) * 2002-05-23 2003-12-03 Ngk Insulators Ltd Process for manufacturing composite material
JPWO2005091393A1 (en) * 2004-03-22 2008-05-22 独立行政法人科学技術振興機構 Porous thermoelectric material and manufacturing method thereof
WO2007025372A1 (en) * 2005-08-31 2007-03-08 Norgen Biotek Corporation Industrial silicon carbide filtration method
KR101086292B1 (en) 2006-07-20 2011-11-24 광동 동펭 쎄라믹 컴퍼니 리미티드 Preparation method of a tile with solid pores as decoration and its product
WO2008011786A1 (en) * 2006-07-20 2008-01-31 Guangdong Dongpeng Ceramic Company Limited Preparation method of a tile with solid pores as decoration and its product
AU2007278700B2 (en) * 2006-07-20 2010-09-23 Dongpeng Holdings Company Limited Preparation method of a tile with solid pores as decoration and its product
JP2009544460A (en) * 2006-07-21 2009-12-17 ダウ グローバル テクノロジーズ インコーポレイティド Improved diesel particulate filter
KR100919271B1 (en) * 2006-09-28 2009-09-30 코바렌트 마테리얼 가부시키가이샤 Method of joining a porous silicon carbide body and a silicon carbide-silicon composite
WO2011011586A3 (en) * 2009-07-24 2011-04-28 Saint-Gobain Ceramics & Plastics, Inc. Dry and wet low friction silicon carbide seal
WO2015025951A1 (en) * 2013-08-23 2015-02-26 東洋炭素株式会社 Porous ceramic and method for producing same
WO2016152687A1 (en) * 2015-03-23 2016-09-29 日本碍子株式会社 Ceramic material and method for producing same
WO2017217378A1 (en) * 2016-06-13 2017-12-21 帝人株式会社 Silicon carbide production method and silicon carbide composite material
JPWO2017217378A1 (en) * 2016-06-13 2019-01-17 帝人株式会社 Method for producing silicon carbide and silicon carbide composite material
CN112723904A (en) * 2021-01-29 2021-04-30 湖南三安半导体有限责任公司 Method for producing porous SiC sintered body, and SiC crystal
CN113372121A (en) * 2021-08-03 2021-09-10 哈尔滨科友半导体产业装备与技术研究院有限公司 Method for preparing porous SiC by using waste graphite crucible

Similar Documents

Publication Publication Date Title
She et al. High‐strength porous silicon carbide ceramics by an oxidation‐bonding technique
JP3596910B2 (en) Porous ceramic body and method for producing the same
She et al. Oxidation bonding of porous silicon carbide ceramics with synergistic performance
US10350532B2 (en) Porous alpha-SiC-containing shaped body having a contiguous open pore structure
JP2001247381A (en) Porous silicon carbide and method for producing the same
EP1340734A1 (en) Honeycomb structure and method for manufacture thereof
JPH08133857A (en) Porous ceramic and production thereof
Yang et al. Porous 2H‐Silicon Carbide Ceramics Fabricated by Carbothermal Reaction between Silicon Nitride and Carbon
Yang et al. Synthesis and properties of porous single‐phase β′‐SiAlON ceramics
JPH0657624B2 (en) Silicon carbide honeycomb structure and method for manufacturing the same
KR100993044B1 (en) Fabrication Method of Porous SiC Ceramics
JP3366938B2 (en) Calcium zirconate / magnesia composite porous body and method for producing the same
JP2000016872A (en) Porous silicon carbide sintered body and its production
JPS61191575A (en) Porous silicon carbide sintered body and manufacture
US20100112334A1 (en) Silicon carbide-based porous body and method of fabricating the same
楊建鋒 et al. Fabrication and mechanical properties of porous silicon nitride ceramics from low-purity powder
JP3593535B2 (en) Porous body and method for producing the same
JP4336772B2 (en) Method for producing silicon nitride ceramic porous body, silicon nitride porous body and structural member thereof
KR101383352B1 (en) Composition for manufacturing silicon carbide-based porous body, silicon carbide-based porous body using the same, catalyst carrier and particulate filter containing the same
JP5120793B2 (en) Method for producing porous silicon carbide
JP4468541B2 (en) Method for producing recrystallized SiC
JP3213850B2 (en) Method for producing sintered silicon carbide porous body
JP3689408B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
JP2004002130A (en) Ceramic porous body and its forming process
JP2000335985A (en) Silicon nitride ceramic porous body, its production, and silicon nitride ceramic filter