JPH0229637B2 - - Google Patents
Info
- Publication number
- JPH0229637B2 JPH0229637B2 JP59253091A JP25309184A JPH0229637B2 JP H0229637 B2 JPH0229637 B2 JP H0229637B2 JP 59253091 A JP59253091 A JP 59253091A JP 25309184 A JP25309184 A JP 25309184A JP H0229637 B2 JPH0229637 B2 JP H0229637B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- resin
- crystals
- weight
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 86
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 64
- 239000013078 crystal Substances 0.000 claims description 62
- 239000011148 porous material Substances 0.000 claims description 27
- 239000002131 composite material Substances 0.000 claims description 26
- 229920005989 resin Polymers 0.000 claims description 18
- 239000011347 resin Substances 0.000 claims description 18
- 229920003002 synthetic resin Polymers 0.000 claims description 15
- 239000000057 synthetic resin Substances 0.000 claims description 15
- 229910021426 porous silicon Inorganic materials 0.000 claims description 12
- -1 polybutylene terephthalate Polymers 0.000 claims description 9
- 229920006324 polyoxymethylene Polymers 0.000 claims description 4
- 239000004677 Nylon Substances 0.000 claims description 3
- 239000011354 acetal resin Substances 0.000 claims description 3
- 229920001778 nylon Polymers 0.000 claims description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 3
- 229920013716 polyethylene resin Polymers 0.000 claims description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 229920005668 polycarbonate resin Polymers 0.000 claims description 2
- 239000004431 polycarbonate resin Substances 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 229920005749 polyurethane resin Polymers 0.000 claims description 2
- 229920002050 silicone resin Polymers 0.000 claims description 2
- 239000011145 styrene acrylonitrile resin Substances 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 21
- 239000002245 particle Substances 0.000 description 21
- 238000010304 firing Methods 0.000 description 18
- 239000007858 starting material Substances 0.000 description 16
- 229910052799 carbon Inorganic materials 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 description 3
- 229910052580 B4C Inorganic materials 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- 229910039444 MoC Inorganic materials 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000005997 Calcium carbide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- SJKRCWUQJZIWQB-UHFFFAOYSA-N azane;chromium Chemical compound N.[Cr] SJKRCWUQJZIWQB-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910052810 boron oxide Inorganic materials 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N ferric oxide Chemical compound O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- DEIVNMVWRDMSMJ-UHFFFAOYSA-N hydrogen peroxide;oxotitanium Chemical compound OO.[Ti]=O DEIVNMVWRDMSMJ-UHFFFAOYSA-N 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 2
- 229910001947 lithium oxide Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 229910026551 ZrC Inorganic materials 0.000 description 1
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000011233 carbonaceous binding agent Substances 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Description
〔産業上の利用分野〕
本発明は多孔質炭化ケイ素焼結体の開放気孔中
に合成樹脂が充填された摺動特性に優れた炭化ケ
イ素質複合体に関する。
従来、炭化ケイ素は高い硬度、優れた耐摩耗
性、優れた耐酸化性、優れた耐蝕性、良好な熱伝
導率、低い熱膨張率、高い耐熱衝撃性並びに高温
での高い強度等の化学的および物理的に優れた特
性を有し、メカニカルシールや軸受け等の耐摩耗
材料、酸およびアルカリ等の強い腐蝕性を有する
溶液のポンプ部品又は水道管のパツキン等の耐蝕
材料として広く使用することができる材料であ
る。
〔従来の技術〕
ところで、炭化ケイ素焼結体は高い硬度を有
し、耐摩耗性に優れているが、自己潤滑性に乏し
く、特にメカニカルシールや軸受け等の摩擦現象
を伴う機械構成部品として使用する上で装置の耐
久性や信頼性に欠ける問題があつた。
前述の如き問題を解決する材料として、特開昭
58−161982号公報に「含ふつ素重合体をセラミツ
クスに結合させたセラミツクス複合体」に係る発
明が開示されており、同公報明細書中に炭化ケイ
素質焼結体とフツ素樹脂との複合体が記載されて
いる。
しかしながら、前述の発明には、フツ素樹脂と
の複合化に適した炭化ケイ素焼結体の特性につい
ては何ら記載されていない。
〔発明が解決しようとする問題点〕
ところで、前述の如き合成樹脂との複合体には
多孔質炭化ケイ素焼結体が使用されるが、従来知
られている多孔質炭化ケイ素焼結体の製造方法と
して、特開昭48−39515号公報に「炭化珪素粉に
炭素粉を加え又は加えずに炭素質バインダーを加
えると共にこの炭素粉及び焼成時に生成されるバ
インダーからの遊離炭素と反応する理論量の珪素
質粉を添加して形成し、しかる後この成形体の炭
素粉中で1900〜2400℃に加熱して成形体中の炭素
分を珪素化することを特徴とする均質多孔性再結
晶炭化珪素体の製造方法。」が開示されている。
しかしながら、上述の方法で製造された多孔質
体の構造をモデル的に図示すれば第2図に示すよ
うであり、結晶相互の結合が弱いため、結晶粒子
が脱離し易い欠点を有していた。
本発明は、前述の如き従来知られた多孔質炭化
ケイ素焼結体の有する欠点を除去改善した多孔質
炭化ケイ素体、すなわちフツ素樹脂等の合成樹脂
との複合化に適した炭化ケイ素焼結体を適用する
ことにより、摺動特性に優れた炭化ケイ素質複合
体を提供することを目的とする。
〔問題点を解決するための手段〕
前記目的に対し、本発明者らは種々研究を行つ
た結果、平均アスペクト比が3〜50であり、かつ
長軸方向の平均長さが0.5〜1000μmの主として炭
化ケイ素質板状結晶から構成される三次元網目構
造を有する多孔質炭化ケイ素焼結体を新規に知見
し、この多孔質炭化ケイ素焼結体の開放気孔中に
合成樹脂を充填することにより、前記問題点を解
決することのできることに想到し、本発明を完成
した。
以下、本発明を詳細に説明する。
本発明の多孔質炭化ケイ素焼結体(以下、多孔
質体と称する。)は平均アスペクト比が3〜50で
あり、かつ長軸方向の平均長さが0.5〜1000μmの
主として炭化ケイ素質板状結晶から構成されかつ
開放気孔を有する三次元の網目構造となつている
ことが必要である。
前記多孔質体の平均アスペクト比が3〜50であ
ることが必要な理由は、平均アスペクト比を3以
上とすることによつて炭化ケイ素質板状結晶で構
成される気孔が結晶の占める容積に対して比較的
大きく、かつ高強度の多孔質体、すなわち高い気
孔率を有する高強度多孔質体となすことができる
からであり、また50よりも大きいと板状結晶で構
成される多孔質体の結晶相互の接合部が少ないた
め、多孔質体自体の強度が低く、炭化ケイ素質複
合体の強度が低くなるからである。前記多孔質体
の平均アスペクト比はなかでも5〜30であること
がより好適である。
なお、ここでいうアスペクト比とは焼結体の任
意の断面において観察される個々の結晶の長軸と
短軸の比である。
また、前記板状結晶の長軸方向の平均長さが
0.5〜1000μmであることが必要であることの理由
は長軸方向の平均長さが0.5μmより小さいと前記
板状結晶により形成される気孔が小さく、場合に
よつては気均の一部が独立気孔になつていること
があり、合成樹脂の充填が困難であるためであ
り、一方、1000μmより長くなると、板状結晶の
接合部の強度が小さく、多孔質体自体の強度が低
いためである。なかでも、前記板状結晶の長軸方
向の平均長さは1〜800μmであることがより好
適である。
本発明の多孔質体は、10〜70容量%の開放気光
率を有するものであることが好ましい。その理由
は、前記開放気孔率が10容量%よりも低いと合成
樹脂を充填することが困難であるばかりでなく、
実質的に合成樹脂の充填量が少ないため摺動特性
を向上させることが困難であるからであり、一方
70容量%よりも高いと多孔質体の強度が低く、粒
子が脱離し易いばかりでなく、複合体の熱伝導率
が低くなり、摩擦熱によつて焼付き易くなるから
である。
また、前記網目構造の開放気孔の平均断面積は
0.01〜250000μm2であることが好ましい。その理
由は開放気孔の平均断面積が0.01μm2より小さい
と合成樹脂の充填が困難であるからであり、一
方、開放気孔の平均断面積が250000μm2より大き
いと、多孔質体自体の強度が低く、なかでも前記
網目構造の開放気孔の平均断面積は0.25〜90000μ
m2であることが有利である。
そして前記多孔質体の結晶100重量のうち3〜
50のアスペクト比を有する板状結晶は少くとも20
重量部を占めることが好ましい。ところで、前記
板状結晶の含有量は結晶の構造写真を解析するこ
とにより求められる。ここで、前記多孔質体が20
重量部以上の3〜50のアスペクト比を有する板状
結晶で占められていることが好ましい理由は、前
記板状結晶が20重量部より少いと、アスペクト比
の小さい炭化ケイ素結晶が多く含まれることにな
り、合成樹脂の充填が困難であるからである。な
かでも前記板状結晶は前記多孔質体の結晶100重
量部のうち少くとも40重量部を占めることが有利
である。
そして、前記多孔質体の比表面積は少くとも
0.05m2/gであることが有利である。ここで比表
面積は窒素吸着のよるBET法によつて求められ
る値である。比表面積が0.05m2/g以上が好まし
い理由は、合成樹脂との接合面積が多くより高強
度の複合体となすことができるからであり、なか
でも0.2m2/g以上の比表面積を有するものが最
も好適に使用できる。
本発明において使用する合成樹脂としては、ア
セタール樹脂、ナイロン樹脂、ポリエチレン樹
脂、ポリカーボネート樹脂、ポリブチレンテレフ
タレート樹脂、スチレンアクリロニトリル樹脂、
ポリプロピレン樹脂、ポリウレタン樹脂、ポリフ
エニレンサルフアイド樹脂、エポキシ樹脂、シリ
コン樹脂およびフツ素樹脂から選択される樹脂を
単独あるいは混合して使用することができ、なか
でもアセタール樹脂、ナイロン樹脂、ポリエチレ
ン樹脂、ポリブチレンテレフタレート樹脂および
フツ素樹脂は自己潤滑特性に優れており、摺動特
性を著しく向上させることができる。
前記合成樹脂を多孔質体の気体中へ充填する方
法としては、樹脂を加熱して溶融させて含浸する
方法、樹脂を溶剤に溶解させて含浸する方法、樹
脂をモノマー状態で含浸した後ポリマーに転化す
る方法あるいは、微粒化した樹脂を分散媒液中に
分散し、この分散液を多孔質体に含浸し、乾燥し
た後、樹脂の溶融温度で樹脂を焼きつける方法が
適用できる。
次に本発明において使用される多孔質体の製造
方法について説明する。
長軸方向の平近長さが10〜1000μm、平均アス
ペクト比が3〜50の炭化ケイ素質板状結晶から主
として構成されてなる三次元網目構造を有し、前
記網目構造の開放気孔の平均断面積が400〜
250000μm2の範囲内の平均断面積を有する多孔質
体は、
(a) 平均粒径が10μm以下の炭化ケイ素粉末であ
つてβ型、2H型および非晶質の炭化ケイ素を
少くとも60重量%含有する炭化ケイ素粉末を所
望の形状に成形する効程;および
(b) 前記(a)工程により得られた成形体の耐熱性の
容器内に装入して外気の侵入を遮断しつつ1900
〜2300℃の温度範囲内で焼成する工程によつて
得ることができる。
前記出発原料は少くとも60重量%のβ型、2H
型および非晶質の炭化ケイ素焼結体を含有する炭
化ケイ素の出発原料の1つとすることが有利であ
る。この理由はβ型結晶、2H型結晶および非晶
質の炭化ケイ素結晶は比較的低温で合成される低
温安定型結晶であり、焼結に際し、その一部が
4H、6Hあるいは15R型等の高温安定型α型結晶
に相転移して、板状結晶を生じやすいばかりでな
く、結晶の成長性にも優れた特性を有しているか
らであり、特に60重量%以上のβ型炭化ケイ素か
らなる出発原料を用いることが有利である。
前記出発原料は平均粒径が10μm以下の微粉末
であることが有利である。平均粒径が10μmより
も小さい粉末は、粒子相互の接触点が比較的多
く、また炭化ケイ素の焼成温度において、熱的活
性が大であり、炭化ケイ素粒子間での原子の移動
が著しく大きいため、炭化ケイ素粒子相互の結合
が極めて起りやすい。したがつて板状結晶の成長
性が著しく高い。特に、前記出発原料の平均粒径
は5μm以下であることが板状結晶の成長性によ
り好ましい結果を与える。
そして、前記出発原料による所望の形状に成形
された炭化ケイ素成形体はたとえば黒鉛、炭化ケ
イ素等の耐熱性の容器内に装入して外気の侵入を
遮断しつつ1900〜2300℃の温度範囲内で焼成され
る。このように耐熱性の容器内に装入して外気の
侵入を遮断しつつ焼成を行う理由は、隣接する炭
化ケイ素結晶同志を融合させかつ板状結晶の成長
を促進させることができるからである。前述の如
く耐熱性の容器内に装入して外気の侵入を遮断し
つつ焼成することによつて隣接する炭化ケイ素結
晶同志を融合させ板状結晶の成長を促進させるこ
とのできる理由は、炭化ケイ素粒子間における炭
化ケイ素原子の蒸発−再凝縮および/または表面
拡散による移動を促進することができるためと考
えられる。これに対し、従来知られている常圧焼
結、雰囲気加圧焼結あるいは減圧下における焼結
法を試みたところ、板状結晶の成長が困難である
ばかりでなく炭化ケイ素粒子の接合部がネツク状
にくびれた形状となり、焼結体の強度が低くなつ
た。前記耐熱性の容器としては、黒鉛、炭化ケイ
素、炭化タングステン、モリプデン、炭化モリプ
デンのうち少くとも1種以上の材質からなる耐熱
性容器を使用することができる。
また、前記生成形体を外気を遮断することので
きる耐熱性容器中に装入して焼成することによ
り、焼成時における炭化ケイ素の揮散率を5重量
%以下とすることが有利である。
ところで、比較的大きな平均断面積の開放気孔
を有する多孔質体を得るには焼成時の昇温速度を
比較的ゆつくりとした速度で焼成すること、最高
温度を比較的高くすることおよび/または最高温
度での保持時間を長くすることが有利である。こ
の条件によれば個々の炭化ケイ素の板状結晶を大
きく成長させることができ、その結果、大きな気
孔断面積を有する多孔質体を得ることができる。
一方、比較的小さな平均断面積の開放気孔を有
する多孔質体を得るには、焼成時の昇温速度を比
較的速くすること、最高温度を比較的小さくする
ことおよび/または最高温度における保持時間を
短くすることが有利である。
この条件によれば個々の炭化ケイ素の板状結晶
をそれほど成長させることがないからである。
また、前記生成形体を1900〜2300℃の温度範囲
で焼成する理由は焼成温度が1900℃よりも低いと
粒子の成長が不十分であり、高い強度を有する多
孔質体を得ることが困難であり、2300℃よりも高
い温度になると炭化ケイ素の昇華が盛んになり、
発達した板状結晶が逆にやせ細つてしまい、その
結果高い強度を持つた多孔質体を得ることが困難
となるためであり、なかでも1950〜2250℃の間で
焼成することがより好適である。
一方、長軸方向の平均長さが0.5〜200μm、平
均アスペクト比が3〜50の炭化ケイ素板状結晶か
ら主として構成されてなる三次元網目構造を有
し、前記網目構造の開放気孔の平均断面積が0.01
〜10000μm2の範囲内の平均断面積を有する多孔
質体は、
(a) 平均粒径が10μm以下の炭化ケイ素であつ
て、この粉末はα型、β型および/または非晶
質炭化ケイ素と不可避的不純物とからなる炭化
ケイ素粉末である出発原料であつて、この粉末
100重量部に対し、アルミニウム、ニホウ化ア
ルミニウム、炭化アルミニウム、窒化アルミニ
ウム、酸化アルミニウム、ホウ素、炭化ホウ
素、窒化ホウ素、酸化ホウ素、酸化カルシウ
ム、炭化カルシウム、クロム、ホウ化クロム、
窒化クロム、酸化クロム、鉄、炭化鉄、酸化
鉄、ホウ化ランタン、酸化ランタン、酸化リチ
ウム、ケイ素、窒化ケイ素、チタン、酸化チタ
ン、二酸化チタン、三酸化チタンおよび酸化イ
ツトリウムのなかから選ばれるいずれか1種ま
たは2種以上を10重量部以下を均一に混合する
工程;
(b) 前記(a)工程により得られた混合物を成形する
工程;および
(c) 前記(b)工程により得られた成形体を耐熱性容
器内に装入して外気の侵入を遮断しつつ1700〜
2300℃の温度範囲内で焼成する工程により、得
ることができる。
前記出発原料は平均粒径が10μm以下の微粉末
であることが有利である。平均粒径が10μmより
も小さい粉末は、粒子相互の接触点が比較的多
く、また炭化ケイ素の焼成温度において、熱的活
性が大であり、炭化ケイ素粒子間での原子の移動
が著しく大きいため、炭化ケイ素粒子相互の結合
が極めて起りやすい。したがつて板状結晶の成長
性が著しく高い。特に、前記出発原料の平均粒径
は5μm以下であることが板状結晶の成長性によ
り好ましい結果を与える。
前記出発原料には、アルミニウム、ニホウ化ア
ルミニウム、炭化アルミニウム、窒化アルミニウ
ム、酸化アルミニウム、ホウ素、炭化ホウ素、窒
化ホウ素、酸化ホウ素、酸化カルシウム、炭化カ
ルシウム、クロム、ホウ化クロム、窒化クロム、
酸化クロム、鉄、炭化鉄、三酸化鉄、ホウ化ラン
タン、酸化ランタン、酸化リチウム、ケイ素、窒
化ケイ素、チタン、酸化チタン、二酸化チタン、
三酸化チタンおよび酸化イツトリウムの中から選
ばれるいずれか1種または2種以上が添加され
る。前記物質は炭化ケイ素の結晶成長の速度を著
しく高める働きがあり、一方、前記物質は前記炭
化ケイ素成形体の焼成温度1700〜2300℃において
前記物質の蒸気および/または分解生成物の蒸気
が生成し、前記炭化ケイ素成形体のすみずみまで
拡散し、極めて多くの板状結晶の核が形成され、
各々の部分で板状結晶の発達が起こり、その結果
形成される板状結晶の大きさが制限され細かい粗
織の三次元網目構造となるためである。前記化合
物のうち、特にホウ素、炭化ホウ素、窒化ホウ
素、酸化アルミニウム、窒化アルミニウム、鉄、
炭化アルミニウム、ニホウ化アルミニウム、アル
ミニウムを有利に使用することができる。
一方、前記物質の添加量は前記炭化ケイ素を主
体としてなる出発原料100重量部に対し、10重量
部以下であることが有利である。その理由は、10
重量部よりも多く添加しても、前記炭化ケイ素成
形体の焼成温度範囲内において前記化合物およ
び/またはその分解生成物の蒸気分圧はほとんど
変らない。逆に前記物質が前記成形体内で残留す
る量が多くなるため炭化ケイ素本来の特性が失な
われるからである。さらに板状結晶の成長に適し
た前記化合物の添加量は炭化ケイ素出発原料100
重量部に対し、5重量部以下が好適である。
また、前記出発原料として使用される炭化ケイ
素はα型、β型および/または非晶質炭化ケイ素
のいずれも使用することができる。
前記出発原料に焼成時に遊離カーボンを残す炭
素源を添加することができる。このような炭素源
としては、焼結開始時に炭素の状態で存在するも
のであれば使用することができ、例えばフエノー
ル樹脂、リグニンスルホン酸塩、ポリビニルアル
コール、コンスターチ、糖蜜、コールタールピツ
チ、アルギン酸塩のような各種有機物質あるいは
カーボンブラツク、アセチレンブラツクのような
熱分解炭素を有利に使用することができる。
遊離カーボンは前記物質と同時に存在すると、
結晶の成長性を抑え、微細な炭化ケイ素板状結晶
を形成するため、微細な気孔を有する多孔質体を
得るのに効果がある。
また、前記遊離炭素分としては出発原料100重
量部に対し、5重量部以下であることが有利であ
る。その理由は、5重量部より多く添加してもそ
の効果には変わらず逆に前記多孔体に残留する量
が多くなり、多孔質体の耐酸化性を低下させるた
めであり、なかでも3重量部以下であることがよ
り効果的である。
前記耐熱性容器は、黒鉛、炭化ケイ素、窒化ア
ルミニウム、酸化ジルコニウム、炭化タングステ
ン、炭化チタン、酸化マグネシウム、炭化モリブ
デン、モリブデン、炭化タンタル、タンタル、炭
化ジルコニウム、黒鉛−炭化ケイ素複合体の中か
る選ばれるいずれか1種からなる容器を使用する
ことができる。
これらの容器は前記焼成温度範囲内で溶融する
ことがなく、その形を保持することが可能であ
り、また、前記添加物の蒸気および/または分解
生成物の蒸気の系外への漏出を抑制し、前記添加
物の効果を炭化ケイ素成形体のすみずみまで行き
わたらせる効果がある。なかでも、黒鉛、炭化ケ
イ素、黒鉛−炭化ケイ素複合体、炭化タングステ
ン、窒化アルミニウム、炭化チタン、モリブデ
ン、炭化モリブデンを有効に使用することができ
る。
また、比較的大きな平均断面積の開放気孔を有
する多孔質体を得るには焼成時の昇温速度を比較
的ゆつくりとした速度で焼成すること、最高温度
を比較的高くすることおよび/または最高温度で
の保持時間を長くすることが有利である。この条
件によれば個々の炭化ケイ素の板状結晶を大きく
成長させることができ、その結果、大きな気孔断
面積を有する多孔質体を得ることができる。
一方、比較的小さな平均断面積の開放気孔を有
する多孔質体を得るには、焼成時の昇温速度を比
較的速くすること、最高温度を比較的小さくする
ことおよび/または最高温度における保持時間を
短くすることが好ましい。この条件によれば個々
の炭化ケイ素の板状結晶をそれほど成長させるこ
とがないからである。
また、前記生成形体を1700〜2300℃の温度範囲
で焼成する理由は焼成温度が1700℃よりも低いと
粒子の成長が不十分であり、高い強度を有する多
孔質体を得ることが困難であり、2300℃よりも高
い温度になると炭化ケイ素の昇華が盛んになり、
発達した板状結晶が逆にやせ細つてしまい、その
結果高い強度を持つた多孔質体を得ることが困難
となるためであり、なかでも1750〜2250℃の間で
焼成することがより好適である。
次に本発明を実施例および比較例について説明
する。
実施例 1
出発原料として使用た炭化ケイ素微粉末は94.6
重量%がβ型結晶で残部が実質的に2H型結晶よ
りなり、0.39重量%の遊離炭素、0.17重量%の酸
素、0.03重量%の鉄、0.03重量%のアルミニウム
を主として含有し、0.28μmの平均粒径を有して
いた。
前記炭化ケイ素微粉末100重量部に対し、ポリ
ビニルアルコール5重量部、水300重量部を配合
し、ボールミル中で5時間混合した後乾燥した。
この乾燥混合物を適量採取し、顆粒化した後金
属製押し型を用いて50Kg/cm2の圧力で成形した。
この生成形体の密度は1.2g/cm2、乾燥重量は21
gであつた。
前記生成形体を外気を遮断することのできる黒
鉛製ルツボに装入し、タンマン型焼成炉を使用し
て1気圧のアルゴンガス雰囲気中で焼成した。な
お、前記黒鉛製ルツボは内容積が50mlのものを使
用した。
焼成は2.5℃/分で2200℃まで昇温し、最高温
度2200℃で6時間保持した。
得られた焼結体の重量は19.6gであり、その結
晶構造は第1図の走査型電子顕微鏡写真(75倍)
に示したように、平均アスペクト比が12で長軸方
向の平均長さが380μmの板状結晶が多方向に複
雑に絡み合つた三次元構造を有しており、3〜50
のアスペクト比を有する板状結晶の含有量は多孔
質体全重量の98%であつた。また、この多孔質体
の気孔は直線的でない開放気孔であり、その開放
気孔率は全容積の64%比表面積は1.2m2/g、曲
げ強度は180Kg/cm2であつた。
この多孔質体を外径が30mm、内径が15mm、厚さ
が5mmのリング状に加工した後、平均粒径が
0.26μmのポリテトラフルオロエチレン微粒子を
60重量%分散させた懸濁水に真空下で浸漬し含浸
させた後、380〜400℃の温度で焼着し、複合体を
得た。この複合体中に充填されたポリテトラフル
オロエチレンは0.85gであり、多孔質体の空隙に
占める割合は50.1容量%であつた。
この複合体のステンレス鋼(SUS304)に対す
る乾式摺動試験を500mm/secの摺動速度で摺動さ
せるリングオンリング法で10Kgf/cm2の端面荷重
を負荷して行つたところ、摩擦係数は0.15〜
0.22、摩耗係数は3.1×10-4mm/Km・(Kgf/cm2)
であり、極めて優れた摺動特性を有していること
が認められた。
なお、前記摩耗係数(K)は下記関係式によつ
て求められる値である。
K=h/PVT
K:摩耗係数(mm/Km・(Kgf/cm2))h:摩耗深
さ(mm) T:摺動時間(sec)、P:端面荷重
(Kgf/cm2) V:摺動速度(Km/sec)
比較例 1
実施例1と同様であるが、ポリテトラフルオロ
エチレンを複合化せずに摺動試験を行つたとこ
ろ、摩擦係数は0.5〜0.7、摩耗係数は2.3×10-1
mm/Km・(Kgf/cm2)であつた。
比較例 2
ポリテトラフルオロエチレン70重量に対しガラ
ス繊維が30重量部複合化された一般的な摺動材料
のステンレス鋼(SUS304)に対する摺動試験を
実施例1に示した条件と同様にして行つたとこ
ろ、初期の摩擦係数は0.2〜0.25と比較的低かつ
たが、約1時間後に摩擦面が異常に発熱し0.2〜
0.4の範囲で著しく変動する現象が認められた。
また、この時の摩耗係数は2.2×10-3mm/Km(Kg
f/cm2)であり、ステンレス鋼の表面が著しく荒
れていることが認められた。
比較例 3
実施例1と同様の方法であるが、生成形体をル
ツボに入れずに焼結し、平均アスペクト比が1.8、
長軸方向の平均長さが30μmのほとんど粒状の炭
化ケイ素からなる結晶構造の多孔質体を得た。こ
の多孔質体の重量は18.8gであつた。この多孔質
体の開放気孔率は全容積の67容量%であつたが、
曲げ強度は4Kg/cm2と著しく低いものであつた。
この多孔質体に実施例1と同様の方法でポリテ
トラフルオロニチレンを多孔質体の空隙に対して
30容量%複合した。この複合体の摩擦係数は0.15
〜0.2と比較的低い値であつたが、摩耗係数は8.5
×10-3mm/Km(Kgf/cm2)と著しく劣つていた。
実施例 2・3
実施例1と同様であるが、成形圧を3000Kg/
cm2、10Kg/cm2に変えて製造した多孔質体に加熱溶
融したポリアセタール樹脂を含浸して複合体を製
造した。
得られた複合体の特性は第1表に示した。
[Industrial Field of Application] The present invention relates to a silicon carbide composite having excellent sliding properties in which the open pores of a porous silicon carbide sintered body are filled with a synthetic resin. Traditionally, silicon carbide is known for its chemical properties such as high hardness, good wear resistance, good oxidation resistance, good corrosion resistance, good thermal conductivity, low coefficient of thermal expansion, high thermal shock resistance as well as high strength at high temperatures. It has excellent physical properties and can be widely used as wear-resistant materials such as mechanical seals and bearings, pump parts for highly corrosive solutions such as acids and alkalis, and corrosion-resistant materials such as water pipe packing. It is a material that can be used. [Prior Art] By the way, silicon carbide sintered bodies have high hardness and excellent wear resistance, but they have poor self-lubricating properties, and are particularly difficult to use as mechanical components that involve friction phenomena, such as mechanical seals and bearings. However, there were problems with the durability and reliability of the equipment. As a material to solve the above-mentioned problems, JP-A-Sho
No. 58-161982 discloses an invention related to a "ceramics composite in which a fluorine-containing polymer is bonded to ceramics," and the specification of the publication discloses a composite of a silicon carbide sintered body and a fluororesin. body is described. However, the above-mentioned invention does not describe any characteristics of the silicon carbide sintered body suitable for compounding with a fluororesin. [Problems to be Solved by the Invention] By the way, porous silicon carbide sintered bodies are used for the above-mentioned composites with synthetic resins, but the conventional production of porous silicon carbide sintered bodies is difficult. As a method, JP-A No. 48-39515 describes a method in which a carbonaceous binder is added to silicon carbide powder with or without carbon powder, and the theoretical amount of carbon that reacts with this carbon powder and free carbon from the binder produced during firing is described. Homogeneous porous recrystallization carbonization characterized by adding siliceous powder to form the molded body, and then heating the molded body to 1900 to 2400°C in the carbon powder to silicify the carbon content in the molded body. ``Method for manufacturing a silicon body.'' is disclosed. However, the structure of the porous body produced by the above method is shown in Figure 2 as a model, and the bond between the crystals is weak, so the crystal particles tend to separate easily. . The present invention provides a porous silicon carbide body that eliminates and improves the drawbacks of the previously known porous silicon carbide sintered body as described above, that is, a silicon carbide sintered body that is suitable for compounding with synthetic resins such as fluororesins. The purpose of the present invention is to provide a silicon carbide composite material with excellent sliding properties by applying a silicon carbide material to the silicon carbide composite material. [Means for Solving the Problems] For the above-mentioned purpose, the present inventors have conducted various studies and found that the present inventors have developed a material having an average aspect ratio of 3 to 50 and an average length in the major axis direction of 0.5 to 1000 μm. By newly discovering a porous silicon carbide sintered body having a three-dimensional network structure mainly composed of silicon carbide plate-like crystals, and filling the open pores of this porous silicon carbide sintered body with synthetic resin. The inventors came up with the idea that the above-mentioned problems could be solved, and completed the present invention. The present invention will be explained in detail below. The porous silicon carbide sintered body of the present invention (hereinafter referred to as a porous body) has an average aspect ratio of 3 to 50 and an average length of 0.5 to 1000 μm in the long axis direction, and is mainly a silicon carbide plate-like body. It is necessary that it is composed of crystals and has a three-dimensional network structure with open pores. The reason why it is necessary for the average aspect ratio of the porous body to be 3 to 50 is that by setting the average aspect ratio to 3 or more, the pores composed of the silicon carbide plate crystals are reduced in volume occupied by the crystals. This is because it can be made into a relatively large and high-strength porous body, that is, a high-strength porous body with a high porosity. This is because there are few joints between the crystals, so the strength of the porous body itself is low, and the strength of the silicon carbide composite is low. More preferably, the porous body has an average aspect ratio of 5 to 30. Note that the aspect ratio here is the ratio of the long axis to the short axis of each crystal observed in an arbitrary cross section of the sintered body. Also, the average length of the plate-like crystals in the long axis direction is
The reason why it needs to be 0.5 to 1000 μm is that if the average length in the long axis direction is smaller than 0.5 μm, the pores formed by the plate crystals will be small, and in some cases, some of the pores will be This is because the pores may become independent, making it difficult to fill with synthetic resin. On the other hand, if the length is longer than 1000 μm, the strength of the joints of plate crystals is low, and the strength of the porous body itself is low. be. Among these, it is more preferable that the average length of the plate crystals in the major axis direction is 1 to 800 μm. The porous body of the present invention preferably has an open air light rate of 10 to 70% by volume. The reason is that if the open porosity is lower than 10% by volume, it is not only difficult to fill with synthetic resin;
This is because it is difficult to improve the sliding properties because the filling amount of synthetic resin is practically small;
This is because if it is higher than 70% by volume, the strength of the porous body will be low, and the particles will not only be easily detached, but also the thermal conductivity of the composite will be low, making it easy to seize due to frictional heat. In addition, the average cross-sectional area of the open pores in the network structure is
It is preferably 0.01 to 250000 μm 2 . The reason for this is that if the average cross-sectional area of open pores is smaller than 0.01 μm 2 , it is difficult to fill with synthetic resin, whereas if the average cross-sectional area of open pores is larger than 250000 μm 2 , the strength of the porous body itself will decrease. Among them, the average cross-sectional area of the open pores of the network structure is 0.25 to 90000μ.
Advantageously, m2 . And from 3 to 100 weight of the crystals of the porous body
Plate crystals with an aspect ratio of 50 are at least 20
Preferably, it accounts for parts by weight. Incidentally, the content of the plate crystals can be determined by analyzing a structural photograph of the crystals. Here, the porous body is 20
The reason why it is preferable that the plate-shaped crystals have an aspect ratio of 3 to 50 parts by weight or more is because if the plate-shaped crystals are less than 20 parts by weight, a large amount of silicon carbide crystals with a small aspect ratio will be included. This is because it becomes difficult to fill with synthetic resin. In particular, it is advantageous for the plate-like crystals to account for at least 40 parts by weight out of 100 parts by weight of the crystals in the porous body. The specific surface area of the porous body is at least
Advantageously, it is 0.05 m 2 /g. Here, the specific surface area is a value determined by the BET method using nitrogen adsorption. The reason why a specific surface area of 0.05 m 2 /g or more is preferable is that the bonding area with the synthetic resin is large and a higher strength composite can be formed, and in particular, a specific surface area of 0.2 m 2 /g or more is preferable. can be used most preferably. The synthetic resins used in the present invention include acetal resin, nylon resin, polyethylene resin, polycarbonate resin, polybutylene terephthalate resin, styrene acrylonitrile resin,
Resins selected from polypropylene resins, polyurethane resins, polyphenylene sulfide resins, epoxy resins, silicone resins, and fluororesins can be used alone or in combination, and among them, acetal resins, nylon resins, polyethylene resins, Polybutylene terephthalate resin and fluororesin have excellent self-lubricating properties and can significantly improve sliding properties. Methods for filling the synthetic resin into the gas of the porous body include heating the resin to melt it and impregnating it, dissolving the resin in a solvent and impregnating it, and impregnating the resin in a monomer state and then turning it into a polymer. Alternatively, a method of dispersing a finely divided resin in a dispersion medium, impregnating a porous body with this dispersion, drying, and then baking the resin at the melting temperature of the resin can be applied. Next, a method for manufacturing the porous body used in the present invention will be explained. It has a three-dimensional network structure mainly composed of silicon carbide plate crystals with a flat length in the long axis direction of 10 to 1000 μm and an average aspect ratio of 3 to 50. Area is 400~
The porous body having an average cross-sectional area within the range of 250000 μm 2 is: (a) silicon carbide powder having an average particle size of 10 μm or less and containing at least 60% by weight of β-type, 2H-type and amorphous silicon carbide; The process of molding the contained silicon carbide powder into a desired shape; and (b) the molded product obtained in step (a) is charged into a heat-resistant container and heated for 1900 minutes while blocking the intrusion of outside air.
It can be obtained by a step of firing within a temperature range of ~2300°C. The starting material contains at least 60% by weight of β form, 2H
Advantageously, one of the starting materials is silicon carbide containing a mold and an amorphous silicon carbide sintered body. The reason for this is that β-type crystals, 2H-type crystals, and amorphous silicon carbide crystals are low-temperature stable crystals that are synthesized at relatively low temperatures.
This is because not only does it easily undergo a phase transition to high-temperature stable α-type crystals such as 4H, 6H, or 15R types, forming plate-shaped crystals, but it also has excellent crystal growth properties. It is advantageous to use a starting material consisting of more than % by weight of β-type silicon carbide. Advantageously, the starting material is a fine powder with an average particle size of 10 μm or less. Powders with an average particle size of less than 10 μm have relatively many contact points between particles, and at the firing temperature of silicon carbide, the thermal activity is large and the movement of atoms between silicon carbide particles is extremely large. , bonding between silicon carbide particles is extremely likely to occur. Therefore, the growth of plate crystals is extremely high. In particular, it is preferable that the average particle size of the starting material is 5 μm or less, which gives more favorable results for the growth of plate crystals. Then, the silicon carbide molded body formed into the desired shape using the starting material is placed in a heat-resistant container made of graphite, silicon carbide, etc., and kept within a temperature range of 1900 to 2300°C while blocking the intrusion of outside air. It is fired in The reason why the material is charged in a heat-resistant container and fired while blocking the intrusion of outside air is that it allows adjacent silicon carbide crystals to fuse together and promotes the growth of plate-shaped crystals. . The reason why adjoining silicon carbide crystals can be fused together and the growth of plate-like crystals can be promoted by charging the silicon carbide crystals in a heat-resistant container and firing them while blocking the intrusion of outside air as described above is because the carbonization This is thought to be because movement of silicon carbide atoms between silicon particles by evaporation-recondensation and/or surface diffusion can be promoted. In contrast, when conventional pressureless sintering, atmospheric pressure sintering, or sintering under reduced pressure was tried, not only was it difficult to grow plate-shaped crystals, but the joints of silicon carbide particles were The sintered body had a constricted shape, and the strength of the sintered body decreased. As the heat-resistant container, a heat-resistant container made of at least one material selected from graphite, silicon carbide, tungsten carbide, molybdenum, and molybdenum carbide can be used. Furthermore, it is advantageous to charge the formed body into a heat-resistant container that can block outside air and fire it, so that the volatilization rate of silicon carbide during firing is 5% by weight or less. By the way, in order to obtain a porous body having open pores with a relatively large average cross-sectional area, the heating rate during firing must be relatively slow, the maximum temperature must be relatively high, and/or It is advantageous to increase the holding time at the maximum temperature. Under these conditions, individual silicon carbide plate crystals can be grown to a large size, and as a result, a porous body having a large pore cross-sectional area can be obtained. On the other hand, in order to obtain a porous body having open pores with a relatively small average cross-sectional area, the heating rate during firing should be relatively fast, the maximum temperature should be relatively small, and/or the holding time at the maximum temperature should be It is advantageous to make it short. This is because, under these conditions, individual plate-shaped crystals of silicon carbide are not allowed to grow much. Furthermore, the reason why the formed body is fired in the temperature range of 1900 to 2300°C is that if the firing temperature is lower than 1900°C, the growth of particles will be insufficient and it will be difficult to obtain a porous body with high strength. , when the temperature is higher than 2300℃, the sublimation of silicon carbide increases,
This is because the developed plate-like crystals become thinner and thinner, making it difficult to obtain a porous body with high strength. Among these, it is more preferable to sinter at a temperature between 1950 and 2250°C. be. On the other hand, it has a three-dimensional network structure mainly composed of silicon carbide plate crystals with an average length in the major axis direction of 0.5 to 200 μm and an average aspect ratio of 3 to 50, and has an average cross section of open pores in the network structure. Area is 0.01
The porous body having an average cross-sectional area in the range of ~10000 μm2 is (a) silicon carbide having an average particle size of 10 μm or less, and the powder is composed of α-type, β-type and/or amorphous silicon carbide; The starting material is silicon carbide powder consisting of unavoidable impurities, and this powder
Per 100 parts by weight, aluminum, aluminum diboride, aluminum carbide, aluminum nitride, aluminum oxide, boron, boron carbide, boron nitride, boron oxide, calcium oxide, calcium carbide, chromium, chromium boride,
Any one selected from chromium nitride, chromium oxide, iron, iron carbide, iron oxide, lanthanum boride, lanthanum oxide, lithium oxide, silicon, silicon nitride, titanium, titanium oxide, titanium dioxide, titanium trioxide, and yttrium oxide A step of uniformly mixing 10 parts by weight or less of one or more types; (b) A step of molding the mixture obtained in step (a) above; and (c) A step of molding obtained in step (b) above. The body is placed in a heat-resistant container to prevent outside air from entering, and the body is heated to 1700~
It can be obtained by a process of firing within a temperature range of 2300°C. Advantageously, the starting material is a fine powder with an average particle size of 10 μm or less. Powders with an average particle size of less than 10 μm have relatively many contact points between particles, and at the firing temperature of silicon carbide, the thermal activity is large and the movement of atoms between silicon carbide particles is extremely large. , bonding between silicon carbide particles is extremely likely to occur. Therefore, the growth of plate crystals is extremely high. In particular, it is preferable that the average particle size of the starting material is 5 μm or less, which gives more favorable results for the growth of plate crystals. The starting materials include aluminum, aluminum diboride, aluminum carbide, aluminum nitride, aluminum oxide, boron, boron carbide, boron nitride, boron oxide, calcium oxide, calcium carbide, chromium, chromium boride, chromium nitride,
Chromium oxide, iron, iron carbide, iron trioxide, lanthanum boride, lanthanum oxide, lithium oxide, silicon, silicon nitride, titanium, titanium oxide, titanium dioxide,
One or more selected from titanium trioxide and yttrium oxide are added. The substance has the function of significantly increasing the rate of crystal growth of silicon carbide, and on the other hand, the substance has the effect of generating vapor of the substance and/or vapor of decomposition products at a firing temperature of 1700 to 2300°C of the silicon carbide molded body. , diffuses to every corner of the silicon carbide molded body, and forms an extremely large number of plate-like crystal nuclei,
This is because plate crystals develop in each part, and as a result, the size of the plate crystals formed is restricted, resulting in a fine, coarsely woven three-dimensional network structure. Among the above compounds, boron, boron carbide, boron nitride, aluminum oxide, aluminum nitride, iron,
Aluminum carbide, aluminum diboride, aluminum can be used advantageously. On the other hand, it is advantageous that the amount of the substance added is 10 parts by weight or less per 100 parts by weight of the starting material mainly composed of silicon carbide. The reason is 10
Even if more than 1 part by weight is added, the vapor partial pressure of the compound and/or its decomposition product hardly changes within the firing temperature range of the silicon carbide molded body. On the contrary, since the amount of the substance remaining in the molded body increases, the original properties of silicon carbide are lost. Furthermore, the amount of the compound suitable for the growth of plate crystals is 100% of the silicon carbide starting material.
The amount is preferably 5 parts by weight or less. Furthermore, the silicon carbide used as the starting material may be any of α-type, β-type and/or amorphous silicon carbide. A carbon source can be added to the starting material that leaves free carbon during calcination. As such a carbon source, any carbon source that exists in the carbon state at the start of sintering can be used, such as phenolic resin, lignin sulfonate, polyvinyl alcohol, cornstarch, molasses, coal tar pitch, and alginate. Various organic substances such as carbon black, pyrolytic carbon such as acetylene black, etc. can be advantageously used. If free carbon is present at the same time as the above substances,
Since it suppresses crystal growth and forms fine silicon carbide plate crystals, it is effective in obtaining a porous body having fine pores. Further, it is advantageous that the free carbon content is 5 parts by weight or less based on 100 parts by weight of the starting material. The reason for this is that even if more than 5 parts by weight is added, the effect remains, but on the contrary, the amount remaining in the porous body increases, reducing the oxidation resistance of the porous body. It is more effective if the amount is less than 30%. The heat-resistant container is selected from graphite, silicon carbide, aluminum nitride, zirconium oxide, tungsten carbide, titanium carbide, magnesium oxide, molybdenum carbide, molybdenum, tantalum carbide, tantalum, zirconium carbide, and a graphite-silicon carbide composite. A container consisting of any one of these can be used. These containers do not melt within the firing temperature range and can maintain their shape, and also prevent the vapors of the additives and/or decomposition products from leaking out of the system. However, the effect of the additive can be spread to every corner of the silicon carbide molded body. Among them, graphite, silicon carbide, graphite-silicon carbide composite, tungsten carbide, aluminum nitride, titanium carbide, molybdenum, and molybdenum carbide can be effectively used. In addition, in order to obtain a porous body having open pores with a relatively large average cross-sectional area, the heating rate during firing must be relatively slow, the maximum temperature must be relatively high, and/or It is advantageous to increase the holding time at the maximum temperature. Under these conditions, individual silicon carbide plate crystals can be grown to a large size, and as a result, a porous body having a large pore cross-sectional area can be obtained. On the other hand, in order to obtain a porous body having open pores with a relatively small average cross-sectional area, the heating rate during firing should be relatively fast, the maximum temperature should be relatively small, and/or the holding time at the maximum temperature should be It is preferable to make it short. This is because, under these conditions, individual plate-shaped crystals of silicon carbide are not allowed to grow much. Furthermore, the reason why the formed body is fired in the temperature range of 1700 to 2300°C is that if the firing temperature is lower than 1700°C, the growth of particles will be insufficient, making it difficult to obtain a porous body with high strength. , when the temperature is higher than 2300℃, the sublimation of silicon carbide increases,
This is because the developed plate-like crystals become thin and thin, making it difficult to obtain a porous body with high strength. Among these, it is more preferable to sinter at a temperature between 1750 and 2250°C. be. Next, the present invention will be explained with reference to Examples and Comparative Examples. Example 1 The silicon carbide fine powder used as the starting material was 94.6
% by weight is β-type crystals and the remainder is substantially 2H-type crystals, mainly containing 0.39% by weight of free carbon, 0.17% by weight of oxygen, 0.03% by weight of iron, 0.03% by weight of aluminum, and has a diameter of 0.28 μm. It had an average particle size. 5 parts by weight of polyvinyl alcohol and 300 parts by weight of water were blended with 100 parts by weight of the silicon carbide fine powder, mixed in a ball mill for 5 hours, and then dried. An appropriate amount of this dry mixture was taken, granulated, and then molded using a metal mold at a pressure of 50 kg/cm 2 .
The density of this product is 1.2 g/cm 2 and the dry weight is 21
It was hot at g. The formed body was placed in a graphite crucible that can be shut off from outside air, and fired in an argon gas atmosphere at 1 atm using a Tammann type firing furnace. The graphite crucible used had an internal volume of 50 ml. For firing, the temperature was raised to 2200°C at a rate of 2.5°C/min, and the maximum temperature of 2200°C was maintained for 6 hours. The weight of the obtained sintered body was 19.6g, and its crystal structure is shown in the scanning electron micrograph (75x magnification) in Figure 1.
As shown in Figure 2, it has a three-dimensional structure in which plate-shaped crystals with an average aspect ratio of 12 and an average length in the major axis direction of 380 μm are intricately intertwined in multiple directions.
The content of plate-shaped crystals having an aspect ratio of was 98% of the total weight of the porous body. Further, the pores of this porous body were non-linear open pores, the open porosity was 64% of the total volume, the specific surface area was 1.2 m 2 /g, and the bending strength was 180 Kg/cm 2 . After processing this porous body into a ring shape with an outer diameter of 30 mm, an inner diameter of 15 mm, and a thickness of 5 mm, the average particle size was
0.26μm polytetrafluoroethylene fine particles
After being immersed in suspension water in which 60% by weight was dispersed under vacuum, the composite was baked at a temperature of 380 to 400°C to obtain a composite. The amount of polytetrafluoroethylene filled in this composite was 0.85 g, and its proportion in the voids of the porous body was 50.1% by volume. When this composite was subjected to a dry sliding test on stainless steel (SUS304) using the ring-on-ring method at a sliding speed of 500 mm/sec with an end face load of 10 Kgf/cm 2 , the friction coefficient was 0.15. ~
0.22, wear coefficient is 3.1×10 -4 mm/Km・(Kgf/cm 2 )
It was recognized that the material had extremely excellent sliding properties. Note that the wear coefficient (K) is a value determined by the following relational expression. K=h/PVT K: Wear coefficient (mm/Km・(Kgf/cm 2 )) h: Wear depth (mm) T: Sliding time (sec) P: End face load (Kgf/cm 2 ) V: Sliding speed (Km/sec) Comparative example 1 A sliding test was conducted in the same manner as in Example 1, but without compounding polytetrafluoroethylene, and the friction coefficient was 0.5 to 0.7, and the wear coefficient was 2.3 × 10-1
mm/Km・(Kgf/cm 2 ). Comparative Example 2 A sliding test was carried out on stainless steel (SUS304), a general sliding material in which 30 parts by weight of glass fiber was composited with 70 parts by weight of polytetrafluoroethylene, under the same conditions as shown in Example 1. As a result, the initial coefficient of friction was relatively low at 0.2 to 0.25, but after about an hour the friction surface became abnormally heated and the coefficient of friction ranged from 0.2 to 0.25.
A phenomenon that significantly fluctuated within the range of 0.4 was observed.
In addition, the wear coefficient at this time is 2.2×10 -3 mm/Km (Kg
f/cm 2 ), and it was observed that the surface of the stainless steel was extremely rough. Comparative Example 3 The same method as in Example 1 was used, but the formed body was sintered without being placed in a crucible, and the average aspect ratio was 1.8.
A porous body with a crystal structure consisting of almost granular silicon carbide with an average length in the major axis direction of 30 μm was obtained. The weight of this porous body was 18.8 g. The open porosity of this porous body was 67% by volume of the total volume,
The bending strength was extremely low at 4 kg/cm 2 . Polytetrafluoronithylene was applied to the voids of the porous body in the same manner as in Example 1.
30% composite by volume. The coefficient of friction of this composite is 0.15
Although the value was relatively low at ~0.2, the wear coefficient was 8.5.
×10 -3 mm/Km (Kgf/cm 2 ), which was significantly inferior. Examples 2 and 3 Same as Example 1, but molding pressure was changed to 3000Kg/
cm 2 and 10 Kg/cm 2 , and impregnated a heated and melted polyacetal resin into a porous body to produce a composite. The properties of the obtained composite are shown in Table 1.
以上述べた如く、本発明の炭化ケイ素質複合体
は、極めて優れた摺動特性を有しており、機械装
置の軸受やシール部分のような摩擦現象を伴う機
械構成部品などに適用することにより、装置の耐
久性や信頼性を著しく向上させることができる。
As mentioned above, the silicon carbide composite of the present invention has extremely excellent sliding properties, and can be applied to mechanical components that involve friction phenomena such as bearings and seals of mechanical devices. , the durability and reliability of the device can be significantly improved.
第1図は、実施例1に記載の多孔質体の結晶構
造を示す走査型電子顕微鏡写真(75倍)、第2図
は、従来の炭化ケイ素多孔質体の構造を示す模式
図である。
A……炭化ケイ素質骨材、B……結合剤、C…
…多孔質体の間隙。
FIG. 1 is a scanning electron micrograph (75x magnification) showing the crystal structure of the porous material described in Example 1, and FIG. 2 is a schematic diagram showing the structure of a conventional silicon carbide porous material. A...Silicon carbide aggregate, B...Binder, C...
...Gap between porous bodies.
Claims (1)
化ケイ素焼結体であつて、平均アスペクト比が3
〜50であり、長軸方向の平均長さが0.5〜1000μm
の主として炭化ケイ素質板状結晶構造から成り、
前記開放気孔の中に合成樹脂が充填されてなる炭
化ケイ素質複合体。 2 前記多孔質炭化ケイ素焼結体は10〜70容量%
の開放気孔率を有する特許請求の範囲第1項記載
の炭化ケイ素質複合体。 3 前記開放気孔の平均断面積は0.01〜250000μ
m2である特許請求の範囲第1あるいは2項記載の
炭化ケイ素質複合体。 4 前記多孔質炭化ケイ素焼結体100重量部のう
ち、3〜50のアスペクト比を有する板状結晶は少
なくとも20重量部である特許請求の範囲第1〜3
項記載の炭化ケイ素質複合体。 5 前記合成樹脂は、アセタール樹脂、ナイロン
樹脂、ポリエチレン樹脂、ポリカーボネート樹
脂、ポリブチレンテレフタレート樹脂、スチレン
アクリロニトリル樹脂、ポリプロピレン樹脂、ポ
リウレタン樹脂、ポリフエニレンサルフアイド樹
脂、エポキシ樹脂、シリコン樹脂あるいはフツ素
樹脂から選択される少なくとも1種である特許請
求の範囲第1〜4項記載の炭化ケイ素質複合体。 6 前記合成樹脂は、前記多孔質炭化ケイ素焼結
体の開放気孔100容量部に対し、少なくとも10容
量部充填されてなる特許請求の範囲第1〜5項記
載の炭化ケイ素質複合体。[Scope of Claims] 1. A porous silicon carbide sintered body having open pores with a three-dimensional network structure, the average aspect ratio of which is 3.
~50, and the average length in the long axis direction is 0.5~1000μm
It mainly consists of a silicon carbide plate-like crystal structure,
A silicon carbide composite comprising the open pores filled with a synthetic resin. 2 The porous silicon carbide sintered body has a content of 10 to 70% by volume.
The silicon carbide composite according to claim 1, having an open porosity of . 3 The average cross-sectional area of the open pores is 0.01 to 250000μ
The silicon carbide composite according to claim 1 or 2, which is m 2 . 4. Claims 1 to 3, wherein out of 100 parts by weight of the porous silicon carbide sintered body, plate crystals having an aspect ratio of 3 to 50 account for at least 20 parts by weight.
The silicon carbide composite described in . 5. The synthetic resin is selected from acetal resin, nylon resin, polyethylene resin, polycarbonate resin, polybutylene terephthalate resin, styrene acrylonitrile resin, polypropylene resin, polyurethane resin, polyphenylene sulfide resin, epoxy resin, silicone resin, or fluororesin. The silicon carbide composite according to claims 1 to 4, which is at least one selected from the group consisting of at least one type. 6. The silicon carbide composite according to claim 1, wherein the synthetic resin is filled in an amount of at least 10 parts by volume per 100 parts by volume of open pores of the porous silicon carbide sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59253091A JPS61132575A (en) | 1984-11-30 | 1984-11-30 | Silicon carbide composite body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59253091A JPS61132575A (en) | 1984-11-30 | 1984-11-30 | Silicon carbide composite body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61132575A JPS61132575A (en) | 1986-06-20 |
JPH0229637B2 true JPH0229637B2 (en) | 1990-07-02 |
Family
ID=17246362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59253091A Granted JPS61132575A (en) | 1984-11-30 | 1984-11-30 | Silicon carbide composite body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61132575A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61175037A (en) * | 1985-01-31 | 1986-08-06 | 株式会社クボタ | Ceramics composite resin molded shape |
JPS62191484A (en) * | 1986-02-17 | 1987-08-21 | 株式会社荏原製作所 | Composite material for pump |
US4892786A (en) * | 1986-09-16 | 1990-01-09 | Lanxide Technology Company, Lp | Ceramic articles with a polymer component and methods of making same |
JPS63147881A (en) * | 1986-12-12 | 1988-06-20 | 宇部興産株式会社 | Silicon carbide-organic high polymer composite material |
JPS63147880A (en) * | 1986-12-12 | 1988-06-20 | 宇部興産株式会社 | Silicon carbide-carbon composite material |
JP3378404B2 (en) * | 1994-05-26 | 2003-02-17 | 株式会社荏原製作所 | Sliding material |
JP5435705B2 (en) * | 2009-03-26 | 2014-03-05 | 太平洋セメント株式会社 | Resin-ceramic composite material and method for producing the same |
JP5435704B2 (en) * | 2009-03-26 | 2014-03-05 | 独立行政法人理化学研究所 | Resin-ceramic composite material and method for producing the same |
JP6170486B2 (en) * | 2014-12-05 | 2017-07-26 | デンカ株式会社 | Ceramic resin composite circuit board and power semiconductor module using the same |
TWI716559B (en) * | 2016-03-10 | 2021-01-21 | 日商電化股份有限公司 | Ceramic resin composite |
TWI607968B (en) * | 2016-09-23 | 2017-12-11 | 國家中山科學研究院 | Preparation method of synthesis of carbide raw materials |
-
1984
- 1984-11-30 JP JP59253091A patent/JPS61132575A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61132575A (en) | 1986-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4777152A (en) | Porous silicon carbide sinter and its production | |
US2938807A (en) | Method of making refractory bodies | |
US4513030A (en) | Method of producing silicon carbide articles | |
JPH01172290A (en) | Heat resistant complex body and production thereof | |
WO2004011388A1 (en) | Silicon carbide thermostable porous structural material and process for producing the same | |
WO2006004999A1 (en) | A process for the manufacturing of dense silicon carbide | |
JPH0229637B2 (en) | ||
WO1993025495A1 (en) | Porous silicon carbide | |
JPH0246545B2 (en) | ||
JPH0513116B2 (en) | ||
KR0165868B1 (en) | Method and device for sintered body | |
JPH0379310B2 (en) | ||
US3329514A (en) | Refractory body and method of making same | |
JPH034511B2 (en) | ||
JPH0157075B2 (en) | ||
JPH0228548B2 (en) | ||
KR100299099B1 (en) | Manufacturing Method of Silicon Carbide Ceramic Seals by Liquid Phase Reaction Sintering | |
JPS62138377A (en) | Silicon carbide base composite material | |
JPH0251864B2 (en) | ||
JPH034514B2 (en) | ||
JPS62148384A (en) | Silicon carbide base composite material | |
JPS61143686A (en) | Silicon carbide sintered body for heat-resistant jig having excellent dimensional accuracy | |
JPH04293998A (en) | Sliding member | |
JPH0518790B2 (en) | ||
JPH01115888A (en) | Production of jig for producing semiconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |