JPH04293998A - Sliding member - Google Patents

Sliding member

Info

Publication number
JPH04293998A
JPH04293998A JP3084806A JP8480691A JPH04293998A JP H04293998 A JPH04293998 A JP H04293998A JP 3084806 A JP3084806 A JP 3084806A JP 8480691 A JP8480691 A JP 8480691A JP H04293998 A JPH04293998 A JP H04293998A
Authority
JP
Japan
Prior art keywords
surface layer
carbon
sintered body
sliding
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3084806A
Other languages
Japanese (ja)
Other versions
JP2851717B2 (en
Inventor
Saburo Nagano
三郎 永野
Koichi Uetsubo
上坪 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3084806A priority Critical patent/JP2851717B2/en
Priority to DE1992623528 priority patent/DE69223528T2/en
Priority to EP19920101552 priority patent/EP0497345B1/en
Publication of JPH04293998A publication Critical patent/JPH04293998A/en
Priority to US08/162,796 priority patent/US5462813A/en
Priority to US08/466,930 priority patent/US5571611A/en
Application granted granted Critical
Publication of JP2851717B2 publication Critical patent/JP2851717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the strength, sliding properties, heat conductivity, and electric conductivity of a sliding member based on SiC and/or Si3N4 by forming a surface layer having a higher carbon content than that in the inner part of the member. CONSTITUTION:SiC and/or Si3N4 having an average particle diameter of 0.1 to 2mum is mixed as a base material with 10wt.% or less solid lubricant which is a carbon powder, an organic material generating carbon upon pyrolysis, or a boron compound, thereby obtaining a mixture. To this mixture are added a binder and so forth. The resulting mixture is shaped into a desired form and then fired at 1,000 deg.C or above in a nitrogen gas atmosphere having a pressure of 500atm or more. Thus, a sinter is obtained which has a 10 to 2,000mum- thick surface layer having a carbon content of 5 to 30vol.% that is higher than that of the inner part of the product, and which has an open pore content of 0.1 to 5%. This sinter is immersed in a lubricant bath and heated to 80 to 120 deg.C in a vacuum, thereby to deaerate it and infiltrate the lubricant into the open pores of it.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高強度を有するととも
に摺動特性に優れ、メカニカルシールや軸受等に好適な
摺動部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding member that has high strength and excellent sliding properties and is suitable for mechanical seals, bearings, and the like.

【0002】0002

【従来技術】炭化珪素や窒化珪素に代表される非酸化物
系セラミックスは、他のセラミックスや金属に比較して
、硬度、強度、靱性および化学的安定性等に優れる材料
として注目され、たとえば、メカニカルシール部品、軸
受部品、薬品用バルブ部材として用いられている。
[Prior Art] Non-oxide ceramics such as silicon carbide and silicon nitride have attracted attention as materials that have superior hardness, strength, toughness, and chemical stability compared to other ceramics and metals. Used as mechanical seal parts, bearing parts, and chemical valve parts.

【0003】しかしながら、窒化珪素および炭化珪素単
体では十分な摺動特性が得られないことから、窒化珪素
粉末や炭化珪素粉末に対して、焼結助剤としてAl2 
O3 や周期律表第3a族元素酸化物、あるいは炭素お
よびB4 C等を添加すると同時にグラファイトやBN
等の固体潤滑材を添加し、これを真空中あるいは不活性
雰囲気中で焼成することにより、窒化珪素や炭化珪素か
らなる骨材中に前記固体潤滑材を均一分散させることに
より、焼結体表面の摺動特性を高めようとする試みが行
われている。
However, silicon nitride and silicon carbide alone cannot provide sufficient sliding properties, so Al2 is used as a sintering aid for silicon nitride powder and silicon carbide powder.
At the same time as adding O3, oxides of Group 3a elements of the periodic table, or carbon and B4C, graphite and BN are added.
By adding a solid lubricant such as and firing it in a vacuum or an inert atmosphere, the solid lubricant is uniformly dispersed in the aggregate made of silicon nitride or silicon carbide, and the surface of the sintered body is improved. Attempts are being made to improve the sliding properties of.

【0004】0004

【発明が解決しようとする問題点】摺動特性を高めるた
めには、焼結体表層部における固体潤滑材の量が多い方
が望ましいが、固体潤滑材を多量に添加すると、焼結体
自体の緻密化が阻害されるとともに、いわゆる骨材とし
てのセラミックス自体の強度が低くなるために摺動部材
として割れや欠け等が生じやすくなるという問題があっ
た。そのために固体潤滑材の添加量にもおのずと制限が
あった。
[Problems to be Solved by the Invention] In order to improve the sliding properties, it is desirable to have a large amount of solid lubricant on the surface layer of the sintered body, but if a large amount of solid lubricant is added, the sintered body itself There is a problem in that the densification of ceramics is inhibited, and the strength of the ceramic itself as so-called aggregate becomes low, making it easy for sliding members to crack or chip. For this reason, there was naturally a limit to the amount of solid lubricant added.

【0005】また製法上、固体潤滑材自体の分散を均一
に行う必要があり、場合によっては焼結体内部の固体潤
滑材が焼結体の破壊源となり、強度を低下させるという
問題がある。しかも窒化珪素をマトリックスとして固体
潤滑材を分散した焼結体では、その窒化珪素結晶の粒界
に焼結助剤として添加した金属酸化物が存在するために
耐薬品性が悪く、その使用範囲が限定されるという問題
もある。
[0005] Furthermore, due to the manufacturing method, it is necessary to uniformly disperse the solid lubricant itself, and in some cases, there is a problem that the solid lubricant inside the sintered body becomes a source of destruction of the sintered body, reducing its strength. Moreover, a sintered body made of silicon nitride as a matrix and a solid lubricant dispersed therein has poor chemical resistance due to the presence of metal oxides added as sintering aids at the grain boundaries of the silicon nitride crystals, and its range of use is limited. There is also the problem of being limited.

【0006】[0006]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して検討を重ねた結果、骨材として炭化珪素お
よび/または窒化珪素を用いた系において、固体潤滑材
として分散含有する炭素を焼結体の内部より表層部に多
量に存在させるとともに、かかる系に対してさらに潤滑
油を含浸させることにより、焼結体自体の強度を低下さ
せることなく、表層部における摩擦係数を低減でき、摺
動性を向上することができ、これにより各種の摺動部材
として信頼性の高い安定した特性を発揮することができ
ることを見出したものである。
[Means for Solving the Problems] As a result of repeated studies on the above problems, the present inventors have found that in systems using silicon carbide and/or silicon nitride as aggregates, dispersion-containing solid lubricants can be used as solid lubricants. By making a larger amount of carbon exist in the surface layer than in the interior of the sintered body, and by further impregnating this system with lubricating oil, the coefficient of friction in the surface layer can be lowered without reducing the strength of the sintered body itself. The inventors have discovered that it is possible to reduce the amount of friction, improve sliding properties, and thereby exhibit highly reliable and stable characteristics as various sliding members.

【0007】本発明は、セラミックス焼結体における摺
動特性が焼結体の表層部の構造および組織に支配される
特性であり、また焼結体内部はいわゆる摺動に対する支
持部材的な作用をなすという考え方から、摺動特性を大
きく向上させるために添加される固体潤滑材としての炭
素を図1に示すように焼結体の表層部から内部にかけて
の炭素が少なくなるようにしたことを特徴とする。
The present invention provides that the sliding characteristics of a ceramic sintered body are controlled by the structure and organization of the surface layer of the sintered body, and that the inside of the sintered body acts as a support member for sliding. As shown in Figure 1, carbon is added as a solid lubricant to significantly improve sliding properties, and carbon content is reduced from the surface layer to the interior of the sintered body. shall be.

【0008】本発明の焼結体を構成する骨材としては、
炭化珪素、窒化珪素、または炭化珪素と窒化珪素との複
合体のいずれでもよく、これらのセラミックスは、それ
自体強度が高く、また摺動特性の点において他のセラミ
ックスに比較して優れた性質を有するものである。また
、固体潤滑材としての炭素は、焼結体の表層部において
その体積比率が5〜30%程度の割合で存在しているこ
とが望ましく、5%より少ないと所望の摺動特性が得ら
れず、30%を越えると表層部における強度が低下する
ために摺動面の欠損等が生じやすくなる。一方、焼結体
内部は、摺動特性に関与しないという観点から、実質的
に炭素が含有されていなくてもよく、骨材成分である炭
化珪素や窒化珪素からなることがよい。
[0008] As the aggregate constituting the sintered body of the present invention,
It may be silicon carbide, silicon nitride, or a composite of silicon carbide and silicon nitride, and these ceramics themselves have high strength and superior sliding properties compared to other ceramics. It is something that you have. In addition, it is desirable that carbon as a solid lubricant exists at a volume ratio of about 5 to 30% in the surface layer of the sintered body, and if it is less than 5%, the desired sliding characteristics cannot be obtained. First, if it exceeds 30%, the strength of the surface layer portion decreases, making it easy for damage to the sliding surface to occur. On the other hand, the inside of the sintered body does not need to contain substantially carbon from the viewpoint that it does not affect sliding properties, and is preferably made of silicon carbide or silicon nitride, which are aggregate components.

【0009】しかしながら、焼結体表層部から内部にか
けて、その組成や組織が急変すると、その境界部分に特
性の相違により応力が発生しやすく、割れや欠け等を生
じることがあるために、表層部より内部にかけて図1に
示すように、固体潤滑材の量は徐々に少なくなるように
構成することがよい。
However, if the composition or structure of the sintered body suddenly changes from the surface layer to the inside, stress is likely to occur at the boundary due to the difference in characteristics, which may cause cracks or chips. As shown in FIG. 1, the amount of solid lubricant is preferably configured to gradually decrease toward the inside.

【0010】また、本発明によれば、上記構成からなる
焼結体中に潤滑油を含浸させることを大きな特徴とする
。潤滑油を含浸させるために上記焼結体は適度の開気孔
を有していることが必要で、具体的には0.1〜5%の
開気孔率を有することが望ましい。含浸させる潤滑油と
しては、パラフィン系オイル、シリコン系オイル、ナフ
テン系オイル、フッ素系オイルが挙げられる。なお、焼
結体中への含油量は、0.01〜1重量%であることが
望ましい。
Further, according to the present invention, a major feature is that the sintered body having the above structure is impregnated with lubricating oil. In order to impregnate lubricating oil, the sintered body needs to have an appropriate amount of open pores, and specifically, it is desirable to have an open porosity of 0.1 to 5%. Examples of the lubricating oil to be impregnated include paraffin oil, silicone oil, naphthene oil, and fluorine oil. Note that the oil content in the sintered body is preferably 0.01 to 1% by weight.

【0011】本発明の摺動部材を得る方法について説明
すると、従来のように炭化珪素や窒化珪素等の骨材成分
に対して炭素粉末を混合し焼成する方法では、均一組織
となり、本発明の構成である表層部と内部において炭素
の含有量の異なる組織は形成されない。
To explain the method for obtaining the sliding member of the present invention, the conventional method of mixing carbon powder with aggregate components such as silicon carbide and silicon nitride and firing the mixture results in a uniform structure, which results in the sliding member of the present invention. A structure with different carbon contents is not formed between the surface layer and the interior.

【0012】そこで、本発明によれば、まず原料粉末と
して炭化珪素粉末を準備する。用いる炭化珪素粉末とし
てはα−SiC、β−SiCのいずれか、またはこれら
を混合して使用することもできる。炭化珪素粉末の平均
粒径は0.1〜2μm  が適当である。また上記炭化
珪素粉末に対しては添加物として、カーボンブラックや
グラファイト等の炭素粉末あるいは熱分解により炭素を
生成しうるフェノール樹脂、コールタールピッチ、ショ
糖等の有機材料や、B4 C等の硼素含有化合物を10
重量%以下の割合で添加することができる。
According to the present invention, silicon carbide powder is first prepared as a raw material powder. The silicon carbide powder used may be either α-SiC or β-SiC, or a mixture thereof. The average particle size of the silicon carbide powder is suitably 0.1 to 2 μm. Additionally, additives for the silicon carbide powder include carbon powder such as carbon black and graphite, organic materials such as phenol resin that can generate carbon through thermal decomposition, coal tar pitch, and sucrose, and boron such as B4C. Contains 10 compounds
It can be added in a proportion of % by weight or less.

【0013】上記炭化珪素粉末と、場合により上記添加
物を充分に添加混合した後、上記粉末にバインダー等を
添加し、周知の成形方法、たとえばプレス成形、押出成
形、鋳込み成形、冷間静水圧成形等により所望の形状に
成形する。成形体は、所望により200〜800℃で仮
焼することによりフェノール樹脂等の炭素生成化合物よ
り炭素を生成させることができる。
After the silicon carbide powder and optionally the additives are sufficiently added and mixed, a binder or the like is added to the powder, and the powder is subjected to a known molding method such as press molding, extrusion molding, casting molding, or cold isostatic pressing. Form into a desired shape by molding or the like. If desired, the molded body can be calcined at 200 to 800°C to generate carbon from a carbon-generating compound such as a phenol resin.

【0014】次に、上記のようにして得られた成形体を
焼成するが、本発明によれば、この焼成を下記数1
[0014] Next, the molded body obtained as described above is fired, and according to the present invention, this firing is performed according to the following equation 1.

【数
1】    3SiC+2N2   →  Si3 N
4 +3Cで示されるように炭化珪素と窒素の反応によ
り窒化珪素および炭素が生成可能な雰囲気中で焼成する
。具体的には1000℃以上、特に1500℃以上の温
度で雰囲気中に窒素ガスを必須成分として含むとともに
該窒素ガス圧力が500気圧以上、特に1000気圧以
上の加圧下で焼成することにより数1の反応を進行させ
ることができる。
[Math. 1] 3SiC+2N2 → Si3 N
4 +3C, firing is carried out in an atmosphere in which silicon nitride and carbon can be produced by a reaction between silicon carbide and nitrogen. Specifically, by firing at a temperature of 1000°C or higher, especially 1500°C or higher, containing nitrogen gas as an essential component in the atmosphere, and at a nitrogen gas pressure of 500 atmospheres or higher, especially 1000 atmospheres or higher, The reaction can proceed.

【0015】この焼成によれば、内部および表層部とも
に高緻密化が達成されるとともに、焼結体の表層部にお
いて特に上記反応が活発に生じ、焼結体の表層部に炭素
が内部よりも多くなるという特異的焼結体が形成される
[0015] According to this firing, high densification is achieved in both the interior and the surface layer, and the above reaction occurs particularly actively in the surface layer of the sintered body, so that carbon is more concentrated in the surface layer of the sintered body than in the interior. A specific sintered body is formed that increases in number.

【0016】この焼結のメカニズムについては定かでは
ないが、高温高圧下の窒素雰囲気中で、炭化珪素粒子の
表面から窒化珪素への反応が進行し、それに伴い体積膨
張が生じ、それによりある程度緻密化が進行し、一旦表
層部に緻密層が生じると焼結体内部への窒素ガスの進入
が抑制されるために、結果として表層部、内部ともに気
孔率10%以下の緻密体となるものの、表層部と内部に
おいてほぼ連続的に異なる組織が形成されると考えられ
る。
Although the mechanism of this sintering is not clear, in a nitrogen atmosphere under high temperature and high pressure, a reaction progresses from the surface of silicon carbide particles to silicon nitride, resulting in volumetric expansion, which results in some degree of densification. As the sintering progresses and once a dense layer is formed in the surface layer, the entry of nitrogen gas into the interior of the sintered body is suppressed, resulting in a dense body with a porosity of 10% or less in both the surface layer and the interior. It is thought that different structures are formed almost continuously between the surface layer and the inside.

【0017】よって、上記焼成によれば、焼成温度、焼
成時間等を制御することにより表層部において炭素の生
成量を高めるとともに、焼結体内部において炭素の生成
を抑制することができる。望ましくは焼結体の表層部は
完全に反応を進行させ、窒化珪素と炭素から構成される
ことが望ましい。この場合、その表層部には窒化珪素を
骨材とし炭素が約26体積%を割合で均一に分散した組
織が形成される。
[0017] Therefore, according to the above-described firing, by controlling the firing temperature, firing time, etc., it is possible to increase the amount of carbon produced in the surface layer portion and to suppress the production of carbon inside the sintered body. Preferably, the reaction proceeds completely in the surface layer of the sintered body, and it is desirable that the surface layer is composed of silicon nitride and carbon. In this case, a structure is formed in the surface layer in which silicon nitride is used as aggregate and carbon is uniformly dispersed at a ratio of about 26% by volume.

【0018】また、この焼結体の他の特徴としては、表
層部から内部にかけて骨材である炭化珪素および窒化珪
素の量比が変化することが挙げられ、炭化珪素/(窒化
珪素+炭化珪素)で表される組成比は表層部から内部に
かけて大きくなる。このような構成によれば、表層部は
窒化珪素的な特性、即ち耐熱衝撃性および靱性に優れた
特性を有する。また、通常の窒化珪素質焼結体によれば
、窒化珪素結晶粒子間に焼結助剤として用いられた金属
酸化物が粒界相として存在するが、この焼結体の表層部
では、窒化珪素結晶粒子間に金属酸化物が実質的に存在
しないことも大きな特徴であり、耐薬品性を高めること
ができ、摺動部材として適用範囲を広げることができる
[0018] Another feature of this sintered body is that the quantitative ratio of silicon carbide and silicon nitride, which are aggregates, changes from the surface layer to the inside. The composition ratio expressed by ) increases from the surface layer to the inside. According to such a structure, the surface layer portion has characteristics similar to silicon nitride, that is, characteristics excellent in thermal shock resistance and toughness. Furthermore, in a normal silicon nitride sintered body, a metal oxide used as a sintering aid exists between silicon nitride crystal grains as a grain boundary phase, but in the surface layer of this sintered body, nitride Another major feature is that there is substantially no metal oxide between silicon crystal particles, which improves chemical resistance and expands the range of applications for sliding members.

【0019】なお、炭素量が少なくとも20体積%以上
の表層部はその厚みが10〜2000μmであることが
望ましく、厚みが10μmより薄いと摺動特性の長期安
定性に欠け、2000μmより厚いと表層部の強度が低
下し欠け等が発生しやすくなる。
It is preferable that the thickness of the surface layer containing at least 20% by volume of carbon is 10 to 2000 μm. If the thickness is thinner than 10 μm, the long-term stability of the sliding properties will be lacking, and if it is thicker than 2000 μm, the surface layer will be damaged. The strength of the parts decreases and chips are more likely to occur.

【0020】一方、焼結体の内部は炭化珪素あるいは炭
化珪素と窒化珪素を主体として構成されることが望まし
く、内部において炭化珪素/(炭化珪素+窒化珪素)の
組成比率が0.2以上であることが望ましい。
On the other hand, the interior of the sintered body is preferably composed mainly of silicon carbide or silicon carbide and silicon nitride, and the composition ratio of silicon carbide/(silicon carbide + silicon nitride) is 0.2 or more in the interior. It is desirable that there be.

【0021】つぎに、上記の方法により得られた焼結体
に対して潤滑油を含浸させる。含浸させる方法としては
、焼結体を含浸させようとする潤滑油浴中に浸漬し、8
0〜120℃程度に加熱し油の粘土を下げた状態で真空
中に放置して焼結体を脱泡し、その後潤滑油浴より取り
出すことにより潤滑油は焼結体中の開気孔中に含浸され
る。
Next, the sintered body obtained by the above method is impregnated with lubricating oil. The method for impregnating is to immerse the sintered body in a lubricating oil bath to be impregnated.
The sintered body is heated to about 0 to 120°C and left in a vacuum with the oil clay lowered to defoam the sintered body, and then taken out from the lubricating oil bath, the lubricating oil is poured into the open pores in the sintered body. Impregnated.

【0022】[0022]

【作  用】本発明によれば、表層部における固体潤滑
材である炭素量を焼結体表層部のみに多く存在させると
ともに潤滑油を含浸させることにより、摺動部材として
の使用時に潤滑油が摺動面に滲み出し、液体潤滑をも併
用することができるために、固体潤滑作用と液体潤滑作
用とを合わせ持つことができ、表層部における摩擦係数
を低くすることができる。また、表層部のみ炭素が多量
に存在することにより焼結体全体としての強度を低下さ
せることがなく、表層部において比較的多量の炭素が存
在しても内部における強度が高いことから摺動部材とし
ても安定した摺動特性を発揮することができる。しかも
、表層部から内部にかけての組織的な変化がほぼ連続的
に形成されていることから、焼結体内での特性の相違に
より発生する応力を低減することができる。
[Function] According to the present invention, a large amount of carbon, which is a solid lubricant in the surface layer, is present only in the surface layer of the sintered body, and by impregnating the sintered body with lubricating oil, the lubricating oil is removed when used as a sliding member. Since it exudes onto the sliding surface and liquid lubrication can also be used, it is possible to have both solid lubricating action and liquid lubricating action, and it is possible to lower the coefficient of friction in the surface layer. In addition, the presence of a large amount of carbon only in the surface layer does not reduce the strength of the sintered body as a whole, and even if a relatively large amount of carbon exists in the surface layer, the internal strength is high, so sliding members It can also exhibit stable sliding characteristics. Moreover, since the structural changes from the surface layer to the inside are almost continuous, it is possible to reduce stress caused by differences in characteristics within the sintered body.

【0023】また、炭素を表層部において多量に存在さ
せることができるために、焼結体自体の熱伝導率を高め
ることができ、これにより摺動時に発生した熱を効率的
に放熱することもできる。さらに炭素を内部においても
適量存在させることにより焼結体全体の電気抵抗を小さ
くすることができ、これにより放電加工を行うことがで
きる。
Furthermore, since a large amount of carbon can be present in the surface layer, the thermal conductivity of the sintered body itself can be increased, and thereby the heat generated during sliding can be efficiently dissipated. can. Furthermore, by allowing an appropriate amount of carbon to exist inside the sintered body, the electrical resistance of the entire sintered body can be reduced, thereby allowing electric discharge machining to be performed.

【0024】さらに、骨材として表層部の骨材を窒化珪
素を主体として形成することにより摺動部材表層部の耐
熱衝撃性を高めることができる。
Furthermore, by forming the aggregate in the surface layer mainly of silicon nitride, the thermal shock resistance of the surface layer of the sliding member can be improved.

【0025】[0025]

【実施例】β−SiC粉末(平均粒径0.4μm、酸素
含有量0.1重量%)に対して、場合により表1に示す
ように各種の添加物を添加混合し、成形用バインダーと
してレゾール型フェノール樹脂20%溶液を適量添加し
、さらに溶媒としてアセトンを適量添加し、混練乾燥後
、篩を通して成形用顆粒を得た。この顆粒を金型プレス
を用いて成形圧2000kg/cm2 で外径20mm
、厚み10mmの円板状成形体を作成した。次に成形体
を600℃の不活性雰囲気(N2 気流中) で仮焼し
、フェノール樹脂を炭化し、仮焼体の組成の分析を行っ
た。そして、この仮焼体を表1の条件で焼成し、試料N
o,1〜8を得た。
[Example] Various additives as shown in Table 1 are added and mixed to β-SiC powder (average particle size 0.4 μm, oxygen content 0.1% by weight) as a binder for molding. A suitable amount of a 20% resol type phenol resin solution was added, and a suitable amount of acetone was further added as a solvent, and after kneading and drying, the mixture was passed through a sieve to obtain moldable granules. These granules were molded using a mold press at a molding pressure of 2000 kg/cm2 to an outer diameter of 20 mm.
A disc-shaped molded body with a thickness of 10 mm was prepared. Next, the molded body was calcined in an inert atmosphere (in a N2 stream) at 600°C to carbonize the phenol resin, and the composition of the calcined body was analyzed. Then, this calcined body was fired under the conditions shown in Table 1, and sample N
o, 1 to 8 were obtained.

【0026】得られた焼結体に対して、アルキメデス法
により焼結体比重および開気孔率を測定した。また、抗
折強度をJISR1601に基づき測定した。さらに焼
結体より表層部と焼結体内部より切り出し粉砕後、LE
CO法で全炭素、全窒素を測定し、窒素は窒化珪素とし
て計算し、残る珪素は炭化珪素として存在するとして結
合炭素を求め、残りを遊離炭素として計算で求めた。ま
た、焼結体の構成相をX線分析にて行った。なお、添加
物としてB4 Cを添加した試料においてはB4 Cも
窒化され、BNとなっているが添加量が微量であるため
にX線回折測定では検出されなかった。
The specific gravity and open porosity of the obtained sintered body were measured by the Archimedes method. Further, the bending strength was measured based on JISR1601. Furthermore, after cutting out the surface layer and the inside of the sintered body and crushing it, LE
Total carbon and total nitrogen were measured by the CO method, nitrogen was calculated as silicon nitride, bound carbon was determined assuming that the remaining silicon existed as silicon carbide, and the remainder was calculated as free carbon. In addition, the constituent phases of the sintered body were analyzed by X-ray analysis. In addition, in the sample to which B4 C was added as an additive, B4 C was also nitrided and became BN, but the amount added was so small that it was not detected by X-ray diffraction measurement.

【0027】得られた各焼結体をφ50×t10に円板
形状に研磨し、表面をラップ仕上げした後に洗浄乾燥後
、パラフィン系極低流動点基油を用いた汎用潤滑油浴中
に浸漬し、減圧(20mmtorr)容器中で110℃
で1時間加熱した。含浸前後の重量変化より、試料の含
油量を求めた。
Each of the obtained sintered bodies was polished into a disk shape of φ50×t10, the surface was lapped, washed and dried, and then immersed in a general-purpose lubricating oil bath using paraffinic ultra-low pour point base oil. and 110℃ in a vacuum (20mmtorr) container.
It was heated for 1 hour. The oil content of the sample was determined from the weight change before and after impregnation.

【0028】次に、試料円板にSUJII鋼球を固定ピ
ンとして接触させ、試料円板を回転させるボールオンデ
ィスク法にて摺動特性評価を行った。接触負荷と摩擦力
を測定し摩擦係数を算出した。
Next, the sliding characteristics were evaluated using the ball-on-disc method in which a SUJII steel ball was brought into contact with the sample disk as a fixed pin and the sample disk was rotated. The contact load and friction force were measured and the friction coefficient was calculated.

【0029】[0029]

【表1】[Table 1]

【0030】[0030]

【表2】[Table 2]

【0031】表1およひ表2によれば、従来のSiC質
焼結体による摺動部材(試料No,4)は摩擦係数が0
.6程度であるのは対して、本発明の摺動部材はいずれ
も摩擦係数が0.1程度の優れた特性を示した。また、
比較として潤滑油を含浸させなかった試料と比較しても
優れた摺動特性を示した。
According to Tables 1 and 2, the friction coefficient of the conventional sliding member (sample No. 4) made of SiC sintered material is 0.
.. On the other hand, all the sliding members of the present invention exhibited excellent characteristics with a coefficient of friction of about 0.1. Also,
As a comparison, it showed excellent sliding properties when compared with a sample that was not impregnated with lubricating oil.

【0032】[0032]

【発明の効果】以上、詳述した通り、本発明によれば、
炭化珪素や窒化珪素を骨材とし、その焼結体表層部に炭
素を内部に比較して多く存在させるとともに潤滑油を含
浸させることにより、焼結体全体としての高強度を維持
しつつ、優れた摺動特性が得られる。また、固体潤滑材
としての炭素を表層部において多量に存在させることに
より焼結体自体の熱伝導率および電気伝導率を高めるこ
とができ、それにより摺動時に発生した熱を効率的に放
熱することもできるとともに、放電加工を行うこともで
きる。
[Effects of the Invention] As detailed above, according to the present invention,
By using silicon carbide or silicon nitride as aggregate, and by making the surface layer of the sintered body contain more carbon than the inside, and by impregnating it with lubricating oil, the sintered body as a whole maintains high strength and has excellent properties. This results in better sliding properties. In addition, by having a large amount of carbon as a solid lubricant present in the surface layer, the thermal conductivity and electrical conductivity of the sintered body itself can be increased, thereby efficiently dissipating the heat generated during sliding. It is also possible to perform electrical discharge machining.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の摺動部材における炭素量の表層部から
の深さに対する変化を示す図である。
FIG. 1 is a diagram showing a change in carbon content with respect to depth from a surface layer in a sliding member of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  炭化珪素および/または窒化珪素を骨
材とし、固体潤滑材として炭素を分散含有する摺動部材
において、前記炭素が内部よりも表層部に多く存在する
とともに潤滑油を含浸することを特徴とする摺動部材。
1. A sliding member that uses silicon carbide and/or silicon nitride as an aggregate and contains carbon dispersed therein as a solid lubricant, wherein the carbon is present in a larger amount in the surface layer than in the interior and is impregnated with lubricating oil. A sliding member characterized by:
【請求項2】  焼結体表層部における炭素量が5〜3
0体積%である請求項1記載の摺動部材。
[Claim 2] The amount of carbon in the surface layer of the sintered body is 5 to 3.
The sliding member according to claim 1, wherein the content is 0% by volume.
【請求項3】  内部が炭化珪素を主体とし、表層部が
少なくとも窒化珪素と炭素とを含有する請求項1記載の
摺動部材。
3. The sliding member according to claim 1, wherein the inside is mainly made of silicon carbide, and the surface layer contains at least silicon nitride and carbon.
JP3084806A 1991-01-31 1991-03-25 Sliding member Expired - Fee Related JP2851717B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3084806A JP2851717B2 (en) 1991-03-25 1991-03-25 Sliding member
DE1992623528 DE69223528T2 (en) 1991-01-31 1992-01-30 Sintered, ceramic composite material, process for its production and the same slide valve
EP19920101552 EP0497345B1 (en) 1991-01-31 1992-01-30 Composite ceramic sintered material, process for producing the same, and slider member using the same
US08/162,796 US5462813A (en) 1991-01-31 1993-12-07 Composite ceramic sintered material
US08/466,930 US5571611A (en) 1991-01-31 1995-06-06 Composite ceramic sintered material and slider member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3084806A JP2851717B2 (en) 1991-03-25 1991-03-25 Sliding member

Publications (2)

Publication Number Publication Date
JPH04293998A true JPH04293998A (en) 1992-10-19
JP2851717B2 JP2851717B2 (en) 1999-01-27

Family

ID=13840962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3084806A Expired - Fee Related JP2851717B2 (en) 1991-01-31 1991-03-25 Sliding member

Country Status (1)

Country Link
JP (1) JP2851717B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853506A (en) * 1997-07-07 1998-12-29 Ford Motor Company Method of treating metal working dies
JP2005154258A (en) * 2003-10-29 2005-06-16 Sumitomo Electric Ind Ltd Ceramic composite material and method for producing same
WO2005116175A1 (en) * 2004-05-27 2005-12-08 Kabushiki Kaisha Toyota Jidoshokki Slide member and method of producing slide member
WO2013031529A1 (en) * 2011-09-03 2013-03-07 イーグル工業株式会社 Sliding component
JP2014126191A (en) * 2012-12-27 2014-07-07 Kyocera Corp Rotary joint

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853506A (en) * 1997-07-07 1998-12-29 Ford Motor Company Method of treating metal working dies
JP2005154258A (en) * 2003-10-29 2005-06-16 Sumitomo Electric Ind Ltd Ceramic composite material and method for producing same
WO2005116175A1 (en) * 2004-05-27 2005-12-08 Kabushiki Kaisha Toyota Jidoshokki Slide member and method of producing slide member
WO2013031529A1 (en) * 2011-09-03 2013-03-07 イーグル工業株式会社 Sliding component
CN103649608A (en) * 2011-09-03 2014-03-19 伊格尔工业股份有限公司 Sliding component
JPWO2013031529A1 (en) * 2011-09-03 2015-03-23 イーグル工業株式会社 Sliding parts
US9447884B2 (en) 2011-09-03 2016-09-20 Eagle Industry Co., Ltd. Sliding parts
JP2014126191A (en) * 2012-12-27 2014-07-07 Kyocera Corp Rotary joint

Also Published As

Publication number Publication date
JP2851717B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
EP1761475B1 (en) A process for the manufacturing of dense silicon carbide
US5610110A (en) Sintered SiC shaped articles and mechanical packings comprised thereof
US7166550B2 (en) Ceramic composite body of silicon carbide/boron nitride/carbon
JP5514558B2 (en) Ceramic elements containing inclusions
JPH0253387B2 (en)
JPS6143310B2 (en)
US5462813A (en) Composite ceramic sintered material
US4019913A (en) Process for fabricating silicon carbide articles
Vijayan et al. Low‐density open cellular silicon carbide foams from sucrose and silicon powder
JPH04293998A (en) Sliding member
JP2801785B2 (en) Manufacturing method of ceramic composite sintered body
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member
JP2902796B2 (en) Ceramic composite sintered body and sliding member using the same
JPH0251864B2 (en)
JPH034511B2 (en)
JP4178236B2 (en) Silicon carbide-based low friction sliding material and manufacturing method thereof
JPS62148384A (en) Silicon carbide base composite material
JP2738596B2 (en) Ceramic composite sintered body and its manufacturing method
Belyakov et al. A Comparative Study of Methods for Obtaining Silicon Carbide Ceramic Materials
Chun et al. Processing of silica-bonded silicon carbide ceramics
JP3152872B2 (en) Sliding composite material
JP2543093B2 (en) Sliding parts for seals
JPH0733527A (en) Sliding part
JPS6227030B2 (en)
JPS60246267A (en) Silicon carbide base sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees