JPH0492873A - Porous ceramic body and production thereof - Google Patents
Porous ceramic body and production thereofInfo
- Publication number
- JPH0492873A JPH0492873A JP21079490A JP21079490A JPH0492873A JP H0492873 A JPH0492873 A JP H0492873A JP 21079490 A JP21079490 A JP 21079490A JP 21079490 A JP21079490 A JP 21079490A JP H0492873 A JPH0492873 A JP H0492873A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic body
- powder
- porous ceramic
- raw material
- porosity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 70
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000843 powder Substances 0.000 claims abstract description 59
- 239000002994 raw material Substances 0.000 claims abstract description 41
- 239000012298 atmosphere Substances 0.000 claims abstract description 14
- 239000007788 liquid Substances 0.000 claims abstract description 12
- 230000001590 oxidative effect Effects 0.000 claims abstract description 12
- 238000004898 kneading Methods 0.000 claims abstract description 8
- 238000010304 firing Methods 0.000 claims description 19
- 239000003795 chemical substances by application Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 13
- 239000004927 clay Substances 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 14
- 239000011230 binding agent Substances 0.000 abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 10
- 230000035699 permeability Effects 0.000 abstract description 9
- 239000005995 Aluminium silicate Substances 0.000 abstract description 7
- 235000012211 aluminium silicate Nutrition 0.000 abstract description 7
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 7
- 238000001035 drying Methods 0.000 abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 3
- 239000011148 porous material Substances 0.000 description 33
- 239000002245 particle Substances 0.000 description 21
- 239000008187 granular material Substances 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 7
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 7
- 229920006184 cellulose methylcellulose Polymers 0.000 description 7
- 238000012710 chemistry, manufacturing and control Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 239000010445 mica Substances 0.000 description 5
- 229910052618 mica group Inorganic materials 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- -1 bioreactors Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000007833 carbon precursor Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 241000978776 Senegalia senegal Species 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 238000007582 slurry-cast process Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241001648341 Orites Species 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011153 ceramic matrix composite Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、触媒担体、バイオリアクター、濾過材等の通
ガス体や通液体、吸上式蒸散装置、芳香器、殺虫器、固
体潤滑材、固体研磨材等に用いられる多孔質セラミック
体及びその製造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to catalyst carriers, bioreactors, gas passing bodies and liquid passing bodies such as filter media, wicking evaporation devices, aroma devices, insecticides, and solid lubricants. , relates to a porous ceramic body used as a solid abrasive and a method for manufacturing the same.
近年、多孔質セラミック体は、特にガス分離、限外濾過
、精密濾過、バイオリアクター、吸上式蒸散装置などに
多用され、その使用条件に応じて、耐熱性、耐薬品性な
どの様々な特性が要求されている。特に多孔質セラミッ
ク体が、その機能を充分に発揮し、長時間その機能を保
持する為にはその気孔率、気孔径、気孔分布が極めて重
要な物性である。In recent years, porous ceramic bodies have been widely used especially in gas separation, ultrafiltration, microfiltration, bioreactors, wicking evaporation equipment, etc., and depending on the usage conditions, they have various properties such as heat resistance and chemical resistance. is required. In particular, the porosity, pore diameter, and pore distribution are extremely important physical properties for a porous ceramic body to fully exhibit its functions and maintain its functions for a long period of time.
しかし従来この種の多孔質セラミック体においては、1
体中の気孔率、気孔径、気孔分布は均一であった。However, conventionally, in this type of porous ceramic body, 1
The porosity, pore size, and pore distribution throughout the body were uniform.
そこで気孔率や気孔径の異なる部分を持つセラミック体
を1体物として得ようとする時は、それぞれの気孔率や
気孔径を持った数種のセラミック体を接着剤等によって
接着するか、それぞれの成形体を接着後焼成する、ある
いは、一方のセラミック体に、他方のセラミック材料を
コーティングする等の方法がとられていた。Therefore, when trying to obtain ceramic bodies with different porosity and pore diameter as a single body, it is necessary to bond several types of ceramic bodies with different porosity and pore diameter with adhesive, or to Methods have been used, such as bonding and firing the molded bodies, or coating one ceramic body with the other ceramic material.
しかし、こうしたセラミック体では、接着面での機械的
強度、使用した場合の接着部の耐熱性、耐薬品性に問題
が生じ、更には気孔率や気孔径の変化が急激すぎること
から、上記用途の要求を満たせずに、適用は必ずしも好
ましいものではなかった。加えて、加熱脱脂後又は焼結
後の気孔率や気孔径の異なるセラミック体を接着し、焼
結を行った場合、収縮等が均一に行われない為に、脱脂
時又は焼結時に配合されていた流動性付与剤等がガス化
し滞溜し、クラック発生を起こし、更に膨張収縮のアン
バランスから、仕上り品の寸法不安定等の致命的欠陥が
生じ易いという課題があった。However, these ceramic bodies have problems with the mechanical strength of the bonded surface, the heat resistance and chemical resistance of the bonded part when used, and furthermore, the porosity and pore size change too rapidly. The application was not necessarily favorable as the requirements could not be met. In addition, when ceramic bodies with different porosity and pore diameter are bonded and sintered after heat degreasing or sintering, shrinkage etc. will not occur uniformly, so the The fluidity imparting agent etc. gasified and accumulated, causing cracks to occur, and furthermore, due to the imbalance of expansion and contraction, fatal defects such as dimensional instability of the finished product were likely to occur.
本発明者らは、上記課題を解決すべく鋭意検討した結果
、可燃性粉粒体を配合混練した成形体を焼成する際に、
該成形体の長さ方向或いは厚さ方向にそって温度又は酸
化条件を変化させて焼成すると、該粉粒体の焼失度が異
なることにより、気孔率の異なる部分が1体中に存在し
、しかもその境界域の気孔率が連続的に変化している多
孔質セラミック体が得られることを見出し、本発明に到
達した。As a result of intensive studies to solve the above problems, the inventors of the present invention found that when firing a molded article in which combustible powder and granules are mixed and kneaded,
When the molded body is fired by changing the temperature or oxidation conditions along the length direction or the thickness direction, the degree of burnout of the powder and granules differs, so that portions with different porosity exist in the body, Moreover, it has been discovered that a porous ceramic body in which the porosity of the boundary region continuously changes can be obtained, and the present invention has been achieved.
すなわち本発明の目的は、1体の多孔質セラミック体中
において、少なくとも2つの気孔率の異なる部分が存在
し、しかもその境界域の気孔率が連続的に変化している
多孔質セラミック体及びその製造方法を提供することに
ある。That is, the object of the present invention is to provide a porous ceramic body in which at least two portions with different porosity exist in one porous ceramic body, and the porosity of the boundary region changes continuously, and The purpose is to provide a manufacturing method.
しかして、本発明の目的は、可燃性粒子、セラミック原
料粉、粘結材及び混線用液体を含有する混練物を成形し
、乾燥し、該成形体の長さ方向或いは厚さ方向にそって
、温度勾配をもたせて焼成するか、又は一方を非酸化性
雰囲気中で、他方を酸化性雰囲気中で焼成することによ
り、容易に達成される。Therefore, the object of the present invention is to mold a kneaded material containing flammable particles, ceramic raw material powder, a caking agent, and a mixing liquid, dry it, and then mold it along the length direction or thickness direction of the molded product. This can be easily achieved by firing with a temperature gradient, or by firing one in a non-oxidizing atmosphere and the other in an oxidizing atmosphere.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明の多孔質セラミック体原料は黒鉛、炭素、炭素前
駆体等からなる可燃性粉粒体を含有するもので、該可燃
性粉粒体はいずれも焼成により燃焼して炭酸ガスとして
容易に焼失し、焼失後に粉粒体とほぼ同一形状の気孔が
形成され、又該粉粒体が炭酸ガスとして焼失する際、気
孔同士が互に連なって連続気孔が形成される。尚ここで
有機物、合成樹脂として、粘着としても有効に作用する
ポリビニールアルコール類、澱粉類、各種CMC。The raw material for the porous ceramic body of the present invention contains flammable powder and granules made of graphite, carbon, carbon precursors, etc. All of the flammable powder and granules are easily burnt out as carbon dioxide gas by burning. However, after being burnt off, pores having almost the same shape as the powder and granules are formed, and when the powder and granules are burned away as carbon dioxide gas, the pores are connected to each other to form continuous pores. Here, as organic substances and synthetic resins, polyvinyl alcohols, starches, and various CMCs that effectively act as adhesives are used.
アラビアガム等のガム類も勿論可燃性粉粒体に包含する
ものである。Of course, gums such as gum arabic are also included in the combustible powder.
これらの可燃性粉粒体として可及的球形に近い粉粒体を
用いると、得られる多孔質セラミック体の気孔が球形に
近くなり、通気性、耐久性等の各種特性がより向上し、
好ましいセラミック体となる。可及的球形に近い粉粒体
を得るには合成樹脂のビーズの様な初めから略球形の粉
粒体を用いるか、CMC1澱粉等の有機物の粉粒体を水
で練って造粒して球形とするか、或いは略球形の粉粒体
が得られる方法で粉砕した原料を用いる等の方法がある
。尚有機物の球形造粒体は加熱硬化させるか或いは炭素
前駆体となしたものを原料として用いることも有効であ
る。When powder particles as close to spherical as possible are used as these combustible powder particles, the pores of the resulting porous ceramic body become close to spherical, and various properties such as air permeability and durability are further improved.
This results in a preferred ceramic body. To obtain powders as close to spherical as possible, use powders that are initially approximately spherical, such as synthetic resin beads, or knead organic powders such as CMC1 starch with water and granulate them. There are methods such as using a raw material that has been pulverized by a method that yields spherical or approximately spherical powder particles. It is also effective to heat and harden the spherical granules of organic matter or to use them as a carbon precursor as a raw material.
これらの可燃性粉粒体は粒度調整したものを用いその使
用量を調節すれば、製造される多孔質セラミック体の気
孔率、気孔径を容易に調節することができ、好ましい、
該粉粒体としては、所望の気孔径に応じて焼成時の収縮
を考慮して、粒径が該気孔径よりやや大きめである粉粒
体を選択するとよい、更に粒径の揃った粉粒体を使用す
ると、通気性、耐久性等各種特性に優れた製品が得られ
る。By using these combustible powder particles whose particle size has been adjusted and adjusting the amount used, the porosity and pore diameter of the porous ceramic body to be produced can be easily adjusted, which is preferable.
As the powder, it is preferable to select a powder or granule whose particle size is slightly larger than the desired pore size, taking into account shrinkage during firing. By using the body, products with excellent properties such as breathability and durability can be obtained.
一方、セラミック原料粉としては、アルミナ、シリカ、
ジルコニア、タルク、マイカ、シラス、パーライト、種
石、更にはカオリン系およびモンモリロナイト系等の粘
土、並びに粘土を造粒してなる粉体等、通常に用いられ
るセラミック原料粉がいずれも使用可能であり、この場
合にもより通気性、耐久性に優れた多孔質セラミック体
を得る為には、原料粉末は可及的に球形に近いものが望
ましい。On the other hand, ceramic raw material powders include alumina, silica,
Any of the commonly used ceramic raw material powders can be used, such as zirconia, talc, mica, shirasu, perlite, seed stone, kaolin-based and montmorillonite-based clays, and powders made by granulating clays. In this case as well, in order to obtain a porous ceramic body with excellent air permeability and durability, it is desirable that the raw material powder be as close to spherical as possible.
アルミナ、シリカ等のより球形に近い粉粒体を得ようと
する時は、磨砕等の略球形の粉砕物が得られる粉砕方法
で粉砕してなる原料粉を用いるか、又はタルク、マイカ
等元来偏平な粉体、もしくは粘土等の場合は、有機質粘
結材と共に練って所望の粒径とした後、焼成或いは焼結
することにより、造粒して用いるとよい、該造粒時に有
機質粘結材を用いると、焼成時に発泡してそれ自体多孔
質のセラミック粉を得ることができる。又、焼結時に体
積膨張を起し、然も球形を形成するようなセラミック原
料即ちパーライト、シラス、黒耀石等を用いる方法もあ
る。When trying to obtain powder particles of alumina, silica, etc. that are more nearly spherical, it is necessary to use raw material powder obtained by grinding using a grinding method that produces approximately spherical particles, or to use talc, mica, etc. In the case of originally flat powder or clay, it is best to knead it with an organic binder to obtain the desired particle size, and then granulate it by firing or sintering. When a caking agent is used, it is possible to obtain a ceramic powder that foams during firing and is itself porous. There is also a method of using a ceramic raw material that expands in volume during sintering and forms a spherical shape, such as pearlite, shirasu, orite.
これらのセラミック原料粉は、目的とするセラミック体
の性質に合致する種類の粉粒体を選択することが望まし
く、又粘土を造粒しないで使用する場合を除き、所望の
気孔径に応じて該気孔径よりやや粒子径の大きい粉粒体
を選択することが良い、又、更には該セラミック原料粉
として可及的粒径の揃った粉体を用いると、製品セラミ
ック体の気孔径が揃うばかりでなく、焼成時に流動性付
与剤が急激に膨張して、クランクを生ずる現象を、抑制
することが可能となる。It is desirable to select a type of ceramic raw material powder that matches the properties of the intended ceramic body, and unless the clay is used without granulation, it should be selected according to the desired pore size. It is better to select a powder with a particle size slightly larger than the pore size, and furthermore, if you use a powder with as uniform a particle size as possible as the ceramic raw material powder, the pore size of the product ceramic body will be uniform. Instead, it becomes possible to suppress the phenomenon in which the fluidity imparting agent rapidly expands during firing and causes cranking.
本発明に原料として供する粘結材としては、粘土、リン
酸アルミ、水ガラス、及び塩基性塩化アルミ等の無機粘
結材でも、タラカントゴム、アラビアゴム、キプロゴム
等のゴム類、CMC,澱粉PVA及び各種合成レジン等
の有機質粘結材でもいずれも使用可能だが、乾燥、混線
、成形等が容易で、装置を傷めることがない等の取扱い
が容易である点から粘土が好ましい、中でも、物質の吸
着の用途に供する場合には、カオリン系粘土を原料とし
て用いると、比表面積が大きく、特に吸着性能にすぐれ
た多孔質セラミック体が製造出来る。The binders used as raw materials in the present invention include inorganic binders such as clay, aluminum phosphate, water glass, and basic aluminum chloride, rubbers such as talacant gum, gum arabic, and cypro rubber, CMC, starch PVA, and Although any organic binder such as various synthetic resins can be used, clay is preferred because it is easy to dry, cross-wire, mold, etc., and is easy to handle without damaging equipment. When using kaolin clay as a raw material, a porous ceramic body with a large specific surface area and particularly excellent adsorption performance can be produced.
一方、モンモリロナイト系粘土を用いると、比較的比表
面積は小さいが、濾過材等流体を吸着することなく、通
過させる用途に適した多孔質セラミック体が製造出来る
。尚、有機質粘結材は、粘結材としての性質を示す一方
で、焼成時に焼失して製品中の気孔を連続孔とする可燃
性粉粒体としての性質を持つことから、主たる粘結材と
して粘土等の無機質粘結材を用いた場合でも、これら有
機質粘結材を併用すると良く、特に連続孔を形成させる
目的には、CMC又は各種澱粉等を用いるのが好ましい
。On the other hand, when montmorillonite clay is used, it is possible to produce a porous ceramic body that has a relatively small specific surface area but is suitable for use in passing fluids such as filter media without adsorbing them. Although organic caking agents exhibit properties as caking agents, they also have properties as combustible powder particles that are burned away during firing and form continuous pores in the product, so they are not the main caking agents. Even when an inorganic binder such as clay is used as the binder, it is preferable to use these organic binders in combination. In particular, for the purpose of forming continuous pores, it is preferable to use CMC or various starches.
本明細書中、粘土はセラミック原料粉及び粘結材の両方
に含まれる材料として記述したが、−船釣に見て、粘土
類は通常セラミック原料粉として取り扱われ、焼成によ
り硬化してセラミック体全体に強度を付与する作用があ
る一方で、粘結材としても充分な効果があり、本発明の
原料として粘土を用いた場合、必ずしも他のセラミック
原料粉又は粘結材を併用する必要はない。In this specification, clay has been described as a material contained in both ceramic raw material powder and caking agent, but in boat fishing, clays are usually treated as ceramic raw material powder and are hardened by firing to form a ceramic body. While it has the effect of imparting strength to the whole, it also has a sufficient effect as a caking agent, and when clay is used as a raw material in the present invention, it is not necessarily necessary to use other ceramic raw material powders or caking agents together. .
セラミック体の製造においては、各原料を混練する際使
用する原料の性質に応じて水、アルコール、又は有機溶
剤等から適宜選択した混練用液体を用いる。原料の粒径
が小さく、有機質の原料を多く用いる程、混線用液体を
多めに添加する必要があるが、本発明の場合、混線用液
体として少くとも焼成時に蒸散するものを用いれば製品
中の気孔を連続気孔とするのにも効果がある。又、異種
混練物を積層成形する場合に有用であり、その添加量は
、所望の気孔率の積層成形時に、あたかも同−混練物の
如くになさしめる為、成形直前の混練物中に10〜45
重量%となる範囲で調節するのが好ましい。In the production of a ceramic body, a kneading liquid is used that is appropriately selected from water, alcohol, organic solvents, etc., depending on the properties of the raw materials used when kneading each raw material. The smaller the particle size of the raw material and the more organic raw materials used, the more crosstalk liquid needs to be added, but in the case of the present invention, if at least the crosstalk liquid that evaporates during firing is used, it will reduce the amount of crosstalk in the product. It is also effective in making the pores continuous. In addition, it is useful in the case of laminated molding of different types of kneaded materials, and the amount of addition is 10 to 10% in the kneaded material immediately before molding, in order to make it as if the same kneaded material during laminated molding with a desired porosity. 45
It is preferable to adjust the amount within a range of % by weight.
尚、前記の如くに、比較的球形に近いセラミック原料粉
粒体、又は焼成時に体積膨張するセラミック原料粉粒体
を用いた場合は、仮に黒鉛、炭素、炭素前駆体等既述の
可燃性粉粒体を用いなかったとしても、セラミック原料
粉の粒子同士の間隙が連続気孔を形成し、比較的良好な
特性を示す多孔質セラミック体を容易に製造出来る。そ
の場合、用いるセラミック原料粉体の粒径、量、他の材
料との組合せ等の11mは、可燃性の粉粒体を用いるこ
とを除いて、本発明方法と全く同様である。具体的には
、例えば、工業的に得られるシリカ塊を磨砕機にて粉砕
してなる粉粒体、又は成る範囲に分級されたシラスバル
ーン、パーライト、黒耀石などの原料を、粘土、水、及
び必要に応じて少量の有機質粘結材と共に混練し、成形
(押出し、型込め、積層、泥漿鋳込なと)し、乾燥後、
温度勾配を有する炉等で、或いは片方を非酸化性状態で
、焼成してなる多孔質セラミック体は、長さ方向に、或
いは厚さ方向に、気孔率、気孔径等が異なるセラミック
体であって、通気性、通液性、耐久性等の点で、良好な
性質を示す。As mentioned above, when using ceramic raw material powder that is relatively close to spherical, or ceramic raw material powder that expands in volume during firing, the above-mentioned combustible powder such as graphite, carbon, carbon precursor, etc. Even if granules are not used, the gaps between the particles of the ceramic raw material powder form continuous pores, and a porous ceramic body exhibiting relatively good properties can be easily produced. In that case, the particle size, amount, combination with other materials, etc. of the ceramic raw material powder used are exactly the same as the method of the present invention, except that combustible powder is used. Specifically, for example, powdered material obtained by crushing industrially obtained silica lumps with a grinder, or raw materials such as shirasu balloons, pearlite, and staghorn, which are classified into the following ranges, are mixed with clay, water, etc. , and if necessary, knead with a small amount of organic binder, shape (extrusion, molding, lamination, slurry casting, etc.), and after drying,
A porous ceramic body that is fired in a furnace with a temperature gradient or in a non-oxidizing state on one side is a ceramic body that has different porosity, pore diameter, etc. in the length direction or thickness direction. It exhibits good properties in terms of air permeability, liquid permeability, durability, etc.
本発明に於ては、上記各原料以外に、例えば流動性付与
剤等の通常セラミック体の製造に用いられる材料を初め
、他の材料を併用しても差し支えない、具体的には、原
料混練物中に、炭酸ソーダ、重炭酸ソーダ、炭酸カルシ
ウム等の炭酸塩等を含有せしめ、焼成時に発泡させると
、より通気性に優れた多孔質セラミック体が製造され得
るが、この含有量は、混線用液体を除く原料中5〜30
wt%とするのが好ましい、更に、水酸化カルシウム、
水酸化マグネシウム、水酸化アルミニウム等の水酸化物
を原料混練物中に含有せしめ、焼成時に分解して水を放
出し気孔を残存せしめることにより、上記と同様、通気
性に優れた多孔質セラミック体が製造可能で、水酸化物
の含有量は、混線用液体を除く原料中5〜35%とする
のが好ましい。In the present invention, in addition to the above-mentioned raw materials, other materials may be used in combination, including materials normally used for manufacturing ceramic bodies, such as fluidity imparting agents. Specifically, in the raw material kneading process, A porous ceramic body with better air permeability can be produced by incorporating carbonates such as soda carbonate, soda bicarbonate, and calcium carbonate into the material and foaming them during firing. 5-30 in raw materials excluding
It is preferable to set it as wt%, Furthermore, calcium hydroxide,
By incorporating hydroxides such as magnesium hydroxide and aluminum hydroxide into the raw material kneading material and decomposing it during firing to release water and leave pores, a porous ceramic body with excellent air permeability is created, similar to the above. can be produced, and the content of hydroxide is preferably 5 to 35% in the raw materials excluding the crosstalk liquid.
本発明は、上記各材料に混線用液体を加えて混練し、目
的に応じて何種類かの混練物を重ね合せた積層成型、泥
漿鋳込、型込め成形、或いは押出成形等の方法により成
形を行い、乾燥し、成形品の長さ方向或いは厚さ方向に
温度勾配が生ずるか、更には長さ方向、厚さ方向の一方
を非酸化性雰囲気にて焼成することを特徴とし、各材料
の混合比は特に限定されないが、可燃性粉粒体は15〜
80何t%、セラミック原料粉は20〜75wt%、粘
結材は3〜50−t%(氷原外の原料の総量を100w
t%とした)の範囲で、気孔率を始め製品に求める特性
に応じて、各原料の混合比を決定するのが好ましい。The present invention involves adding a mixing liquid to each of the above-mentioned materials, kneading them, and molding them by layer molding, slurry casting, die molding, extrusion molding, etc., in which several types of kneaded materials are layered according to the purpose. The molded product is dried, and a temperature gradient is created in the length direction or thickness direction of the molded product, or it is fired in a non-oxidizing atmosphere in either the length direction or the thickness direction. Although the mixing ratio of combustible powder and granules is not particularly limited, the mixing ratio of
80 t%, ceramic raw material powder 20-75 wt%, caking agent 3-50 t% (total amount of raw materials outside the ice field is 100 wt%)
It is preferable to determine the mixing ratio of each raw material in accordance with the characteristics desired for the product, including the porosity, within the range of 1.5% (t%).
尚、前述したように、セラミック原料粉が粘結材を兼ね
る場合、及び可燃性粉粒体が粘結材を兼ねる場合も、本
発明の範囲内であり、その場合の混合比は、前記各々の
原料比を参考にして適度に定めると良い。As mentioned above, cases where the ceramic raw material powder also serves as a caking agent and cases where combustible powder and granules also serve as a caking agent are within the scope of the present invention, and in that case, the mixing ratio is the same as each of the above. It is best to set it appropriately by referring to the raw material ratio.
本発明の最も特徴とする所は、長さ方向に又は厚さ方向
に気孔率の異なる部分が1体中に存在し、しかもその境
界域の気孔率が連続的に変化しているセラミック体を製
造する所にあるが、この目的を達成する為には、上記粉
粒体を混合する場合、焼成方法との関連で、焼失する温
度の異なる可燃性粉粒体を2種以上混合することも有効
である。The most distinctive feature of the present invention is that the ceramic body has portions with different porosity in the length direction or thickness direction, and the porosity of the boundary area changes continuously. However, in order to achieve this purpose, when mixing the above powders and granules, it is also possible to mix two or more types of combustible powders with different burnout temperatures in relation to the firing method. It is valid.
焼成は先づ、可燃性粉粒体が、高温側で或いは酸化雰囲
気側で焼失する温度まで徐々に昇温した後、より好まし
くは昇温を一時停止し、高温側或いは酸化雰囲気側にあ
る成形体中の粉粒体が、充分燃焼し焼失した後、再び昇
温すると、クラックの発生を防止出来、より通気性、耐
久性に優れた製品を製造できる。可燃性粉粒体が焼失し
た後の焼成は、全体を還元性雰囲気で行ってもよく、セ
ラミック原料が一部焼結する温度まで昇温しでもよい。In the firing process, the temperature is gradually raised to a temperature at which the combustible powder is burnt out on the high temperature side or in an oxidizing atmosphere, and then, more preferably, the heating is temporarily stopped, and the forming process is carried out on the high temperature side or in an oxidizing atmosphere. When the temperature is raised again after the powder and granules in the body have been sufficiently burned and burned out, it is possible to prevent the occurrence of cracks and produce products with better air permeability and durability. Firing after the combustible powder is burned out may be performed entirely in a reducing atmosphere, or the temperature may be raised to a temperature at which the ceramic raw material is partially sintered.
更に、セラミック体は一般に淡黄色等の色調を呈するが
、各種高温用顔料、セラミック用顔料、クロム、コバル
ト、ニッケル、鉄、銅等の金属、又は金属化合物を適宜
添加することにより、自由に着色することも可能である
。Furthermore, ceramic bodies generally have a pale yellow color, but they can be colored freely by adding various high-temperature pigments, ceramic pigments, metals such as chromium, cobalt, nickel, iron, copper, or metal compounds, as appropriate. It is also possible to do so.
色調の黒いセラミック体を製造するには、上記の如く顔
料を用いる以外に、黒鉛、炭素、炭素前駆体等の可燃性
粉粒体を完全には焼失させない様、先づ酸化性雰囲気で
比較的低温・短時間焼成し、次いで非酸化性雰囲気下、
高温で焼成するか、又は−旦製造した多孔質セラミック
体を、フェノール樹脂、フラン樹脂等の各種合成樹脂、
流動パラフィンワックス類、糖蜜、各種有機物を溶解し
た溶液に含浸した後、炭素分を完全に焼失させない様に
、温度、時間及び/又は雰囲気を調節して再焼成すると
よい、いづれの場合も黒鉛又は炭素質物質が気孔中に残
留し、黒色味を帯びたセラミック体を容易に製造できる
。In order to manufacture a ceramic body with a black color, in addition to using pigments as described above, in order to prevent combustible powders such as graphite, carbon, and carbon precursors from being completely burnt out, the ceramic body must first be relatively heated in an oxidizing atmosphere. Firing at a low temperature for a short time, then under a non-oxidizing atmosphere,
The porous ceramic body is fired at a high temperature, or is treated with various synthetic resins such as phenolic resin, furan resin, etc.
After impregnating liquid paraffin wax, molasses, and various organic substances in a solution, it is best to re-fire by adjusting the temperature, time, and/or atmosphere so as not to completely burn out the carbon content. In either case, graphite or The carbonaceous material remains in the pores, and a blackish ceramic body can be easily produced.
以下に本発明を実施例より詳述するが、本発明はその要
旨を越えない限り、これら実施例に限定されるものでは
ない。EXAMPLES The present invention will be explained in detail below using Examples, but the present invention is not limited to these Examples unless the gist of the invention is exceeded.
(実施例1)
20〜40μmに粒度調整された略球形のポリエチレン
ビーズ30重量部(以下部とあるのは重量部をいう)、
43〜74μmに粒度調整されたマイカ粉35部、カオ
リン系粘土30部、ダイセル社製CMC5部、日本油脂
社製ポリエチレングリコール#400 1部に水23部
を加えて混練し、外径10閣、長さ100閣の円柱状に
成形し、80℃にて24時間乾燥後、長さ方向50鵬を
黒鉛粉末中に埋設し、他の無蓋の状態でポリエチレンビ
ーズの炭化が完了する450℃迄15時間かけて昇温し
、続いて1200℃迄昇温しで焼結した結果、黒鉛粉末
中に埋設した側は平均気孔径20μm、気孔率61%、
無蓋側は平均気孔径25μm、気孔率67%で1体中に
気孔率の異なる部分を有する多孔質セラミック体を得た
。(Example 1) 30 parts by weight of approximately spherical polyethylene beads whose particle size was adjusted to 20 to 40 μm (hereinafter "parts" refer to parts by weight),
35 parts of mica powder whose particle size has been adjusted to 43 to 74 μm, 30 parts of kaolin clay, 5 parts of CMC manufactured by Daicel, and 1 part of polyethylene glycol #400 manufactured by NOF Corporation are mixed with 23 parts of water, and the outer diameter is 10 mm. Formed into a cylindrical shape with a length of 100 mm, dried at 80°C for 24 hours, buried 50 mm in the length direction in graphite powder, and left uncovered until carbonization of the polyethylene beads was completed at 450°C for 15 hours. As a result of increasing the temperature over time and then sintering it to 1200℃, the side embedded in graphite powder had an average pore diameter of 20 μm and a porosity of 61%.
On the open side, a porous ceramic body having an average pore diameter of 25 μm and a porosity of 67% and having portions with different porosity within one body was obtained.
(実施例2)
20〜40μmに粒度調整された略球形のアクリル樹脂
ビーズ35部、イヂチウインライト(シラスバルーン)
30部、カオリン系粘土30部、CMC5部、日本油脂
社製ポリエチレングリコール#400 1部に水25部
を加え混練し、厚さ30W+、長さ100m、巾100
mの板状に成形し、80°Cにて48時間乾燥後厚さ方
向に15m、を黒鉛粉末中に埋設し、他方の15■は無
蓋の状態で実施例1と同様の方法で焼結した結果、黒鉛
粉末中に埋設した側は平均気孔径が22μmで気孔率5
9%、無蓋側は気孔径28μmで気孔率70%で1体中
に気孔率の異なる部分を有する多孔質セラミック体を得
た。(Example 2) 35 parts of approximately spherical acrylic resin beads whose particle size was adjusted to 20 to 40 μm, Ijichi Winlight (Shirasu Balloon)
30 parts, 30 parts of kaolin clay, 5 parts of CMC, 1 part of polyethylene glycol #400 manufactured by Nihon Yushi Co., Ltd., and 25 parts of water were added and kneaded.Thickness: 30W+, length: 100m, width: 100m
After drying at 80°C for 48 hours, 15 m thick plate was embedded in graphite powder, and the other 15 m plate was sintered in the same manner as in Example 1 without a lid. As a result, the side embedded in graphite powder had an average pore diameter of 22 μm and a porosity of 5.
9%, and the open side had a pore diameter of 28 μm and a porosity of 70%, yielding a porous ceramic body having portions with different porosity in one body.
(実施例3)
43〜74μmに粒度調整した生コークス粉34部、同
じく43〜74μmに粒度調整したマイカ粉34部、カ
オリン系粘土26部、CMC5部、ポリエチレングリコ
ール1部に水23部を添加し混練し、厚さ30m、長さ
100++s、巾100腫の板状に成形し、80°Cで
42時間乾燥後実施例2と同様な方法で焼結し、得られ
た焼結体を180°Cにて油含浸した後還元性気固気下
1020°C迄10時間かけ昇温し、1020°Cで2
時間保持した後10時間かけ室温迄徐冷した結果、一方
は平均気孔径48μm、気孔率55%、他方は平均気孔
径55μm、気孔率62%で1体中に気孔率の異なる部
分を有する多孔質セラミック体を得た。(Example 3) 23 parts of water was added to 34 parts of raw coke powder whose particle size was adjusted to 43 to 74 μm, 34 parts of mica powder whose particle size was also adjusted to 43 to 74 μm, 26 parts of kaolin clay, 5 parts of CMC, and 1 part of polyethylene glycol. The mixture was kneaded and formed into a plate shape with a thickness of 30 m, a length of 100 ++ s, and a width of 100 m. After drying at 80°C for 42 hours, it was sintered in the same manner as in Example 2. After impregnating with oil at °C, the temperature was raised to 1020 °C for 10 hours under a reducing gas-solid atmosphere, and the temperature was raised to 1020 °C for 2 hours at 1020 °C.
After holding for 10 hours, it was slowly cooled to room temperature. As a result, one had an average pore diameter of 48 μm and a porosity of 55%, and the other had an average pore diameter of 55 μm and a porosity of 62%. A quality ceramic body was obtained.
(実施例4)
61〜104μmに粒度調整した黒鉛粉末32部、43
〜74μmに調整したマイカ粉41部、カオリン系粘土
20部、CMC5部、酸化ニッケル1部、ポリエチレン
グリコール1部に水22部を加えて混練し、直径7.5
閣、長さ100閣の棒状に押し出し、80℃で24時間
乾燥した後長さ方向に50閣をシリカ粉末中に埋設し、
600℃迄15時間、600°Cから850°C迄6時
間、850℃から1050℃迄5時間かけて昇温し、2
時間保持後8時間かけて室温迄徐冷した。一方は平均気
孔径62μm、気孔率56%、他方は平均気孔径70μ
m、気孔率65%の1体中に気孔率の異なる部分を有す
る黒色多孔質セラミック体を得た。(Example 4) 32 parts of graphite powder whose particle size was adjusted to 61 to 104 μm, 43 parts
22 parts of water was added to 41 parts of mica powder adjusted to ~74 μm, 20 parts of kaolin clay, 5 parts of CMC, 1 part of nickel oxide, and 1 part of polyethylene glycol, and kneaded to form a diameter of 7.5 μm.
It was extruded into a rod shape with a length of 100 mins, dried at 80°C for 24 hours, and then embedded in silica powder with 50 mins lengthwise.
The temperature was raised to 600°C for 15 hours, 6 hours from 600°C to 850°C, and 5 hours from 850°C to 1050°C.
After holding for 8 hours, the mixture was slowly cooled to room temperature. One has an average pore diameter of 62 μm and a porosity of 56%, and the other has an average pore diameter of 70 μm.
A black porous ceramic body having a porosity of 65% and having portions with different porosity in one body was obtained.
〔発明の効果〕
本発明の多孔質セラミック体及びその製造方法によれば
、気孔率の異なる部分が1体中に存在し、しかもその境
界域の気孔が連続孔であるために通気性がよく、接着法
を用いない為に、耐久性、耐薬品性、機械的強度が優れ
る多孔質セラミック体を、クランク、変形等体じること
なく容易に製造することが出来るので、気孔率及びその
分布の微妙な調整を必要とし、且つ、耐久性、耐薬品性
、強度も必要とする、通液体、通ガス体、濾過材等の各
種用途に用いられ、多大な工業的利益を提供するもので
ある。[Effects of the Invention] According to the porous ceramic body and the manufacturing method thereof of the present invention, parts with different porosity exist in one body, and the pores in the boundary area are continuous, so that the porous ceramic body has good air permeability. Since no adhesive method is used, porous ceramic bodies with excellent durability, chemical resistance, and mechanical strength can be easily produced without cranking, deformation, etc. It is used in various applications such as liquid passing, gas passing, and filtration media, which require delicate adjustment of the temperature, as well as durability, chemical resistance, and strength, and provide great industrial benefits. be.
Claims (2)
気孔率の異なる部分が1体中に存在し、しかもその境界
域の気孔率が連続的に変化していることを特徴とする多
孔質セラミック体。(1) A porous ceramic body characterized in that at least two parts having different porosity exist in one porous ceramic body, and the porosity of the boundary area changes continuously.
混練用液体を含有する混練物を成形し、乾燥し、該成形
体の長さ方向或いは厚さ方向に沿って、温度勾配をもた
せて焼成するか、又は、一方を非酸化性雰囲気中で、他
方を酸化性雰囲気中で焼成することを特徴とする多孔質
セラミック体の製造方法。(2) A kneaded product containing combustible powder, ceramic raw material powder, caking agent, and kneading liquid is molded and dried, and a temperature gradient is created along the length or thickness direction of the molded product. 1. A method for producing a porous ceramic body, the method comprising firing one porous ceramic body in a non-oxidizing atmosphere and the other in an oxidizing atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2210794A JP2571147B2 (en) | 1990-08-09 | 1990-08-09 | Porous ceramic body and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2210794A JP2571147B2 (en) | 1990-08-09 | 1990-08-09 | Porous ceramic body and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0492873A true JPH0492873A (en) | 1992-03-25 |
JP2571147B2 JP2571147B2 (en) | 1997-01-16 |
Family
ID=16595244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2210794A Expired - Fee Related JP2571147B2 (en) | 1990-08-09 | 1990-08-09 | Porous ceramic body and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2571147B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6144779A (en) * | 1984-08-03 | 1986-03-04 | 株式会社デンソー | Manufacture of porous ceramic body |
JPS61191575A (en) * | 1985-02-19 | 1986-08-26 | イビデン株式会社 | Porous silicon carbide sintered body and manufacture |
JPH02185244A (en) * | 1989-01-10 | 1990-07-19 | Seiko Epson Corp | Porous artificial bone |
JPH02271856A (en) * | 1989-04-14 | 1990-11-06 | Mitsubishi Materials Corp | Ceramics artificial bone and production thereof |
-
1990
- 1990-08-09 JP JP2210794A patent/JP2571147B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6144779A (en) * | 1984-08-03 | 1986-03-04 | 株式会社デンソー | Manufacture of porous ceramic body |
JPS61191575A (en) * | 1985-02-19 | 1986-08-26 | イビデン株式会社 | Porous silicon carbide sintered body and manufacture |
JPH02185244A (en) * | 1989-01-10 | 1990-07-19 | Seiko Epson Corp | Porous artificial bone |
JPH02271856A (en) * | 1989-04-14 | 1990-11-06 | Mitsubishi Materials Corp | Ceramics artificial bone and production thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2571147B2 (en) | 1997-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6582651B1 (en) | Metallic articles formed by reduction of nonmetallic articles and method of producing metallic articles | |
US4278544A (en) | Filter medium for fluid | |
US4255197A (en) | Process for obtaining refractory materials with controlled characteristics of porosity and density | |
CN101948316B (en) | Preparation method of ceramic filtration supporter | |
KR930012633A (en) | High porosity cordierite body and its manufacturing method | |
CN101406781A (en) | Ceramic filter containing carbon coating and method for producing the same | |
JPH11128639A (en) | Ceramic filter and its production | |
CN106946585B (en) | Method for preparing low-heat-conductivity magnesia-alumina spinel refractory brick by utilizing artificially synthesized microporous spinel | |
JPH04124073A (en) | Zirconia-based complex refractory and heat-insulating material | |
JPS6191076A (en) | Porous silicon carbide sintered body and manufacture | |
CN110872188B (en) | Ceramic particle, filter element and preparation method of filter element | |
US6162310A (en) | Method for producing porous sponge like metal of which the shapes and sizes of pores are controllable | |
JP2651170B2 (en) | Ceramics porous body | |
JPH0492873A (en) | Porous ceramic body and production thereof | |
JPH03208870A (en) | Production of porous ceramic body | |
JPH06256069A (en) | Ceramic porous material and its production | |
JPS61120612A (en) | Preparation of ceramic filter | |
CN113800944A (en) | Method for preparing micron-pore heat insulation material by virtue of loss on ignition method | |
JP4967111B2 (en) | Alumina-based porous ceramics and method for producing the same | |
GB2097777A (en) | Ceramic foam | |
JPH0368411A (en) | Cordierite-based gas filter and its production | |
JPH0597537A (en) | Production of ceramic porous material | |
KR100310628B1 (en) | Ceramic Micro-organism Container and Method for Manufacturing the Same | |
JPH03257081A (en) | Production of porous ceramics | |
JPS59156954A (en) | Manufacture of porous ceramics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |