JPH03208870A - Production of porous ceramic body - Google Patents

Production of porous ceramic body

Info

Publication number
JPH03208870A
JPH03208870A JP205990A JP205990A JPH03208870A JP H03208870 A JPH03208870 A JP H03208870A JP 205990 A JP205990 A JP 205990A JP 205990 A JP205990 A JP 205990A JP H03208870 A JPH03208870 A JP H03208870A
Authority
JP
Japan
Prior art keywords
powder
carbon
raw material
graphite
ceramic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP205990A
Other languages
Japanese (ja)
Inventor
Kazuyuki Saito
斎藤 一幸
Sanji Ozawa
小沢 参次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIENTAL SANGYO KK
Original Assignee
ORIENTAL SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIENTAL SANGYO KK filed Critical ORIENTAL SANGYO KK
Priority to JP205990A priority Critical patent/JPH03208870A/en
Publication of JPH03208870A publication Critical patent/JPH03208870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To enhance porosity, pore diameter and distribution control thereof by kneading powder consisting of graphite, carbon or a carbon precursor, the raw material powder of ceramic, a binder and water and thereafter molding the kneaded material, drying and calcining the molded body. CONSTITUTION:A mixture is regulated to 100% by mixing 15-70wt.% (hereinafter shown in %) powder such as graphite, carbon or a carbon precursor like synthetic resin beads which has <=3 aspect ratio and is regulated to 1-250mum particle diameter, 20-70% raw material powder of ceramic such as Al2O3 which has 2 aspect ratio and 10-40% binder which is independently an inorganic binder such as clay or used in combination with an organic binder such as acacia. Water is added to the mixture so as to be regulated to 10-30% and kneaded. Furthermore as necessity, a fluidity imparter, carbonate such as Na2CO3 and carbon fiber, etc., may be added. After this kneaded material is molded and the molded body is dried, it is slowly raised in temp. in an oxidative atmosphere and fired at a comparatively low temp. Then it is fired at a high temp. in a nonoxidative atmosphere and thereby a porous ceramic body excellent in air-permeability and durability is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は触媒担体、バイオリアクター、濾過材等の通ガ
ス体や通液体、固体潤滑材、固体研磨材等に用いられる
多孔質セラミック体の製造方法に係るものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to porous ceramic bodies used as catalyst carriers, bioreactors, gas permeable bodies such as filter media, liquid permeable bodies, solid lubricants, solid abrasives, etc. This relates to the manufacturing method.

[従来の技術1 従来この種の多孔質セラミック体は、工業的にはセラミ
ック原料粉を粘結材と混練して射出成形等で成形した後
、乾燥し、脱脂加熱して焼結する方法等が採用されてい
た。
[Prior art 1] Conventionally, this type of porous ceramic body has been produced industrially by a method in which ceramic raw material powder is kneaded with a caking material, molded by injection molding, etc., and then dried, degreased, heated, and sintered. had been adopted.

[発明が解決しようとする課題1 かかる多孔質セラミック体は、その用途によらず、連続
気孔がセラミック体全体に均一に分布していることが要
求され、又、用途に応じて気孔率、気孔径及びその分布
が調節可能であることが望ましい。
[Problem to be Solved by the Invention 1] Such a porous ceramic body is required to have continuous pores uniformly distributed throughout the ceramic body, regardless of its use, and the porosity and porosity may vary depending on the use. It is desirable that the pore size and its distribution be adjustable.

しかし、上記の従来法により製造される多孔質セラミッ
ク体は必ずしもこの要求を充分に満足しておらず、特に
気孔径、気孔分布の制御が困難であった。
However, porous ceramic bodies manufactured by the above-mentioned conventional methods do not necessarily fully satisfy this requirement, and in particular, it has been difficult to control the pore diameter and pore distribution.

加えて、多孔質セラミック体の製造方法においては、成
形性向上の目的で、グリセリン、ポリエチレン、CMC
等粘調の有機物を流動性付与剤として多量に使用する場
合があり、成形に続く焼成・脱脂時に該流動性付与剤が
ガス化して滞留し、クラック又は膨張等の致命的欠陥が
発生し易いという問題があった。
In addition, in the method for manufacturing a porous ceramic body, glycerin, polyethylene, CMC
A large amount of homoviscous organic matter may be used as a fluidity-imparting agent, and during baking and degreasing following molding, the fluidity-imparting agent gasifies and stagnates, easily causing fatal defects such as cracks or expansion. There was a problem.

通常多孔質セラミック体は、バイオリアクター、キャリ
アー、濾過材、固体研磨材、固体潤滑材等の用途に使用
されるが、その機能を充分に発揮し、又、長期間その性
能を保持するには、その用途によらず気孔径及び気孔分
布は極めて重要な物性である。又、使用目的によっては
多孔質セラミック体と接する気体、液体等との濡れ性等
をも考慮し使用する原材料を選択しなければならない。
Porous ceramic bodies are normally used for applications such as bioreactors, carriers, filtration media, solid abrasive materials, and solid lubricants, but in order to fully demonstrate their functions and maintain their performance for a long period of time, Regardless of the application, pore size and pore distribution are extremely important physical properties. Furthermore, depending on the purpose of use, raw materials to be used must be selected in consideration of wettability with gases, liquids, etc. that come into contact with the porous ceramic body.

本発明者等は、上記課題を解決すべく鋭意検討した結果
、原料の混練物中に黒鉛、炭素又は炭素前駆体からなる
粉粒体を均一に含有せしめ、該粉粒体を焼成により焼失
せしめることにより該粉粒体の焼失した跡が該粉粒体の
形状をほぼ保ったまま気孔となり、且つ該気孔が連続孔
を形成する結果、通気性に優れ、各種用途に好適な多孔
質セラミック体が得られることを見出し、本発明に到達
した。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention uniformly contained powder and granules made of graphite, carbon, or a carbon precursor in a kneaded material of raw materials, and burned out the powder and granules by firing. As a result, the burnt remains of the powder become pores while maintaining the shape of the powder, and the pores form continuous pores, resulting in a porous ceramic body with excellent air permeability and suitable for various uses. The present invention was achieved based on the discovery that the following can be obtained.

即ち、本発明の目的は、気孔が連なってなる連続孔がセ
ラミック体全体に均一に分布している通気性、耐久性に
優れた多孔質セラミック体を工業的有利に製造すること
にある。
That is, an object of the present invention is to industrially advantageously produce a porous ceramic body with excellent air permeability and durability, in which continuous pores are uniformly distributed throughout the ceramic body.

[課題を解決する為の手段1 然して、かかる本発明の目的は黒鉛、炭素もしくは炭素
前駆体からなる粉粒体、セラミック原料粉、粘結材及び
水を含有する混練物を成形し、乾燥し、焼成することに
より容易に達成される。
[Means for Solving the Problems 1] However, the object of the present invention is to form a kneaded material containing powder or granules made of graphite, carbon or a carbon precursor, ceramic raw material powder, a caking agent, and water, and then dry it. , easily achieved by firing.

[作用J 以下、本発明の詳細な説明する。[Action J The present invention will be explained in detail below.

本発明の多孔質セラミック体の製造方法は、黒鉛、炭素
又は炭素前駆体からなる粉粒体を原料混練物の成形体中
に含有せしめておくことを特徴とする。該粉粒体は、い
ずれも焼成により燃焼して炭酸ガスとして容易に焼失し
、焼失後に粉粒体とほぼ同一形状の気孔が形成され、又
、該粉粒体が炭酸ガスとして焼失する際、気孔同士が互
いに連なって連続気孔が形成される。尚、ここで炭素前
駆体とは木粉、合成樹脂のビーズまたはCMCもしくは
澱粉を造粒したもの等焼成により容易に炭化する材料を
指し、黒鉛又は炭素としては、黒鉛、コークス、木炭、
カーボンブラック、活性炭等が例示できる。
The method for producing a porous ceramic body according to the present invention is characterized in that a granular material made of graphite, carbon, or a carbon precursor is contained in a molded body of a raw material kneaded product. The powder and granules are easily burnt out as carbon dioxide gas by firing, and after being burnt out, pores having almost the same shape as the powder and granules are formed, and when the powder and granules are burnt out as carbon dioxide gas, The pores are connected to each other to form continuous pores. Note that the carbon precursor herein refers to materials that are easily carbonized by firing, such as wood flour, synthetic resin beads, CMC, or starch granules. Graphite or carbon includes graphite, coke, charcoal,
Examples include carbon black and activated carbon.

これらの黒鉛、炭素又は炭素前駆体からなる粉粒体とし
て、可及的球形に近い粉粒体、即ち、アスペクト比(長
径l短径)が3以下、より好ましくは2以下の粉粒体を
用いると、得られる多孔質セラミック体の気孔が球形に
近くなり、通気性、耐久性等各種特性がより向上し、好
ましい。可及的球形に近い粉粒体を得るには、例えば、
10合成樹脂のビーズの様な初めから略球形の粉粒体を
用いる、2゜0MC1澱粉等有機物の粉粒体を水で練っ
て造粒して略球形とする、3.磨砕等略球形の粉粒体が
得られる方法で粉砕した原料を用いる等の方法がある。
As the powder or granule made of graphite, carbon or carbon precursor, powder or granule with as close to a spherical shape as possible, that is, an aspect ratio (major axis l minor axis) of 3 or less, more preferably 2 or less, is used. When used, the pores of the resulting porous ceramic body become nearly spherical, and various properties such as air permeability and durability are further improved, which is preferable. In order to obtain powder particles as close to spherical as possible, for example,
10. Use a powder or granule that is initially approximately spherical, such as synthetic resin beads; knead organic powder or granule such as 2゜0MC1 starch with water and granulate it into a roughly spherical shape; 3. There are methods such as using a raw material that has been pulverized by a method such as grinding that yields approximately spherical granules.

2゜0場合は造粒した有機物の粉粒体を炭化直前まで加
熱硬化させて原料に供するとよい。
In the case of 2°0, it is preferable to heat and harden the granulated organic powder until just before carbonization and then use it as a raw material.

これらの黒鉛、炭素又は炭素前駆体からなる粉粒体は、
粒度調整したものを用い、その使用量を調節すれば、製
造される多孔質セラミック体の気孔径及び気孔率を容易
に調節することができ、好ましい。
These powders made of graphite, carbon or carbon precursors are
It is preferable to use particles whose particle size has been adjusted and adjust the amount used, since the pore diameter and porosity of the porous ceramic body to be produced can be easily adjusted.

該粉粒体としては、所望の気孔径に応じて、焼成時の収
縮を考慮に入れ、粒径が該気孔径よりやや大きめである
粉粒体を、好ましくは粒径1〜250pmの範囲内で選
択するとよい。又、粒径の比較的揃った粉粒体を採用す
ると、通気性、耐久性等各種特性に優れた製品が得られ
る。即ち、粒径の差にして1100p以内、より好まし
くは80pm以内の範囲に粉粒体中の粒子の実質的全量
が包含される程度に粒径の揃った粉粒体を用いるのが好
ましい。
Depending on the desired pore size, the powder or granule has a particle size slightly larger than the pore size, preferably within the range of 1 to 250 pm, taking into account shrinkage during firing. It is recommended to select. Furthermore, by using powder with relatively uniform particle sizes, products with excellent properties such as air permeability and durability can be obtained. That is, it is preferable to use powder or granules with uniform particle sizes such that substantially all of the particles in the powder or granules are contained within a range of 1100 pm or less, more preferably 80 pm or less in terms of particle size difference.

一方、セラミック原料粉としてはアルミナ、シリカ、ジ
ルコニア、タルク、マイカ、バーミニキライト、ムライ
ト、シラス、パーライト、長石、種石、更にはカオリン
系及びモンモリロナイト系等の粘土並びに粘土を造粒し
てなる粉体等通常用いられるセラミック原料粉がいずれ
も使用可能だが、粘土を造粒しないで使用する場合を除
き、以下詳述する観点からセラミック原料粉を選択する
と、より通気性、耐久性に優れた高品質の多孔質セラミ
ック体が得られ、好ましい。即ち、セラミック原料粉と
してアスペクト比の小さな原料粉、即ちアスペクト比す
以下、より好ましくは1.5以下、最も好ましくは1.
3以下の原料粉を用いるのが好ましく、それには例えば
、シリカ、アルミナ等元来アスペクト比の小さな原料粉
であって、より好ましくは磨砕等の略球形の粉砕物が得
られる粉砕法で粉砕してなる原料粉を用いるか、又はタ
ルク、マイカ等元來偏平な粉体もしくは粘土でも、水も
しくは有機質粘結材とともに練って所望の粒径とした後
焼成或は焼結することにより造粒して用いるとよい。該
造粒時に有機質粘結材を用いると焼成時に発泡してそれ
自体多孔質のセラミック原料粉を得ることができる。そ
のほか、焼結時に体積膨張を起し、しかも球形を形成す
るようなセラミック原料、即ちパーライト、シラス、黒
曜石等を用いる方法もある。
On the other hand, ceramic raw material powders include alumina, silica, zirconia, talc, mica, verminiquirite, mullite, shirasu, perlite, feldspar, seed stone, and kaolin-based and montmorillonite-based clays and clays. Any commonly used ceramic raw material powder such as clay powder can be used, but unless clay is used without granulation, selecting a ceramic raw material powder from the viewpoints detailed below will result in better air permeability and durability. A high quality porous ceramic body is obtained, which is preferable. That is, as a ceramic raw material powder, a raw material powder with a small aspect ratio, that is, an aspect ratio of less than or equal to 1.5, more preferably 1.5 or less, and most preferably 1.
It is preferable to use raw material powder with a particle diameter of 3 or less, such as silica, alumina, etc., which originally has a small aspect ratio, and is more preferably ground by a grinding method such as grinding that produces a roughly spherical pulverized product. or by kneading originally flat powder or clay such as talc or mica with water or an organic binder to obtain the desired particle size, and then firing or sintering. It is recommended to use it as If an organic binder is used during the granulation, it will foam during firing and a porous ceramic raw material powder can be obtained. In addition, there is a method of using ceramic raw materials that expand in volume during sintering and form a spherical shape, such as pearlite, shirasu, and obsidian.

これらのセラミック原料粉は、製造しようとする製品の
性質に合致する種類の粉体を選択するとよい。又、粘土
を造粒しないで使用する場合を除き、所望の気孔径に応
じて、該気孔径よりやや粒径の大きな粉体を、好ましく
は粒径2〜250pmの範囲内で、選択するとよい。又
、該セラミック原料粉として、可及的粒径の揃った粉体
を用いると製品の気孔径が揃うばかりでなく、焼成時に
流動性付与剤が急激に膨張してクラックを生じる現象を
抑制することができる。具体的には、粒径の差にして1
100p以内、より好ましくは80pm以内の範囲に粉
体中の粒子の実質的全量が包含される様に粒度調整する
のが好ましい。
As these ceramic raw material powders, it is preferable to select a type of powder that matches the properties of the product to be manufactured. In addition, unless the clay is used without granulation, depending on the desired pore size, it is advisable to select a powder with a slightly larger particle size than the pore size, preferably within the range of 2 to 250 pm. . Furthermore, if a powder with as uniform a particle size as possible is used as the ceramic raw material powder, not only will the pore size of the product be uniform, but also the phenomenon of cracks caused by rapid expansion of the fluidity imparting agent during firing can be suppressed. be able to. Specifically, the difference in particle size is 1
It is preferable to adjust the particle size so that substantially all of the particles in the powder are contained within a range of 100 pm, more preferably 80 pm or less.

本発明に原料として供する粘結材としては、粘土、リン
酸アルミ、水ガラス及び高塩基性塩化アルミ等の無機質
粘結材でもタラカントガゴム、アラビアゴム等のゴム類
、CMC1澱粉、PVA及び各種合成樹脂等の有機質粘
結材でも使用可能だが、乾燥、混練、成形等が容易で、
装置を傷めることがない等取扱いが容易である点で粘土
が好ましい。中でも、物質の吸着の用途に供する場合に
は、カオリン系粘土を原料として用いると、比表面積が
大きく、吸着性能に特に優れた多孔質セラミック体が製
造でき、一方、モンモリロナイト系粘土を用いると、比
較的比表面積は小さいが、濾過材等流体を吸着させるこ
となく通過させる用途に適した多孔質セラミック体が製
造できる。但し、有機質粘結材は、焼成時に焼失して製
品中の気孔を連続孔とするのに効果があるから、主たる
粘結材として粘土等の無機質粘結材を用いた場合でも、
有機質粘結材を併用するとよく、特に連続孔を形成させ
る目的には、CMC又は澱粉を用いるのが好ましい。
The caking materials used as raw materials in the present invention include clay, aluminum phosphate, water glass, inorganic caking materials such as highly basic aluminum chloride, gums such as taracanthogum, gum arabic, CMC1 starch, PVA, and various other materials. Organic binders such as synthetic resins can also be used, but they are easy to dry, knead, mold, etc.
Clay is preferred because it is easy to handle and does not damage the device. Among these, when used for adsorption of substances, when kaolin clay is used as a raw material, a porous ceramic body with a large specific surface area and particularly excellent adsorption performance can be produced.On the other hand, when montmorillonite clay is used, Although the specific surface area is relatively small, it is possible to produce a porous ceramic body that is suitable for applications such as filter media that allow fluids to pass through without being adsorbed. However, organic binders are effective in making the pores in the product continuous by being burned away during firing, so even if an inorganic binder such as clay is used as the main binder,
An organic binder may be used in combination, and CMC or starch is preferably used especially for the purpose of forming continuous pores.

尚、本明細書中、粘土はセラミック原料粉及び粘結材の
両方に含まれる材料として記述したが、事実、粘土は通
常セラミック原料粉として取り扱われ、焼成により硬化
してセラミック体全体に強度を付与する作用がある一方
で、粘結材としても十分な効果が有り、本発明の原料と
して粘土を用いた場合、必ずしも他のセラミック原料粉
又は粘結材を併用する必要はない。
In this specification, clay has been described as a material included in both the ceramic raw material powder and the caking agent, but in fact, clay is usually treated as the ceramic raw material powder, and is hardened by firing to provide strength to the entire ceramic body. While it has the effect of imparting clay, it also has a sufficient effect as a caking agent, and when clay is used as a raw material in the present invention, it is not necessarily necessary to use other ceramic raw material powders or caking agents together.

セラミック体の製造においては、各原料を混練する際、
原料の粒径が小さく、有機質の原料を多く用いる捏水を
多めに添加する必要があるが、本発明の場合、水の添加
は焼成時に水が蒸発して製品中の気孔を連続気孔とする
のにも効果があるから、水の添加量は、原料の種類及び
粒径のほか、所望の気孔率も考慮して、成形直前の混練
物中10〜30重量%となる範囲で調節するのが好まし
い。
In the production of ceramic bodies, when kneading each raw material,
The particle size of the raw material is small and it is necessary to add a large amount of water to the product using a large amount of organic raw material, but in the case of the present invention, water evaporates during baking and the pores in the product become continuous pores. Therefore, the amount of water added should be adjusted within a range of 10 to 30% by weight in the kneaded material immediately before molding, taking into account the type and particle size of the raw materials as well as the desired porosity. is preferred.

以上本発明に用いる原料について詳述したが、本発明方
法中、原料の組合せの点で、好ましい例を以下に列挙す
る。ただし、本発明はこれらに限定されるものではない
The raw materials used in the present invention have been described in detail above, and preferred examples are listed below in terms of combinations of raw materials in the method of the present invention. However, the present invention is not limited to these.

1、黒鉛、炭素もしくは炭素前駆体からなる略球形の粉
粒体、より好ましくは磨砕したシリカもしくはアルミナ
、粘土及び有機質粘結材を含む混練物を成形し、乾燥し
、焼成する。
1. A roughly spherical powder made of graphite, carbon, or a carbon precursor, more preferably a kneaded material containing ground silica or alumina, clay, and an organic binder, is shaped, dried, and fired.

2、黒鉛、炭素もしくは炭素前駆体からなる略球形の粉
粒体、パーライト、シラスもしくは黒曜石等の焼成時に
体積膨張するセラミック原料粉、粘土、有機質粘結材及
び水を含む混練物を成形し、乾燥し、焼成する。
2. Forming a kneaded material containing approximately spherical powder made of graphite, carbon or carbon precursor, ceramic raw material powder that expands in volume during firing such as pearlite, shirasu or obsidian, clay, organic caking agent and water; Dry and bake.

3、黒鉛、炭素もしくは炭素前駆体からなる略球形の粉
粒体、造粒したタルクもしくはマイカ、粘土、有機質粘
結材及び水を含む混練物を成形し、乾燥し、焼成する。
3. A kneaded material containing approximately spherical powder made of graphite, carbon, or a carbon precursor, granulated talc or mica, clay, an organic caking agent, and water is molded, dried, and fired.

4、黒鉛、炭素もしくは炭素前駆体からなる略球形の粉
粒体、造粒した粘土、有機質粘結材及び水を含む混練物
を成形し、乾燥し、焼成する。
4. A kneaded material containing approximately spherical powder made of graphite, carbon, or a carbon precursor, granulated clay, an organic caking agent, and water is shaped, dried, and fired.

5、黒鉛、炭素もしくは炭素前駆体からなる略球形の粉
粒体、造粒を施さないタルクもしくはマイカ、粘土、有
機質粘結材及び水を含む混練物を成形し、乾燥し、焼成
する。
5. A kneaded material containing approximately spherical powder made of graphite, carbon, or a carbon precursor, ungranulated talc or mica, clay, an organic caking agent, and water is molded, dried, and fired.

6、黒鉛、炭素もしくは炭素前駆体からなる略球形の粉
粒体、粘土、有機質粘結材及び水を含む混練物を成形し
、乾燥し、焼成する。
6. A kneaded material containing approximately spherical powder made of graphite, carbon or a carbon precursor, clay, an organic binder and water is molded, dried and fired.

上記の各方法によれば、通気性、耐久性等各種特性に優
れた多孔質セラミック体を特に工業的有利に製造するこ
とができる。
According to each of the above-mentioned methods, a porous ceramic body having excellent various properties such as air permeability and durability can be manufactured with particular industrial advantage.

尚、上記の1から5の場合の様にアスペクト比の小さな
セラミック原料粉又は焼成時に体積膨張するセラミック
原料粉を用いた場合、仮に黒鉛、炭素又は炭素前駆体か
らなる粉粒体を用いなかったとしても、セラミック原料
粉の粒子同士の間隙が連続気孔を形成し、比較的良好な
特性を示す多孔質セラミック体を容易に製造できる。そ
の場合、用いるセラミック原料粉の粒径、量、他の材料
との組合せ等の態様は、黒鉛、炭素又は炭素前駆体から
なる粉粒体を用いないことを除いて、本発明方法と全く
同様である。具体的には、例えば、工業的に得られるシ
リカ塊を連続式磨砕機にて粉砕してなる粉体又はイヂチ
化成株式会社製ウィンクイトMSB−302等のシラス
粉体を分級してなる原料粉を、粘土、水及び必要に応じ
て少量の有機質粘結材とともに混練し、成形し、乾燥後
、焼成してなる多孔質セラミック体は通気性、耐久性等
の点で比較的良好な性質を示す。
In addition, when using a ceramic raw material powder with a small aspect ratio or a ceramic raw material powder that expands in volume during firing as in cases 1 to 5 above, it is assumed that a powder consisting of graphite, carbon, or a carbon precursor is not used. However, the gaps between the particles of the ceramic raw material powder form continuous pores, and a porous ceramic body exhibiting relatively good properties can be easily produced. In that case, the particle size, amount, combination with other materials, etc. of the ceramic raw material powder to be used are exactly the same as in the method of the present invention, except that powder consisting of graphite, carbon, or a carbon precursor is not used. It is. Specifically, for example, powder obtained by grinding industrially obtained silica lumps with a continuous grinder or raw material powder obtained by classifying shirasu powder such as Winquit MSB-302 manufactured by Ijichi Kasei Co., Ltd. The porous ceramic body obtained by kneading, molding, drying, and firing with clay, water, and a small amount of organic caking agent if necessary exhibits relatively good properties in terms of breathability, durability, etc. .

本発明においては、上記の各原料、即ち黒鉛、炭素もし
くは炭素前駆体からなる粉粒体、セラミック原料粉、粘
結材及び水量外に、例えば流動性付与剤等の通常セラミ
ック体の製造に用いられる材料を初め、他の材料を併用
しても差し支えない。具体的には、原料混練物中に炭酸
ソーダ、重炭酸ソーダ、炭酸カルシウム等の炭酸塩を含
有せしめて焼成時に発泡させるとより通気性に優れた多
孔質セラミック体が製造され、又、原料の一部に炭素繊
維を含有せしめると連続気孔が形成され易くなり、好ま
しい。炭酸塩を原料として用いる場合、炭酸塩の含有量
は水を除く原料中5〜25wt%とするのが好ましい。
In the present invention, in addition to the above-mentioned raw materials, that is, graphite, carbon or carbon precursor powder, ceramic raw material powder, caking agent, and water, fluidity imparting agents, etc., which are normally used in the production of ceramic bodies, are used. There is no problem in using the same materials as well as other materials. Specifically, if a carbonate such as soda carbonate, sodium bicarbonate, or calcium carbonate is included in the raw material kneaded material and foamed during firing, a porous ceramic body with better air permeability can be produced. It is preferable to include carbon fiber in the carbon fiber because it facilitates the formation of continuous pores. When carbonate is used as a raw material, the content of carbonate is preferably 5 to 25 wt% in the raw material excluding water.

本発明方法は、上記各材料に水を加えて混練し、成形し
、乾燥し、焼成することを特徴とし、各材料の混合比や
成形、乾燥、焼成の条件は特に限定されないが、黒鉛、
炭素又は炭素前駆体からなる粉粒体は、15〜70wt
%、セラミック原料粉は20〜70wt%、粘結材は1
0〜40wt%(但し、水量外の原料の総量を100w
t%とした)範囲で、気孔率を初め、製品に求める特性
に応じて各原料の混合比を決定するのが好ましい。
The method of the present invention is characterized by adding water to each of the above materials, kneading, molding, drying, and firing. The mixing ratio of each material and the conditions for molding, drying, and firing are not particularly limited, but graphite,
The granular material made of carbon or carbon precursor has a weight of 15 to 70 wt.
%, ceramic raw material powder is 20-70wt%, caking agent is 1
0 to 40wt% (however, the total amount of raw materials other than water amount is 100w)
It is preferable to determine the mixing ratio of each raw material in accordance with the characteristics desired for the product, including the porosity, within a range of

又、焼成は、先ず黒鉛、炭素又は炭素前駆体からなる粉
粒体が焼失する温度まで酸化性雰囲気で徐々に昇温した
後、より好ましくは昇温を一次停止し、該粉体が十分燃
焼して焼失した後再び昇温するとクラックの発生を防ぎ
つつ、より通気性、耐久性に優れた製品を製造できる。
In addition, in the firing, the temperature is first gradually raised in an oxidizing atmosphere to a temperature at which the powder consisting of graphite, carbon, or a carbon precursor is burned out, and then, more preferably, the temperature increase is temporarily stopped to ensure that the powder is sufficiently combusted. If the temperature is raised again after being burnt out, it is possible to prevent the occurrence of cracks and produce products with better air permeability and durability.

黒鉛、炭素又は炭素前駆体からなる粉粒体が焼失した後
の焼成は、還元性雰囲気で行なってもよく、セラミック
原料粉が一部焼結する温度まで昇温して行うのが好まし
い。
After the powder consisting of graphite, carbon, or a carbon precursor is burnt out, firing may be performed in a reducing atmosphere, and is preferably performed by raising the temperature to a temperature at which the ceramic raw material powder is partially sintered.

更にセラミック体は一般に淡い黄色等の色調を呈するが
、各種顔料、好ましくは、クロム、コバルト、鉄、ニッ
ケル等の金属の酸化物、特に好ましくは、これらの金属
酸化物を主成分とするセラミック顔料を適宜添加するこ
とにより自由に着色することも可能である。
Furthermore, the ceramic body generally exhibits a color tone such as pale yellow, and various pigments, preferably oxides of metals such as chromium, cobalt, iron, and nickel, and particularly preferably ceramic pigments containing these metal oxides as main components. It is also possible to freely color it by adding appropriately.

黒味を帯びたセラミック体を製造する場合には、黒鉛、
炭素又は炭素前駆体を完全には焼失させない様先ず酸化
性雰囲気で比較的低温・短時間焼成し、次いで非酸化性
雰囲気下、高温で焼成するか、又は、−旦製造した多孔
質セラミック体をフェノール樹脂、フラン樹脂、エポキ
シ樹脂等の各種合成樹脂、流動パラフィン、ワックス類
、糖蜜、最も好もしくは油脂等、又はこれらを含む溶液
を初め炭素分を豊富に含有する液状物質に含浸した後、
炭素分を完全には焼失させない様、温度、時間及びl又
は雰囲気を調節して再焼成するとよい。いずれの場合も
黒鉛又は炭素質物質が気孔内に残留し、黒味を帯びたセ
ラミック体を容易に製造できる。本発明方法により製造
される多孔質セラミック体は連続細気孔多孔質を特徴と
している所から脱臭担体などにも極めて有用である。
When producing a blackish ceramic body, graphite,
Either the carbon or carbon precursor is first fired at a relatively low temperature and for a short time in an oxidizing atmosphere so as not to be completely burnt out, and then fired at a high temperature in a non-oxidizing atmosphere, or the porous ceramic body produced once is fired. After impregnating it with a liquid substance rich in carbon, such as various synthetic resins such as phenolic resin, furan resin, and epoxy resin, liquid paraffin, waxes, molasses, most preferably oils and fats, or solutions containing these,
It is preferable to re-fire by adjusting the temperature, time, l or atmosphere so that the carbon content is not completely burnt out. In either case, graphite or carbonaceous substances remain in the pores, making it possible to easily produce a blackish ceramic body. The porous ceramic body produced by the method of the present invention is characterized by continuous fine pores and is therefore extremely useful as a deodorizing carrier.

以下本発明を実施例により更に詳細に説明するが本発明
はその要旨を超えない限り下記実施例により限定される
ものではない。
The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

[実施例1 実施例1 90〜1100pに粒度調整された略球形のポリエチレ
ンビーズ65重量部、カオリン系粘土30重量部、ダイ
セル社製CM04重量部、日本油脂社製ポリエチレング
リコール#4001重量部に水20重量部を加えて混練
し、外径50mm、肉厚10mm、長さ100mmの円
柱状に成形し、乾燥後、ポリエチレンビーズの炭化が完
了する500°C迄15時間かけて昇温し、続いて10
00°Cまで昇温して焼結し、気孔径が略70pmに集
中した気孔率65%の多孔質セラミック体を得た。
[Example 1 Example 1 65 parts by weight of approximately spherical polyethylene beads whose particle size was adjusted to 90 to 1100p, 30 parts by weight of kaolin clay, CM04 by Daicel, parts by weight of polyethylene glycol #4001 by NOF Corporation, and water. 20 parts by weight were added, kneaded, and formed into a cylinder with an outer diameter of 50 mm, a wall thickness of 10 mm, and a length of 100 mm. After drying, the temperature was raised to 500 ° C over 15 hours until carbonization of the polyethylene beads was completed. te10
The material was heated to 00°C and sintered to obtain a porous ceramic body with a porosity of 65% and a concentration of pore diameters of approximately 70 pm.

実施例2 実施例1で用いたのと同じポリエチレンビーズを450
’Cにてあらかじめ炭素化し80〜95pmのカーボン
ンビーズとなしこのビーズを65重量部、カオリン系粘
土33部、ダイセル社製CM02重量部を原料として用
いた以外実施例1と全く同様にして、気孔径が75pm
付近に集中した気孔率72%の多孔質セラミック体を得
た。
Example 2 The same polyethylene beads used in Example 1 were
Carbon beads with a particle size of 80 to 95 pm were preliminarily carbonized with C, and 65 parts by weight of these beads, 33 parts of kaolin clay, and 2 parts by weight of Daicel's CM0 were used as raw materials in exactly the same manner as in Example 1. Pore diameter is 75pm
A porous ceramic body with a porosity of 72% concentrated in the vicinity was obtained.

実施例3 43〜74pmに粒度調整したタルク43部、カオリン
系粘土18部、74〜149pmに粒度調整した木粉6
部、同じ<74〜149pmに粒度調整した化コークス
粉(大阪化成社製 商品名TGP)31部、0M02部
に水を23部添加して混練し、水分を20部に調整し、
7.5mmのダイスを用いて棒状に押し出し成形し、s
o’cで24時間乾燥した後室温から400°Cまで8
時間、400’Cから600°Cまで3時間、600°
Cがら850°Cまで3時間かけて昇温し、850°C
にて3時間保持した。得られた焼成品を、180°Cに
て油含浸した後還元性雰囲気下、1050°Cまで10
時間かけて昇温し、1050°Cで2時間保持して焼結
して黒色の多孔質セラミック体を製造した。
Example 3 43 parts of talc whose particle size was adjusted to 43-74 pm, 18 parts of kaolin clay, 6 parts of wood flour whose particle size was adjusted to 74-149 pm
31 parts of chemical coke powder (trade name TGP, manufactured by Osaka Kasei Co., Ltd.) whose particle size was adjusted to <74 to 149 pm, and 23 parts of water were added to 2 parts of 0M0 and kneaded, and the water content was adjusted to 20 parts.
Extrude into a rod shape using a 7.5 mm die, and
After drying at o'c for 24 hours, from room temperature to 400°C 8
Time, 3 hours from 400'C to 600°C, 600°
Raise the temperature from C to 850°C over 3 hours, and then raise the temperature to 850°C.
It was held for 3 hours. The obtained fired product was impregnated with oil at 180°C and then heated to 1050°C for 10 days in a reducing atmosphere.
The temperature was increased over time and held at 1050°C for 2 hours to sinter, producing a black porous ceramic body.

実施例4 43〜7ppmに粒度調整したマイカ49部、カオリン
系粘土14部、磨砕により略球形に粉砕し、61〜11
04pに粒度調整した黒鉛粉35部、CMC2部に水を
20部添加して混練し、水分を18部に調整し、7.5
mmのダイスを用いて棒状に押し出し成形し、80°C
で24時間乾燥した後室温から600°Cまで8時間、
600°Cから850°Cまで3時間かけて昇温して焼
成した。得られた焼成品を、180°Cにて油含浸した
後還元性雰囲気下、1050°Cまで10時間がけて昇
温し、1050’Cで2時間保持して焼結して黒色の多
孔質セラミック体を製造した。
Example 4 49 parts of mica whose particle size was adjusted to 43-7 ppm, 14 parts of kaolin clay, ground into approximately spherical shape by grinding, 61-11 parts
Add 20 parts of water to 35 parts of graphite powder whose particle size was adjusted to 04p and 2 parts of CMC and knead to adjust the water content to 18 parts.
Extrude into a rod shape using a mm die and heat at 80°C.
After drying for 24 hours at room temperature to 600°C for 8 hours,
The temperature was raised from 600°C to 850°C over 3 hours for firing. The obtained fired product was impregnated with oil at 180°C, then heated to 1050°C over 10 hours in a reducing atmosphere, held at 1050°C for 2 hours, and sintered to form a black porous material. A ceramic body was produced.

実施例5 43〜74pmに粒度調整したマイカ42部、モンモリ
ロナイト系粘土24部、磨砕により略球形に粉砕し、6
1〜1104pに粒度調整した黒鉛粉30部、0M02
部及び金属酸化物を主成分とするセラミック顔料((株
)サイトウ色素工業所製に−06)2部に水を20部添
加して混練し、水分を18部に調整し、7.5mmのダ
イスを用いて棒状に押し出し成形し、80’Cで24時
間乾燥した後室温から600°Cまで8時間、600’
Cがら850°Cまで3時間かけて昇温し、850°C
にて3時間保持し、シルバー色の多孔質セラミック体を
製造した。
Example 5 42 parts of mica whose particle size was adjusted to 43 to 74 pm, 24 parts of montmorillonite clay, crushed into approximately spherical shape by grinding, 6
30 parts of graphite powder with particle size adjusted to 1-1104p, 0M02
20 parts of water was added to 2 parts of a ceramic pigment (-06 manufactured by Saito Shikoku Kogyo Co., Ltd.) whose main components are metal oxides and metal oxides, and kneaded to adjust the water content to 18 parts. Extrusion molded into a rod shape using a die, dried at 80'C for 24 hours, and then heated from room temperature to 600°C for 8 hours, 600'
Raise the temperature from C to 850°C over 3 hours, and then raise the temperature to 850°C.
The mixture was held for 3 hours to produce a silver-colored porous ceramic body.

[発明の効果1 本発明の多孔質セラミック体の製造方法によれば、連続
孔が全体に亘って均一に形成された高多孔率のセラミッ
ク体で、通気性、耐久性等各種特性に優れた多孔質セラ
ミック体をクラック等を生じることなく確実且つ容易に
製造することができ、又、各原料、特に黒鉛、炭素又は
炭素前駆体からなる粉粒体の粒度を調節した場合には、
気孔率、気孔径及びその分布を容易に調節可能であって
、多大な工業的利益を提供するものである。
[Effect of the invention 1] According to the method for producing a porous ceramic body of the present invention, the ceramic body has a high porosity in which continuous pores are uniformly formed throughout the body, and has excellent various properties such as air permeability and durability. Porous ceramic bodies can be produced reliably and easily without cracking, and when the particle size of each raw material, especially graphite, carbon, or a carbon precursor, is adjusted,
Porosity, pore size and their distribution can be easily controlled, providing great industrial benefits.

Claims (1)

【特許請求の範囲】[Claims] (1)黒鉛、炭素もしくは炭素前駆体からなる粉粒体、
セラミック原料粉、粘結材及び水を含有する混練物を成
形し、乾燥し、焼成することを特徴とする多孔質セラミ
ック体の製造方法。
(1) Powder consisting of graphite, carbon or carbon precursor,
A method for producing a porous ceramic body, which comprises shaping a kneaded material containing ceramic raw material powder, a caking agent, and water, drying it, and firing it.
JP205990A 1990-01-09 1990-01-09 Production of porous ceramic body Pending JPH03208870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP205990A JPH03208870A (en) 1990-01-09 1990-01-09 Production of porous ceramic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP205990A JPH03208870A (en) 1990-01-09 1990-01-09 Production of porous ceramic body

Publications (1)

Publication Number Publication Date
JPH03208870A true JPH03208870A (en) 1991-09-12

Family

ID=11518767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP205990A Pending JPH03208870A (en) 1990-01-09 1990-01-09 Production of porous ceramic body

Country Status (1)

Country Link
JP (1) JPH03208870A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859367A (en) * 1994-06-30 1996-03-05 Korea Advanced Inst Of Sci Technol Preparation of porous ceramic or porous ceramic laminated body by using hollow spherical polymeric precursor
EP0751539A2 (en) * 1995-06-29 1997-01-02 Murata Manufacturing Co., Ltd. Positive characteristics thermistor device
JPH10337469A (en) * 1997-06-05 1998-12-22 Ootake Seramu Kk Adsorptive porous sintered compact and its production
WO2001060737A1 (en) * 2000-02-19 2001-08-23 Ludwig Bölkow Stiftung Solids with a porous or duct-like structure for the storage of gases and method for the production of solids in storage devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859367A (en) * 1994-06-30 1996-03-05 Korea Advanced Inst Of Sci Technol Preparation of porous ceramic or porous ceramic laminated body by using hollow spherical polymeric precursor
EP0751539A2 (en) * 1995-06-29 1997-01-02 Murata Manufacturing Co., Ltd. Positive characteristics thermistor device
EP0751539A3 (en) * 1995-06-29 1997-05-28 Murata Manufacturing Co Positive characteristics thermistor device
US5790011A (en) * 1995-06-29 1998-08-04 Murata Manufacturing Co., Ltd. Positive characteristics thermistor device with a porosity occupying rate in an outer region higher than that of an inner region
JPH10337469A (en) * 1997-06-05 1998-12-22 Ootake Seramu Kk Adsorptive porous sintered compact and its production
WO2001060737A1 (en) * 2000-02-19 2001-08-23 Ludwig Bölkow Stiftung Solids with a porous or duct-like structure for the storage of gases and method for the production of solids in storage devices

Similar Documents

Publication Publication Date Title
CN101885620B (en) Ceramic material with multi-stage duct structure and manufacture method thereof
US4399052A (en) Activated carbonaceous honeycomb body and production method thereof
Guzman Certain principles of formation of porous ceramic structures. Properties and applications (a review)
US4278544A (en) Filter medium for fluid
CN103467066B (en) Microcrystal bamboo charcoal purple sand composite pottery material and application thereof
US4255197A (en) Process for obtaining refractory materials with controlled characteristics of porosity and density
JP2000510807A (en) Stabilization of sintered foam and production of open-cell sintered foam
JP3273310B2 (en) Porous lightweight ceramic body
Senguttuvan et al. Sintering behavior of alumina rich cordierite porous ceramics
JPH03208870A (en) Production of porous ceramic body
JPH11342335A (en) Preparation of reforming catalyst for hydrocarbons
KR20070066467A (en) Artificial soil composition for the greening and method of manufacturing the same
JP4054872B2 (en) Alumina porous ceramics and method for producing the same
JP2004339042A (en) Method of manufacturing porous ceramic using charcoal powder or bamboo charcoal powder as main raw material
JP2007297259A (en) Porous charcoal-like ceramic and its manufacturing method
JP4967111B2 (en) Alumina-based porous ceramics and method for producing the same
JP2571147B2 (en) Porous ceramic body and method of manufacturing the same
CA1247147A (en) Highly porous ceramic materials for ad- or absorption purposes, more particularly for animal litter, and methods for their production
KR100310628B1 (en) Ceramic Micro-organism Container and Method for Manufacturing the Same
DE2342948B2 (en) METHOD FOR MANUFACTURING CERAMIC MATERIAL HOLLOW BODIES AND THEIR USE
JPS6217082A (en) Manufacture of porous sintered body
JPH0368411A (en) Cordierite-based gas filter and its production
JPH01160879A (en) Production of porous ceramic material
KR20110100491A (en) Porous ceramic media for microbes by sawdust and method of manufacturing the same
JP2005022903A (en) Ceramic porous body