JPH03257081A - Production of porous ceramics - Google Patents

Production of porous ceramics

Info

Publication number
JPH03257081A
JPH03257081A JP5327390A JP5327390A JPH03257081A JP H03257081 A JPH03257081 A JP H03257081A JP 5327390 A JP5327390 A JP 5327390A JP 5327390 A JP5327390 A JP 5327390A JP H03257081 A JPH03257081 A JP H03257081A
Authority
JP
Japan
Prior art keywords
ceramic
core material
porous ceramics
grain
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5327390A
Other languages
Japanese (ja)
Inventor
Yoshimasa Fujiwara
藤原 嘉正
Toyoki Ichihashi
市橋 豊紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP5327390A priority Critical patent/JPH03257081A/en
Publication of JPH03257081A publication Critical patent/JPH03257081A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the porous ceramics having desired porosity and pore distribution by nonuniformly forming a slurry contg. a ceramic core material coated with a ceramic powder and a ceramic grain and calcining the formed body. CONSTITUTION:A ceramic powder 2 (e.g. alumina) is deposited on the surface of a core material 1 consisting of a globular combustible material (e.g. graphite) to obtain a composite grain 3. The composite grain 3 and a granular ceramic grain 6 are suspended in a dispersion medium such as an aq. 2.5% PVA soln., the obtained slurry 4 is poured into a casting mold 5 of gypsum, etc., having high liq. absorptivity and cast to obtain a nonuniform cast body 7 in which there are many composite grains 3 in the lower layer and the ceramic grains 6 are progressively increased toward the upper layer. The cast body 7 is dried, calcined to burn off the core material 1 and then sintered to sinter the ceramic grain 6 to obtain a porous ceramics 9 having many pores 8 in its lower layer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は多孔質セラミックスの製造方法に係り、特に緻
密部と多孔質部とを備える多孔質セラミックスを、任意
の形状にかつ所望の気孔率、気孔分布となるように容易
かつ効率的に製造することができる多孔質セラミックス
の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing porous ceramics, and in particular, a method for manufacturing porous ceramics, in which porous ceramics having a dense portion and a porous portion are formed into an arbitrary shape and a desired porosity. The present invention relates to a method for manufacturing porous ceramics that can be easily and efficiently manufactured to have a pore distribution.

[従来の技術] 近年、高温高強度構造材料として窒化珪素、炭(1jI
lK、’+イアロン等の非酸化物セラミックス、あるい
は酸化アルミニウム、酸化ジルコニウム等、いわゆるニ
ューセラミックスが急速にクローズアップされ、多くの
研究や開発がなされている。これらのセラミックスの用
途は、ガスタービンのブレードや燃焼器、ディーゼルエ
ンジンのシリンダやピストンその他高温用機械部品とし
て数多くある。
[Prior art] In recent years, silicon nitride and carbon (1jI) have been used as high-temperature, high-strength structural materials.
So-called new ceramics, such as non-oxide ceramics such as lK and '+ iron, or aluminum oxide and zirconium oxide, are rapidly attracting attention, and much research and development is being carried out. These ceramics have many uses as gas turbine blades and combustors, diesel engine cylinders and pistons, and other high-temperature mechanical parts.

セラミックスの中でも多孔質のセラミックスは断熱性、
吸音性、軽量性等の点において優れた特性を有するとこ
ろから広い範囲の応用が期待されている。多孔質セラミ
ックスは、通常セラミックス粉体の加圧成形密度を低く
して焼成を行なうか、又は成形時に揮発性あるいは可燃
性物質を添加して焼成を行なう混合法、あるいはシラス
のように焼成過程で発泡するような材料を用いる発泡法
、などの方法によって製造されている。
Among ceramics, porous ceramics have insulation properties,
It is expected to be used in a wide range of applications because it has excellent properties such as sound absorption and light weight. Porous ceramics are usually produced using a mixing method in which ceramic powder is pressed to a low density and then fired, or a volatile or flammable substance is added during molding and then fired, or as in Shirasu, during the firing process. It is manufactured by a method such as a foaming method using foamable materials.

[発明が解決しようとする課題] ところが、多孔質セラミックスはその優れた特性を有す
る反面、強度が劣り、高強度を要求される用途には使用
し得ないという欠点を有している。
[Problems to be Solved by the Invention] However, although porous ceramics have excellent properties, they have a drawback in that they have poor strength and cannot be used in applications that require high strength.

このようなことから、高強度化をはかるために、例えば
予め製造された多孔質セラミックスの表面に緻密質セラ
ミックスを接着する方法、あるいは気相蒸着等により多
孔質セラミックスの表面部の気孔を充填する方法等が考
えられている。
For this reason, in order to increase the strength, for example, there is a method of adhering dense ceramics to the surface of pre-manufactured porous ceramics, or filling the pores on the surface of porous ceramics by vapor phase deposition, etc. Methods are being considered.

しかしながら、多孔質セラミックスの表面に緻密質セラ
ミックスを接着する方法は、接着強度が低かったり、接
着界面における熱膨張差に起因した熱応力、あるいは接
着層の強度不足等の問題があり、使用条件によっては剥
離や割れが発生する可能性もある。また、気相蒸着によ
り気孔を充填する方法は気孔内を完全にうめることが難
しく、しかも処理時間が長いという欠点を有する。
However, the method of bonding dense ceramics to the surface of porous ceramics has problems such as low bonding strength, thermal stress due to the difference in thermal expansion at the bonding interface, and insufficient strength of the bonding layer. may cause peeling or cracking. Furthermore, the method of filling the pores by vapor phase deposition has the disadvantage that it is difficult to completely fill the pores and that the processing time is long.

本発明は、上記従来技術の問題点を解消し、多孔質層と
、緻密層とを有し、しかも両層間で熱応力による割れ等
の発生が殆どない、多孔質セラミックスを任意の形状に
かつ所望の気孔率、気孔分布となるように容易かつ効率
的に製造することができる多孔質セラミックスの製造方
法を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art, and enables porous ceramics to be formed into any shape, which has a porous layer and a dense layer, and has almost no cracking caused by thermal stress between the two layers. It is an object of the present invention to provide a method for manufacturing porous ceramics that can be easily and efficiently manufactured to have desired porosity and pore distribution.

[課題を解決するための手段] 本発明の多孔質セラミックスの製造方法は、可燃性の物
質からなる粒状物を核材とし、該核材の表面にセラミッ
ク粉末を付着させてなる複合粒子と、セラミック粒子と
を懸濁して得られるスラリーを泥漿鋳込み法により上部
と底部とで不均一に成形し、得られた成形体を焼成して
、核材の燃焼除去と、セラミックの焼結とを行なうこと
により連続的に気孔率の変化する多孔質セラミックスを
製造することを特徴とする。
[Means for Solving the Problems] The method for producing porous ceramics of the present invention includes composite particles in which a granular material made of a combustible substance is used as a core material, and a ceramic powder is attached to the surface of the core material; A slurry obtained by suspending ceramic particles is formed into a non-uniform top and bottom part using a slurry casting method, and the obtained formed body is fired to burn off the core material and sinter the ceramic. This method is characterized by producing porous ceramics whose porosity changes continuously.

以下に本発明を図面を参照して詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

第1図ないし344図は本発明の一実施例に係る多孔質
セラミックスの製造過程を説明する概略的な断面図であ
る。
1 to 344 are schematic cross-sectional views illustrating the manufacturing process of porous ceramics according to an embodiment of the present invention.

本発明においては、まず、′s1図の如く、可燃性の物
質からなる粒状物を核材1として用い、この核材1の表
面にセラミック粉末2を付着させて、複合粒子3を得る
。核材としては、高温で酸化燃焼する物質の粒状物、好
ましくは球状物を用いるが、具体的には炭素、黒鉛等の
酸化燃焼性物質、ポリエチレン、ポリプロピレン、ポリ
スチレン等の有機高分子系熱可塑性樹脂の粒状物あるい
は、これらを適当な可燃性バインダーで造粒したもの等
が用いられる。核材1の粒径は目的とする多孔質部の気
孔径により決定される。
In the present invention, first, as shown in FIG. As the core material, granular materials, preferably spherical materials, of substances that oxidize and burn at high temperatures are used. Specifically, oxidizing and combustible substances such as carbon and graphite, and organic polymeric thermoplastics such as polyethylene, polypropylene, and polystyrene are used. Resin granules or granulated resin particles with a suitable combustible binder are used. The particle size of the core material 1 is determined by the pore size of the intended porous portion.

核材1の表面にはセラミック原料粉末2をなるべく均一
に付着(コーティング)させるのが好ましい。
It is preferable to adhere (coat) the ceramic raw material powder 2 to the surface of the core material 1 as uniformly as possible.

コーティング方法は通常採用し得る種々の方法が採用可
能であるが、例えば、流動層状態にした核材に適当なバ
インダーを含むセラミック顔料粉末溶液をスプレーによ
り付着させる方法、あるいは、核材をセラミック原料粉
末の懸濁液(コーティングすべき物質が可溶性のもので
あればその溶液)に浸漬させた後、乾燥させる方法等が
適当である。
Various commonly used coating methods can be used, such as a method in which a ceramic pigment powder solution containing an appropriate binder is applied to the core material in a fluidized bed state by spraying, or a method in which the core material is coated with a ceramic raw material. A suitable method is to immerse the powder in a suspension (or a solution if the substance to be coated is soluble) and then dry it.

セラミック粉末としては特に制限されず、ジルコニア、
アルミナ、炭化珪素、窒化珪素、サイアロン、シリカ等
、各種のセラミック粉末を用いることができる。
Ceramic powders are not particularly limited, and include zirconia,
Various ceramic powders such as alumina, silicon carbide, silicon nitride, sialon, and silica can be used.

別に、セラミック粉末を常法に従って造粒して、セラミ
ック粒子を得る。造粒に用いるセラミック粉末としては
、複合粒子の製造に用いたセラミック粉末と同材質のも
のを用いるのが有利である。
Separately, ceramic powder is granulated according to a conventional method to obtain ceramic particles. As the ceramic powder used for granulation, it is advantageous to use one made of the same material as the ceramic powder used for manufacturing the composite particles.

このようにして得られた複合粒子及びセラミック粒子は
水、PVA2.5%水溶液等の適当な分散媒に投入し、
十分に混合攪拌させることにより懸濁させてスラリーと
する。この場合、必要に応じて、CMC等のバインダー
をスラリー全重量に対して1重量%程度添加する。
The composite particles and ceramic particles thus obtained are placed in a suitable dispersion medium such as water or a 2.5% aqueous solution of PVA.
Sufficient mixing and agitation is performed to suspend and form a slurry. In this case, if necessary, a binder such as CMC is added in an amount of about 1% by weight based on the total weight of the slurry.

次いで、第2図に示す如く、得られたスラリー4を、石
膏型5等の吸液性の高い鋳込み成形型に流し込んで泥漿
鋳込み成形する。成形にあたり、水等のスラリー4の分
散媒が石膏型5等の成形型に吸収される間に、スラリー
4中の複合粒子3とセラミック粒子6とが沈降するが、
この際、雨粒子3.6は比重差による沈降速度の差があ
るために、いずれか重い方の粒子が先に沈降し、軽い方
の粒子が後に沈降する0例えば、セラミック粒子6より
も複合粒子3の方が重く、沈降速度が速い場合には、第
3図に示す如く、下層に複合粒子3が多く、上層に行く
に従って次第にセラミック粒子6が増え、最上層では殆
どがセラミック粒子6となるように沈積する。
Next, as shown in FIG. 2, the obtained slurry 4 is poured into a casting mold with high liquid absorption properties, such as a plaster mold 5, to perform slurry casting. During molding, while the dispersion medium of the slurry 4 such as water is absorbed into a mold such as a plaster mold 5, the composite particles 3 and ceramic particles 6 in the slurry 4 settle.
At this time, because the rain particles 3.6 have different settling speeds due to the difference in specific gravity, the heavier particles settle first and the lighter particles settle later. When particles 3 are heavier and have a faster sedimentation rate, as shown in Figure 3, there are many composite particles 3 in the lower layer, and ceramic particles 6 gradually increase toward the upper layer, and in the top layer, most of the composite particles 3 are ceramic particles 6. Deposit as desired.

次いで、このようにして得られた成形体7を十分に乾燥
させた後、離型し、更に乾燥させた後、複合粒子3の核
材1の燃焼除去及びセラミック粒子6の焼結を行なうべ
く焼成する。この焼成の手順としては、まず核材1を燃
焼させる仮焼を行なった後、セラミック粒子6を強固に
焼結させる本焼成を行なうようにしても良いが、酸素含
有雰囲気中でセラミック粒子6の焼結と核材1の酸化除
去とを同時に行なっても良い。また、非酸化雰囲気中で
セラミック粒子6を仮焼結した後、酸素含有雰囲気中で
加熱し、核材1の酸化除去を行ない、最後に非酸化雰囲
気中あるいは酸素含有雰囲気中で本焼結を行なっても良
い。
Next, after sufficiently drying the molded body 7 obtained in this way, it is released from the mold, and after further drying, the core material 1 of the composite particles 3 is burned and removed, and the ceramic particles 6 are sintered. Fire. As a procedure for this firing, it is also possible to first perform calcination to burn the core material 1, and then perform main firing to firmly sinter the ceramic particles 6. Sintering and oxidation removal of the core material 1 may be performed simultaneously. Further, after preliminary sintering of the ceramic particles 6 in a non-oxidizing atmosphere, heating is performed in an oxygen-containing atmosphere to oxidize and remove the core material 1, and finally, main sintering is performed in a non-oxidizing atmosphere or an oxygen-containing atmosphere. You can do it.

焼成により、第4図に示す如く、核材1の存在していた
箇所が気孔8となり、下層に気孔が多く、即ち気孔率が
高く、上層に行くに従って気孔率が低くなり、最上層の
表面層は緻密質となっている多孔質セラミックス9が得
られる。
After firing, as shown in Figure 4, the area where the core material 1 was present becomes pores 8, the lower layer has many pores, that is, the porosity is high, and the porosity decreases as it goes to the upper layer, and the surface of the top layer Porous ceramics 9 having dense layers is obtained.

なお、焼成にあたり、乾燥した成形体をラバープレス等
により加圧した後、焼成処理することにより、得られる
多孔質セラミックスのセラミックス部分の緻密化の程度
を向上させることができる。
Note that during firing, the degree of densification of the ceramic portion of the porous ceramic obtained can be improved by applying pressure to the dried molded body using a rubber press or the like and then performing firing treatment.

第1図〜第4図に示す例は本発明の一実施例であって、
本発明は何ら図示のものに限定されるものではない。例
えば、鋳込み成形型としては、他の異形状のものを用い
ることもでき、また、複合粒子やセラミック粒子として
、各々、数種類の大きさ、比重のものを用いることによ
り、これらの粒子の沈降速度を調節して、多孔質層と緻
密層とが交互に形成された多孔質セラミックスを得るこ
ともできる。
The example shown in FIGS. 1 to 4 is an embodiment of the present invention,
The present invention is not limited to what is shown in the drawings. For example, casting molds with other irregular shapes can be used, and composite particles and ceramic particles of several sizes and specific gravity can be used to adjust the sedimentation rate of these particles. It is also possible to obtain porous ceramics in which porous layers and dense layers are alternately formed by adjusting the .

[作用] 可焼性の核材を気孔化材として用いるので、核材の粒径
、核材に付着させるセラミック粉末のコーティング層厚
さ、スラリーに投入する粒子の量を変更することにより
、所望の気孔径、気孔率、気孔分布の多孔質セラミック
を容易に製造することができる。しかも、複合粒子の大
きさや比重、セラミック粒子の大きさや比重を調整して
各々の沈降速度を調節することにより、緻密部分及び多
孔質部分を任意の箇所にかつ任意の割合で形成すること
ができる。
[Function] Since a combustible core material is used as a pore-forming material, the desired value can be obtained by changing the grain size of the core material, the thickness of the coating layer of ceramic powder attached to the core material, and the amount of particles added to the slurry. Porous ceramics with pore diameter, porosity, and pore distribution can be easily produced. Furthermore, by adjusting the size and specific gravity of the composite particles and the size and specific gravity of the ceramic particles to adjust the settling speed of each, dense and porous areas can be formed in any location and in any ratio. .

また、緻密部分のセラミックと多孔質部分のセラミック
とが連続した一体物であり、しかも、形成される多孔質
部と緻密部とは、気孔率が急変するものではなく、連続
的に変化するものとなるため、熱応力による割れや剥離
が発生することは殆どなく、セラミック部分の極めて緻
密で高強度な多孔質セラミックスとなる。
In addition, the ceramic in the dense part and the ceramic in the porous part are continuous and integrated, and the porosity of the formed porous part and dense part does not change suddenly, but continuously. Therefore, cracking or peeling due to thermal stress hardly occurs, and the ceramic portion becomes an extremely dense and high-strength porous ceramic.

更に、成形は泥漿鋳込み成形によるため、複雑異形状の
ものも容易に成形することができる。
Furthermore, since the molding is performed by slurry casting, it is possible to easily mold products with complex irregular shapes.

[実施例] 以下に本発明を実施例により更に具体的に説明するが本
発明はその要旨を超えない限り、以下の実施例に限定さ
れるものではない。
[Examples] The present invention will be explained in more detail by Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

実施例1 核材として、市販炭素粉を流動層方式にて造粒し、粒径
約200μの顆粒状核材を得た。この核材に、セラミッ
ク粉末(3mo1% Y203入りZr02)をパンコ
ーティング装置にて付着コーティングして粒径300μ
、比重1.3の複合粒子を得た。
Example 1 As a core material, commercially available carbon powder was granulated using a fluidized bed method to obtain a granular core material with a particle size of about 200 μm. This core material was coated with ceramic powder (3 mo1% Zr02 containing Y203) using a pan coating device to obtain a particle size of 300μ.
, composite particles with a specific gravity of 1.3 were obtained.

別に上記と同様のセラミック粉末をスプレードライヤー
により造粒し、粒径50μ、比重1.2のセラミック粒
子を得た。
Separately, the same ceramic powder as above was granulated using a spray dryer to obtain ceramic particles having a particle size of 50 μm and a specific gravity of 1.2.

得られた複合粒子35gとセラミック粒子5gを70m
J2の水に投入し、更にバインダーとしてCMC10%
水溶液を10g加え、十分に混合攪拌した。得られたス
ラリーを第2図に示す如く、石膏型に流し込んで、泥漿
鋳込み成形し、乾燥後、脱型した。
35g of the obtained composite particles and 5g of ceramic particles were placed in a 70m
Pour into J2 water and add 10% CMC as a binder.
10g of aqueous solution was added and thoroughly mixed and stirred. The obtained slurry was poured into a plaster mold as shown in FIG. 2, slurry casting was performed, and the mold was removed after drying.

得られた成形体を3000 k g / c rri’
 x 2分間の条件でラバープレスした後、大気中にて
800℃にて核材の燃焼除去した後、1400℃で5時
間焼成した。
The obtained molded body was heated to 3000 kg/c rri'
After rubber pressing for 2 minutes, the core material was burned off at 800°C in the atmosphere, and then fired at 1400°C for 5 hours.

その結果、得られた焼結体の下層の多孔質部分のかさ密
度は1.7g/crr?(気孔率約28%)であり、気
孔は均一な独立気孔型であり、上層に行くに従って気孔
率が低下し、表面に6士かさ密度5.95g/crn’
の緻密質部分力(連続一体物として形成されていた。
As a result, the bulk density of the lower porous portion of the obtained sintered body was 1.7 g/crr? (porosity is approximately 28%), and the pores are uniform independent pores, and the porosity decreases toward the upper layer, and the surface has a bulk density of 5.95 g/crn.
The dense partial force (formed as a continuous unit).

この焼結体は強度的にも従来の多孔質体にLヒベて数段
著れており、容易に破壊しなかった。
This sintered body was superior in strength to conventional porous bodies by several orders of magnitude, and did not break easily.

[発明の効果コ 以上詳述した通り本発明の多孔質セラミックスの製造方
法によれば、 ■ 緻密部分及び多孔質部分を所望の箇所に、所望の割
合で形成することができる。
[Effects of the Invention] As detailed above, according to the method for manufacturing porous ceramics of the present invention, (1) Dense portions and porous portions can be formed at desired locations and in desired ratios.

■ 気孔率、気孔径を任意に設定でき、著しく高気孔率
のものから低気孔率のものまで自在に調整できる。
■ Porosity and pore diameter can be set arbitrarily, and can be freely adjusted from extremely high porosity to low porosity.

■ 多孔質部分の気孔径及び気孔分布が極めて均一であ
る。
■ The pore size and pore distribution of the porous part are extremely uniform.

■ 多孔質部分のセラミック層は極めて緻密で、緻密質
部分と連続した一体物であり、しかも多孔質部分と緻密
質部分の気孔率の変化が連続的であるため、剥離や熱応
力による割れが発生することがなく、極めて高強度であ
る。
■ The ceramic layer in the porous part is extremely dense and continuous with the dense part, and the porosity changes continuously between the porous part and the dense part, so there is no risk of peeling or cracking due to thermal stress. It does not occur and has extremely high strength.

■ 泥漿鋳込み成形であるため、複雑異形状のものであ
っても容易に成形することができる。
■ Since it is a slurry casting method, even complex irregular shapes can be easily molded.

等の効果が奥される。etc. effects are deepened.

従って、本発明方法によれば、各種の構造体として有用
な優れた多孔質セラミックスを提供することができ、工
業的に極めて有利である。
Therefore, according to the method of the present invention, excellent porous ceramics useful as various structures can be provided, which is extremely advantageous industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は核材及びセラミック粉末コーティング層を示す
断面図、342図及び第3図は本発明の成形工程を説明
する断面図、第4図は得られる多孔質セラミックスの断
面図である。 1・・・核材、     2・・・・・・セラミック粉
末、3・・・複合粒子、  4・・・・・・スラリー5
・・・石膏型、    6・・・セラミック粒子、9・
・・多孔質、セラミックス。 第1図 fIA2図
FIG. 1 is a cross-sectional view showing the core material and the ceramic powder coating layer, FIG. 342 and FIG. 3 are cross-sectional views explaining the molding process of the present invention, and FIG. 4 is a cross-sectional view of the porous ceramic obtained. 1... Core material, 2... Ceramic powder, 3... Composite particles, 4... Slurry 5
...Gypsum mold, 6.Ceramic particles, 9.
...Porous, ceramic. Figure 1 fIA2 Figure

Claims (1)

【特許請求の範囲】[Claims] (1)可燃性の物質からなる粒状物を核材とし、該核材
の表面にセラミック粉末を付着させてなる複合粒子と、
セラミック粒子とを懸濁して得られるスラリーを泥漿鋳
込み法により上部と底部とで不均一に成形し、得られた
成形体を焼成して、核材の燃焼除去と、セラミックの焼
結とを行なうことを特徴とする連続的に気孔率の変化す
る多孔質セラミックスの製造方法。
(1) Composite particles made of a granular material made of a flammable substance as a core material and ceramic powder attached to the surface of the core material;
A slurry obtained by suspending ceramic particles is formed into a non-uniform top and bottom part using a slurry casting method, and the obtained formed body is fired to burn off the core material and sinter the ceramic. A method for producing porous ceramics with continuously changing porosity, characterized by:
JP5327390A 1990-03-05 1990-03-05 Production of porous ceramics Pending JPH03257081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5327390A JPH03257081A (en) 1990-03-05 1990-03-05 Production of porous ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5327390A JPH03257081A (en) 1990-03-05 1990-03-05 Production of porous ceramics

Publications (1)

Publication Number Publication Date
JPH03257081A true JPH03257081A (en) 1991-11-15

Family

ID=12938132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5327390A Pending JPH03257081A (en) 1990-03-05 1990-03-05 Production of porous ceramics

Country Status (1)

Country Link
JP (1) JPH03257081A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004905A1 (en) * 1995-07-25 1997-02-13 Viridian, Inc. Porous metal structures and processes for their production
WO2004031102A1 (en) * 2002-09-30 2004-04-15 Merck Patent Gmbh Method for producing inverse opaline structures
US7186460B2 (en) 2002-02-01 2007-03-06 Merck Patent Gmbh Extension and upsetting sensor
US7241502B2 (en) 2001-09-14 2007-07-10 Merck Patentgesellschaft Moulded bodies consisting of core-shell particles
US7291394B2 (en) 2002-06-17 2007-11-06 Merck Patent Gmbh Composite material containing a core-covering particle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004905A1 (en) * 1995-07-25 1997-02-13 Viridian, Inc. Porous metal structures and processes for their production
US7241502B2 (en) 2001-09-14 2007-07-10 Merck Patentgesellschaft Moulded bodies consisting of core-shell particles
US7186460B2 (en) 2002-02-01 2007-03-06 Merck Patent Gmbh Extension and upsetting sensor
US7291394B2 (en) 2002-06-17 2007-11-06 Merck Patent Gmbh Composite material containing a core-covering particle
WO2004031102A1 (en) * 2002-09-30 2004-04-15 Merck Patent Gmbh Method for producing inverse opaline structures

Similar Documents

Publication Publication Date Title
US6235665B1 (en) Porous ceramic articles
US4255197A (en) Process for obtaining refractory materials with controlled characteristics of porosity and density
US4775598A (en) Process for producing hollow spherical particles and sponge-like particles composed therefrom
US4744831A (en) Hollow inorganic spheres and methods for making such spheres
US6582651B1 (en) Metallic articles formed by reduction of nonmetallic articles and method of producing metallic articles
GB1569559A (en) Refractory compositions
US20090159853A1 (en) Colloidal templating process for manufacture of highly porous ceramics
EP3315478B1 (en) Precursor material for additive manufacturing of ceramic parts and methods of producing the same
US3978269A (en) Hollow pellets and method of making same
EP1063005B1 (en) Ceramic membrane
JPH0295423A (en) Inorgannic film
JPH03257081A (en) Production of porous ceramics
US5001088A (en) Method for producing porous form bodies
US3875273A (en) Hollow pellets and method of making same
JPH10130076A (en) Production of porous ceramic
US4970181A (en) Process for producing ceramic shapes
JP4029150B2 (en) Method for producing lightweight ceramic molded body
JP2788182B2 (en) Ceramic raw materials
JPH03150276A (en) Multilayered ceramic material and production thereof
JPH0383875A (en) Production of porous ceramic structure
JPH0533123B2 (en)
JPH04160078A (en) Production of ceramic porous body
JPH06247778A (en) Lightweight ceramic compact with obliquely oriented pore and its production
JPH0338233B2 (en)
JP2566886B2 (en) Method for producing porous sintered body having continuous pores