JPH0338233B2 - - Google Patents

Info

Publication number
JPH0338233B2
JPH0338233B2 JP58127235A JP12723583A JPH0338233B2 JP H0338233 B2 JPH0338233 B2 JP H0338233B2 JP 58127235 A JP58127235 A JP 58127235A JP 12723583 A JP12723583 A JP 12723583A JP H0338233 B2 JPH0338233 B2 JP H0338233B2
Authority
JP
Japan
Prior art keywords
core material
ceramic powder
ceramic
powder
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58127235A
Other languages
Japanese (ja)
Other versions
JPS6021883A (en
Inventor
Toyoki Ichihashi
Toshitsugu Ooi
Masaoki Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP12723583A priority Critical patent/JPS6021883A/en
Publication of JPS6021883A publication Critical patent/JPS6021883A/en
Publication of JPH0338233B2 publication Critical patent/JPH0338233B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は多孔質セラミツクスの製造方法に係
り、特に気孔が均一で高強度の多孔質セラミクス
を製造することができる多孔質セラミツクスの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for producing porous ceramics, and particularly to a method for producing porous ceramics that can produce porous ceramics with uniform pores and high strength.

[従来の技術] 近年、高温高強度構造材料として窒化珪素、炭
化珪素、サイアロン等の非酸化物セラミツクス、
あるいは酸化アルミニウム、酸化ジルコニウム
等、いわゆるニユーセラミツクスが急速にクロー
ズアツプされ、多くの研究や開発がなされてい
る。これらのセラミツクスの用途は、ガスタービ
ンのブレードや燃焼器、デイーゼルエンジンのシ
リンダやピストンその他高温用機械部品として数
多くある。
[Prior art] In recent years, non-oxide ceramics such as silicon nitride, silicon carbide, and sialon have been used as high-temperature, high-strength structural materials.
In addition, so-called new ceramics such as aluminum oxide and zirconium oxide are rapidly becoming popular, and much research and development is being carried out. These ceramics have many uses as gas turbine blades and combustors, diesel engine cylinders and pistons, and other high-temperature mechanical parts.

セラミツクスの中でも多孔質のセラミツク部材
は断熱性、吸音性、軽量性等の点において優れた
特性を有するところから広い範囲の応用が期待さ
れている。ところで、通常、多孔質セラミツク部
材は、セラミツク粉体の加圧成形密度を低くして
焼成を行なうか、又は成形時に揮発性あるいは可
燃性物質を添加して焼成を行なう混合法、あるい
はシラスのように焼成過程で発泡するような材料
を用いる発泡法、などの方法によつて製造されて
いる。しかしながら、従来の混合法によつて製造
された多孔質セラミツクスは気孔の均一性に劣
り、また発泡法はセラミツクス部分の緻密化がで
きない等の欠点を有している。またこれらの方法
によつて製造された従来の多孔質セラミツクスに
おいては、総じて強度が低いという問題がある。
Among ceramics, porous ceramic members are expected to be used in a wide range of applications because they have excellent properties such as heat insulation, sound absorption, and light weight. By the way, porous ceramic members are usually manufactured using a mixing method in which ceramic powder is pressure-molded to a low density and then fired, or a volatile or flammable substance is added during molding and then fired, or by a mixing method such as whitebait. It is manufactured by a foaming method that uses a material that foams during the firing process. However, porous ceramics produced by the conventional mixing method have poor pore uniformity, and the foaming method has drawbacks such as the inability to densify the ceramic portion. Furthermore, conventional porous ceramics produced by these methods generally have a problem of low strength.

[発明の目的] 本発明の目的は、上記従来技術の問題点を解消
し、気孔径及び気孔分布が共に均一で強度が高
く、また低気孔率の多孔質体から高気孔率の多孔
質体まで、任意の気孔率の多孔質体を製造するこ
とができる多孔質セラミツクスの製造方法を提供
することにある。
[Object of the Invention] An object of the present invention is to solve the problems of the prior art described above, and to provide a porous material with uniform pore size and pore distribution, high strength, and a porous material with a low porosity to a high porosity. The object of the present invention is to provide a method for producing porous ceramics that can produce porous bodies with arbitrary porosity.

[発明の構成] この目的を達成するために、本発明は可塑性か
つ可燃性の特定の粒状物よりなる核材を用い、こ
の核材に特定の方法でセラミツク粉末を付着させ
て加圧成形、焼成を行なうものである。即ち、本
発明は、 熱可塑性樹脂の中実な粒状物、あるいは、炭素
又は黒鉛の微粒を可塑性かつ可燃性バインダーで
固めた粒状物を核材とし、流動層状態にした上記
核材にバインダーを含むセラミツク粉末溶液をス
プレーにより付着させることにより、該核材の表
面にセラミツク粉末を付着させた後、加圧成形す
ることにより、核材が均一に分散した核材とセラ
ミツク粉末との複合圧粉体を得、しかる後、該複
合圧粉体を焼成して、核材の燃焼除去とセラミツ
ク粉末の焼結とを行なうことを特徴とする多孔質
セラミツクスの製造方法、 及び 熱可塑性樹脂の中実な粒状物、あるいは、炭素
又は黒鉛の微粒を可塑性かつ可燃性バインダーで
固めた粒状物を核材とし、該核材をセラミツク粉
末の懸濁液又は溶液に浸漬させた後、強制乾燥さ
せることにより該核材の表面にセラミツク粉末を
付着させた後、加圧成形することにより、核材が
均一に分散した核材とセラミツク粉末との複合圧
粉体を得、しかる後、該複合圧粉体を焼成して、
核材の燃焼除去とセラミツク粉末の焼結とを行な
うことを特徴とする多孔質セラミツクスの製造方
法、 を要旨とするものである。
[Structure of the Invention] In order to achieve this object, the present invention uses a core material made of a specific plastic and combustible granular material, attaches ceramic powder to this core material in a specific method, and press-forms the core material. It is used for firing. That is, the present invention uses solid particles of thermoplastic resin or particles of carbon or graphite solidified with a plastic and flammable binder as a core material, and applies a binder to the core material in a fluidized bed state. A composite powder of the core material and ceramic powder in which the core material is uniformly dispersed is obtained by applying a ceramic powder solution containing the ceramic powder to the surface of the core material by spraying and then press-molding the core material. A method for producing porous ceramics, which comprises obtaining a composite powder compact, and then firing the composite green compact to burn off the core material and sinter the ceramic powder, and a thermoplastic resin solid. A granular material, or a granular material made of carbon or graphite particles solidified with a plastic and flammable binder, is used as a core material, and the core material is immersed in a suspension or solution of ceramic powder, and then forcedly dried. After adhering ceramic powder to the surface of the core material, pressure molding is performed to obtain a composite compact of the core material and ceramic powder in which the core material is uniformly dispersed, and then the composite compact is By firing the
The gist of the present invention is a method for producing porous ceramics characterized by burning and removing a core material and sintering ceramic powder.

以下に本発明を図面を参照して詳細に説明す
る。
The present invention will be explained in detail below with reference to the drawings.

第1図ないし第5図は本発明の一実施例に係る
多孔質セラミツクスの製造過程を説明する概略的
な断面図である。(なお、各図とも模式的なもの
であり、いずれの図においても核材は著しく拡大
して表されている。) 本発明においては、まず、熱可塑性樹脂の中実
な粒状物、あるいは、炭素又は黒鉛の微粒を可塑
性かつ可燃性バインダーで固めた粒状物、好まし
くは球状物を核材として用い、この核材の表面に
セラミツク粉末を付着させる。用いる核材として
は、第1図aの1の如く、ポリエチレン、ポリプ
ロピレン、ポリスチレン等の有機高分子系熱可塑
性樹脂の球状物、あるいは、第2図aの如く、炭
素又は黒鉛の微粒3を酢酸ビニル系ポリマーのよ
うな可塑性かつ可燃性のバインダー4で固めた球
状物が挙げられる。
1 to 5 are schematic cross-sectional views illustrating the manufacturing process of porous ceramics according to an embodiment of the present invention. (In addition, each figure is a schematic one, and the core material is greatly enlarged in each figure.) In the present invention, first, solid particles of thermoplastic resin or A granular material, preferably a spherical material made of fine particles of carbon or graphite hardened with a plastic and combustible binder, is used as a core material, and ceramic powder is adhered to the surface of this core material. The core material to be used is a spherical material of organic polymeric thermoplastic resin such as polyethylene, polypropylene, polystyrene, etc. as shown in 1 in Figure 1a, or fine particles 3 of carbon or graphite mixed with acetic acid as shown in Figure 2a. Examples include spherical objects hardened with a plastic and combustible binder 4 such as a vinyl polymer.

しかして、このような核材の表面に、下記又
はの方法によりセラミツク粒子を付着させる。
Ceramic particles are then attached to the surface of such a core material by the following method.

流動層状態にした核材に適当なバインダーを
含むセラミツク原料粉末溶液をスプレーにより
付着させる。
A ceramic raw material powder solution containing a suitable binder is applied to the core material in a fluidized bed state by spraying.

核材をセラミツク原料粉末の懸濁液(コーテ
イングすべき物質が可溶性のものであればその
溶液)に浸漬させた後、強制乾燥させる。
The core material is immersed in a suspension of ceramic raw material powder (or a solution if the substance to be coated is soluble) and then forced to dry.

上記又はの方法によれば、核材1の表面に
はセラミツク原料粉末2を極めて均一に付着させ
ることができ、しかもコーテイング層の厚さを厚
くすることも可能であるる。セラミツク粉末のコ
ーテイング層の厚さは、最終的に得ようとする多
孔体の気孔率に依存し、気孔率の高いものであれ
ばコーテイング層を薄くし、気孔率の低いもので
あればコーテイング層を厚くする。
According to the method described above, the ceramic raw material powder 2 can be adhered extremely uniformly to the surface of the core material 1, and it is also possible to increase the thickness of the coating layer. The thickness of the coating layer of ceramic powder depends on the porosity of the porous body to be finally obtained.If the porosity is high, the coating layer will be thin, and if the porosity is low, the coating layer will be thinner. thicken.

セラミツク粉末としては特に制限されず、ジル
コニア、アルミナ、炭化珪素、窒化珪素、サイア
ロン、シリカ等各種のセラミツク粉末を用いるこ
とができる。
The ceramic powder is not particularly limited, and various ceramic powders such as zirconia, alumina, silicon carbide, silicon nitride, sialon, and silica can be used.

このようにしてセラミツク粉末を付着せしめた
粒子(第1図b、第2図c参照)は、次いでこれ
を第3図の如く所定量プレス金型10,11等に
充填し、加圧成形する。加圧成形をするに際し、
核材1が熱可塑性物質であれば、核材1が可塑性
を示す温度以上に加熱して加圧する。また加圧成
形の際、金型内を減圧にして空気泡を抜くように
することは、セラミツク部分の緻密化の程度を向
上させる点からして効果的である。このように加
圧成形すると、核材が可塑性を有しているところ
からこの核材が変形し、核材粒子間に存在してい
た空隙部9は押しつぶされて次第に小さくなる。
加圧成形をさらに続けると、もはや空隙はすべて
押しつぶされて無くなり、核材1とセラミツク原
料粉末2とが強く圧粉された緻密な成形体とな
る。
The particles to which the ceramic powder has been adhered in this way (see Figures 1b and 2c) are then filled in a predetermined amount into press molds 10, 11, etc. as shown in Figure 3, and press-formed. . When performing pressure molding,
If the core material 1 is a thermoplastic material, the core material 1 is heated and pressurized to a temperature higher than the temperature at which the core material 1 exhibits plasticity. Furthermore, during pressure molding, reducing the pressure in the mold to remove air bubbles is effective in improving the degree of densification of the ceramic part. When pressure-molded in this manner, the core material is deformed due to its plasticity, and the voids 9 existing between the core material particles are crushed and gradually become smaller.
When the pressure molding is continued, all the voids are crushed and disappear, and a dense molded body is formed in which the core material 1 and the ceramic raw material powder 2 are strongly pressed.

かくの如くして、第4図に示す如き断面形状
の、核材1が均一に分散した核材1とセラミツク
粉末2との複合圧粉体が得られる。
In this manner, a composite green compact of core material 1 and ceramic powder 2 with core material 1 uniformly dispersed and having a cross-sectional shape as shown in FIG. 4 is obtained.

加圧成形により得られた複合圧粉体は、次いで
核材の燃焼除去及びセラミツク原料粉末2の焼結
を行なうべく焼成される。第5図はこのようにし
て焼結された気孔5を有する焼結セラミツク部6
を拡大して示す模式的な断面図である。この焼成
の手順としては、まず核材を燃焼させる仮焼を行
なつた後、セラミツクスを強固に焼結させる本焼
成を行なうようにしても良い。もちろん酸素含有
雰囲気中でセラミツクスの焼結と核材の酸化除去
とを同時に行なつても良い。また、非酸化雰囲気
中でセラミツクスを仮焼成した後、酸素含有雰囲
気中で加熱し、核材の酸化除去を行ない、最後に
非酸化雰囲気中あるいは酸素含有雰囲気中で本焼
成を行なつても良い。
The composite compact obtained by pressure molding is then fired to burn off the core material and sinter the ceramic raw material powder 2. FIG. 5 shows a sintered ceramic part 6 having pores 5 sintered in this way.
FIG. The firing procedure may include first performing calcination to burn the core material, and then performing main sintering to firmly sinter the ceramic. Of course, the sintering of the ceramics and the oxidation removal of the core material may be performed simultaneously in an oxygen-containing atmosphere. Alternatively, after pre-firing the ceramic in a non-oxidizing atmosphere, it may be heated in an oxygen-containing atmosphere to oxidize and remove the core material, and finally the main firing may be performed in a non-oxidizing atmosphere or an oxygen-containing atmosphere. .

[発明の実施例] 以下に本発明を実施例により更に具体的に説明
するが、本発明はその要旨を超えない限り、以下
の実施例に限定されるものではない。
[Examples of the Invention] The present invention will be explained in more detail by Examples below, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例 1 核材として、市販炭素粉(灰分1.0%以下、粒
径約30μm)をカルボキシメチルセルロース
(CMC)と酢酸ビニルポリマーとをバインダーに
て流動層方式にて造粒し、粒径約700μmの顆粒を
得た。この核材にセラミツク粉体(共沈方式にて
製造した3mole%Y2O3入りZrO2、二次粒径約
0.5μm)を下記方法により付着コーテイングし
た。
Example 1 As a core material, commercially available carbon powder (ash content of 1.0% or less, particle size of approximately 30 μm) was granulated using a fluidized bed method using carboxymethyl cellulose (CMC) and vinyl acetate polymer as a binder to form particles with a particle size of approximately 700 μm. Granules were obtained. Ceramic powder (ZrO 2 containing 3 mole% Y 2 O 3 manufactured by co-precipitation method, secondary particle size of approx.
0.5 μm) was adhered and coated by the following method.

即ち、小型の流動層造粒装置に、該核材100g
を投入し、前記セラミツク粉末とポリビニルアル
コール2.5重量%水溶液とを等重量比で混練した
懸濁液を10.0c.c./minにて噴霧して核材表面に付
着コーテイングした。コーテイング時間は40分と
した。コーテイング層の厚みは約100μmであつ
た。
That is, 100 g of the core material was placed in a small fluidized bed granulator.
A suspension obtained by kneading the ceramic powder and a 2.5% by weight aqueous solution of polyvinyl alcohol in an equal weight ratio was sprayed at 10.0 cc/min to coat the surface of the core material. Coating time was 40 minutes. The thickness of the coating layer was approximately 100 μm.

以上の方法で得られた粒を円筒状金型にて乾式
プレスを室温にて実施した。プレス圧は2000Kg/
cm2とした。得られた複合圧粉体の焼結は、160
℃/hr昇温→750℃×6hr保持→135℃/hr昇温→
1450℃×5hr保持→230℃/hr以下で冷却、の条件
及び手順に従つて行なつた。またこの焼結は大気
雰囲気で行なつた。
The grains obtained by the above method were dry pressed in a cylindrical mold at room temperature. Press pressure is 2000Kg/
cm2 . Sintering of the obtained composite green compact is 160
℃/hr temperature increase→750℃×6hr hold→135℃/hr temperature increase→
The conditions and procedure were as follows: Hold at 1450°C for 5 hours → Cool at 230°C/hr or less. Moreover, this sintering was performed in an air atmosphere.

その結果、得られた焼結体は、嵩密度2.37(気
孔率約60%)であり気孔は横長の楕円状の独立気
孔型を呈した。
As a result, the obtained sintered body had a bulk density of 2.37 (porosity of about 60%), and the pores had a horizontally elongated elliptical independent pore type.

また、焼結体は強度的にも市販の各種の多孔質
体に比べて数段優れており、容易に破壊しなかつ
た。
In addition, the sintered body was much superior in strength to various commercially available porous bodies and did not break easily.

実施例 2 実施例1において、セラミツク粉末の付着コー
テイングを下記方法により行なつたこと以外は同
様にして焼結体を製造した。
Example 2 A sintered body was produced in the same manner as in Example 1, except that the ceramic powder coating was carried out in the following manner.

即ち、セラミツク粉末2重量部とポリビニルア
ルコール2.5重量%水溶液1重量部を混練したス
ラリー中に、該核材をふるい目の開き0.250mmの
金網のカゴに入れた状態で浸漬した。1分後、カ
ゴを引き上げ、110℃に制御した乾燥器内で強制
乾燥した。この浸漬及び乾燥を8回行なつた。コ
ーテイング層の厚みは約100μmとなつた。
That is, the core material was placed in a wire mesh basket with a sieve opening of 0.250 mm and immersed in a slurry prepared by kneading 2 parts by weight of ceramic powder and 1 part by weight of a 2.5% by weight aqueous solution of polyvinyl alcohol. After 1 minute, the basket was pulled up and force-dried in a dryer controlled at 110°C. This immersion and drying was repeated 8 times. The thickness of the coating layer was approximately 100 μm.

その結果、実施例1で製造されたものとほぼ同
程度の嵩密度及び強度を有する高強度多孔質セラ
ミツクスが得られた。
As a result, high-strength porous ceramics having substantially the same bulk density and strength as those produced in Example 1 were obtained.

[発明の効果] 以上詳述した通り、本発明は、熱可塑性樹脂の
中実な粒状物、あるいは、炭素又は黒鉛の微粒を
可塑性かつ可燃性バインダーで固めた粒状物を核
材として用い、この核材に特定の方法でセラミツ
ク粉末をコーテイングした後加圧成形し、次いで
焼成することにより多孔質セラミツクスを得るも
のである。しかして核材が可塑性を有していると
ころから、これを加圧成形することにより核材が
均一に分散した、しかもセラミツク部分が著しく
緻密化された複合圧粉体が得られる。そしてこれ
を焼成することにより、気孔径及び気孔分布が極
めて均一で高強度の多孔質セラミツクスを製造す
ることができる。
[Effects of the Invention] As detailed above, the present invention uses solid particles of thermoplastic resin or particles of carbon or graphite hardened with a plastic and flammable binder as a core material. Porous ceramics are obtained by coating the core material with ceramic powder using a specific method, press-molding it, and then firing it. Since the core material has plasticity, by press-molding it, a composite green compact in which the core material is uniformly dispersed and in which the ceramic portion is significantly densified can be obtained. By firing this, it is possible to produce porous ceramics with extremely uniform pore diameter and pore distribution and high strength.

また、得られる多孔質セラミツクスの気孔率
は、核材の粒径あるいはセラミツク粉末のコーテ
イング層厚を選択することにより任意に変化させ
ることができ、著しく高気孔率のものから低気孔
率のものまで自在に製造できる。
Furthermore, the porosity of the resulting porous ceramics can be changed arbitrarily by selecting the particle size of the core material or the coating layer thickness of the ceramic powder, ranging from extremely high porosity to low porosity. Can be manufactured freely.

従つて、本発明方法によれば、各種の構造体と
して有用な優れた多孔質セラミツクスを提供する
ことができ、工業的に極めて有利である。
Therefore, according to the method of the present invention, excellent porous ceramics useful as various structures can be provided, which is extremely advantageous industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は核材及びセラミツク粉末コーテイング
層の一例を示す断面図であり、aは核材、bはa
の核材にセラミツク粉末をコーテイングした粒を
示す。第2図は核材及びセラミツク粉末コーテイ
ング層の他の例を示す断面図で、aは核材中の微
粒粉、bはaを含む核材、cはbの核材によるコ
ーテイング粒を示す。また、第3図は本発明の加
圧工程を説明する断面図、第4図は第3図の加圧
成形により得られる複合圧粉体の断面図、第5図
は本発明で得られる多孔質セラミツクスの断面図
である。 1…核材、2…セラミツク粉末、3…微粒粉、
4…バインダー、5…気孔、6…焼結セラミツク
部、9…空隙、10,11…金型。
FIG. 1 is a sectional view showing an example of a core material and a ceramic powder coating layer, where a is a core material and b is a
This figure shows a grain in which the core material is coated with ceramic powder. FIG. 2 is a sectional view showing another example of a core material and a ceramic powder coating layer, in which a shows fine powder in the core material, b shows a core material containing a, and c shows coating grains made of the core material b. Further, FIG. 3 is a cross-sectional view explaining the pressing process of the present invention, FIG. 4 is a cross-sectional view of a composite green compact obtained by the pressure molding of FIG. 3, and FIG. FIG. 2 is a cross-sectional view of quality ceramics. 1... Core material, 2... Ceramic powder, 3... Fine powder,
4... binder, 5... pores, 6... sintered ceramic part, 9... voids, 10, 11... mold.

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂の中実な粒状物、あるいは、炭
素又は黒鉛の微粒を可塑性かつ可燃性バインダー
で固めた粒状物を核材とし、流動層状態にした上
記核材にバインダーを含むセラミツク粉末溶液を
スプレーにより付着させることにより、該核材の
表面にセラミツク粉末を付着させた後、加圧成形
することにより、核材が均一に分散した核材とセ
ラミツク粉末との複合圧粉体を得、しかる後、該
複合圧粉体を焼成して、核材の燃焼除去とセラミ
ツク粉末の焼結とを行なうことを特徴とする多孔
質セラミツクスの製造方法。 2 熱可塑性樹脂の中実な粒状物、あるいは、炭
素又は黒鉛の微粒を可塑性かつ可燃性バインダー
で固めた粒状物を核材とし、該核材をセラミツク
粉末の懸濁液又は溶液に浸漬させた後強制乾燥さ
せることにより、該核材の表面にセラミツク粉末
を付着させた後、加圧成形することにより、核材
が均一に分散した核材とセラミツク粉末との複合
圧粉体を得、しかる後、該複合圧粉体を焼成し
て、核材の燃焼除去とセラミツク粉末の焼結とを
行なうことを特徴とする多孔質セラミツクスの製
造方法。
[Scope of Claims] 1. Solid granules of thermoplastic resin or granules made of fine particles of carbon or graphite solidified with a plastic and flammable binder are used as a core material, and a binder is added to the core material in a fluidized bed state. By spraying a ceramic powder solution containing ceramic powder, the ceramic powder is attached to the surface of the core material, and then pressure molding is performed to form a composite pressure of the core material and ceramic powder in which the core material is uniformly dispersed. A method for producing porous ceramics, which comprises obtaining powder, and then firing the composite green compact to burn off the core material and sinter the ceramic powder. 2 Solid granules of thermoplastic resin or granules made of carbon or graphite fine particles solidified with a plastic and flammable binder are used as core materials, and the core materials are immersed in a suspension or solution of ceramic powder. After the ceramic powder is adhered to the surface of the core material by forced drying, a composite compact of the core material and ceramic powder in which the core material is uniformly dispersed is obtained by pressure molding. A method for producing porous ceramics, characterized in that the composite green compact is then fired to burn off the core material and sinter the ceramic powder.
JP12723583A 1983-07-13 1983-07-13 Manufacture of porous ceramics Granted JPS6021883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12723583A JPS6021883A (en) 1983-07-13 1983-07-13 Manufacture of porous ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12723583A JPS6021883A (en) 1983-07-13 1983-07-13 Manufacture of porous ceramics

Publications (2)

Publication Number Publication Date
JPS6021883A JPS6021883A (en) 1985-02-04
JPH0338233B2 true JPH0338233B2 (en) 1991-06-10

Family

ID=14955057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12723583A Granted JPS6021883A (en) 1983-07-13 1983-07-13 Manufacture of porous ceramics

Country Status (1)

Country Link
JP (1) JPS6021883A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193476A (en) * 1987-10-06 1989-04-12 Mitsubishi Heavy Ind Ltd Production of porous ceramics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504003A (en) * 1972-12-22 1975-01-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504003A (en) * 1972-12-22 1975-01-16

Also Published As

Publication number Publication date
JPS6021883A (en) 1985-02-04

Similar Documents

Publication Publication Date Title
JP2604876B2 (en) Method for manufacturing ceramic honeycomb structure
US6582796B1 (en) Monolithic honeycomb structure made of porous ceramic and use as a particle filter
JP4188194B2 (en) High porosity porous ceramics produced from inflatable microspheres and preceramic polymer and method for producing the same
WO2007025152A1 (en) Colloidal templating process for manufacture of highly porous ceramics
JPH05254914A (en) Method for making sintered body
EP0487172A2 (en) Molding method and molding apparatus for producing ceramics
US5001088A (en) Method for producing porous form bodies
JPH04333619A (en) Production of formed article of high-purity alumina fiber
CN111825448B (en) Method for preparing straight-through-hole zirconia ceramic with compact hole wall by wet spinning dipping method
JPH02172852A (en) Production of ceramics
JP2651170B2 (en) Ceramics porous body
JPH0338233B2 (en)
JP2004501050A (en) Plasticizable mixtures and methods of use thereof
JP2788061B2 (en) Firing jig and its manufacturing method
JP4054872B2 (en) Alumina porous ceramics and method for producing the same
CN101530701A (en) Preparation method for silicon carbide candled filter
JPH03257081A (en) Production of porous ceramics
JP4967111B2 (en) Alumina-based porous ceramics and method for producing the same
JPH0597537A (en) Production of ceramic porous material
US5756015A (en) Method for producing cylindrical ceramic body
JPS6031800B2 (en) Manufacturing method of porous ceramic honeycomb structure with high dimensional accuracy
KR20020068935A (en) Fabrication method of silicon carbide ceramics filter with coating layer
JPH02279553A (en) Ceramic molded body and its production
JPS62202880A (en) Manufacture of porous ceramic body
JP2566886B2 (en) Method for producing porous sintered body having continuous pores