JPS61191042A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPS61191042A
JPS61191042A JP3195185A JP3195185A JPS61191042A JP S61191042 A JPS61191042 A JP S61191042A JP 3195185 A JP3195185 A JP 3195185A JP 3195185 A JP3195185 A JP 3195185A JP S61191042 A JPS61191042 A JP S61191042A
Authority
JP
Japan
Prior art keywords
silicon
oxide film
film
crystal silicon
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3195185A
Other languages
Japanese (ja)
Inventor
Kanji Mukai
向井 幹二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3195185A priority Critical patent/JPS61191042A/en
Publication of JPS61191042A publication Critical patent/JPS61191042A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Abstract

PURPOSE:To form a thick surface oxide film on a high withstanding-voltage element part and to form a thin oxide film at a low withstanding-voltage element part, by using a selective oxidation method, with a silicon nitride film as a mask. CONSTITUTION:On the exposed surface of single crystal silicon islands 1 and 2 for a high withstanding-voltage element and a low withstanding-voltage element, a silicon oxide film 3 and a silicon nitride film 3a are formed. Then the film 3a is selectively etched, and a silicon oxide film 3b at a part, which is contacted with a high-concentration embedded layer 7 in the island 1, is exposed. Then, with the film 3a as a mask, the surface of a substrate is selectively oxidized. The exposed film 3 and 3a are thickly formed. Then the film 3a is removed, impurities are diffused and an impurity diffused region 9 is formed. Thereafter a metal wiring 8 is provided.

Description

【発明の詳細な説明】 〔産業上の利用分計〕 本発明は誘電体分離技術を用いた高耐圧半導体集積回路
の製造方法に関し、特に高耐圧素子と低耐圧素子とが混
在する半導体集権回路の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application] The present invention relates to a method for manufacturing a high-voltage semiconductor integrated circuit using dielectric isolation technology, and particularly to a semiconductor integrated circuit in which high-voltage elements and low-voltage elements are mixed. Relating to a manufacturing method.

〔従来の技術〕[Conventional technology]

まづ従来の、この種の半導体集積回路の製造方法の例を
第2図(a) 、 (b) 、 (c)を参照して説明
する。
First, an example of a conventional method for manufacturing a semiconductor integrated circuit of this type will be described with reference to FIGS. 2(a), 2(b), and 2(c).

第2IN(a)に示すように、初めに、誘導体分離型の
半導体基板24の表面に熱酸化R28を形成し。
As shown in 2nd IN (a), first, thermal oxidation R28 is formed on the surface of the dielectric isolation type semiconductor substrate 24.

次に、第2図(b)に示すように表面の熱酸化膜28を
選択エツチングして単結晶シリコン島21゜22の一部
分を露出させる。第2図(切において。
Next, as shown in FIG. 2(b), the thermal oxide film 28 on the surface is selectively etched to expose a portion of the single crystal silicon islands 21 and 22. Figure 2 (cut out).

単結晶シリコン島21は高耐圧素子用であり、単結晶シ
リコン島22は低耐圧素子用であるが表面の熱酸化11
128は高耐圧素子、低耐圧素子(単結晶シリコン島2
1.23)いずれの部分においても、誕濃度埋入層27
の端部27aを覆っている。
The single crystal silicon island 21 is for high voltage elements, and the single crystal silicon island 22 is for low voltage elements, but the surface thermal oxidation 11
128 is a high withstand voltage element, a low withstand voltage element (single crystal silicon island 2
1.23) In any part, the birth concentration buried layer 27
It covers the end 27a of.

次に露出した単結晶シリコン島21.22の表面から選
択拡散法を用いて不純物を拡散する。第2図(c)には
不純物を拡散した後、金属配#1128を施した状態を
示す。なお25は多結晶シリコン、26は分離シリコン
酸化膜、29は不純物拡散領域である。
Next, impurities are diffused from the exposed surfaces of the single crystal silicon islands 21 and 22 using a selective diffusion method. FIG. 2(c) shows a state in which metal interconnection #1128 is applied after impurity diffusion. Note that 25 is polycrystalline silicon, 26 is an isolation silicon oxide film, and 29 is an impurity diffusion region.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の技術においては、第21N(b)に示すよう
に、表面の熱酸化膜23を選択エツチングする際高濃度
埋込層27の端部27aおよび分離シリコン酸化膜26
の端部26aを覆うように表面熱酸化膜23を残留させ
、最終的に高濃度埋込層27と摺触する部分の表面熱酸
化膜23を他の部分に比較して十分に厚くする。この理
由は、$2図(c)を参照すると、金属配線28と高濃
度埋込層27の間にある表面熱酸化膜28が薄い場合、
高電圧印加時に、金属配1fs28の直下の高濃度埋込
N27の箇所でブレークダウンが生じ、耐圧が低下する
。しかし低耐圧素子では、このようなプレクダウンを考
慮する必要はなく、低耐圧素子用の単結晶シリコン島2
2に対しては、表面酸化膜28は不要である。しかし以
上述べた技術を適用すると表面酸化膜23をエツチング
除去することになるが、第3図に示すように半導体基板
84の表面に露出している分離酸化N86がエツチング
されて低耐圧用単結晶シリコン島82と多結晶シリコン
85との間に間@80ができ、表面に段差を生じる。こ
の段差は金属配線の段切れの原因となるため低耐圧素子
用の単結晶シリコン島22(32)においても第2図(
b)に示す表面酸化膜28を除去することはできない。
In the above conventional technique, as shown in No. 21N(b), when selectively etching the thermal oxide film 23 on the surface, the end portion 27a of the high concentration buried layer 27 and the isolated silicon oxide film 23 are etched.
The surface thermal oxide film 23 is left so as to cover the end portion 26a, and the surface thermal oxide film 23 is made sufficiently thicker in a portion where it finally comes into sliding contact with the high concentration buried layer 27 than in other portions. The reason for this is that when the surface thermal oxide film 28 between the metal wiring 28 and the high concentration buried layer 27 is thin, referring to Figure 2 (c),
When a high voltage is applied, breakdown occurs at the highly concentrated buried N27 directly under the metal interconnection 1fs28, and the withstand voltage decreases. However, in low-voltage devices, there is no need to consider such pre-kdown, and single-crystal silicon islands 2 for low-voltage devices
For No. 2, the surface oxide film 28 is not necessary. However, when the above-described technique is applied, the surface oxide film 23 is removed by etching, but as shown in FIG. A gap @80 is created between the silicon island 82 and the polycrystalline silicon 85, creating a step on the surface. This level difference causes a break in the metal wiring, so even in the single crystal silicon island 22 (32) for low-voltage devices, it is also
The surface oxide film 28 shown in b) cannot be removed.

したがって不純物の拡散領域以外に表面酸化膜28の領
域が必要となりその分だけ単結晶シリコン島22を大き
くする必要があり、半導体集積回路の集積度が低くなる
欠点があった。
Therefore, a region of the surface oxide film 28 is required in addition to the impurity diffusion region, and the single-crystal silicon island 22 must be made larger by that amount, which has the disadvantage of lowering the degree of integration of the semiconductor integrated circuit.

なお、第8図において、31は高耐圧用単結晶シリコン
島、87は高濃度埋込層である。
In FIG. 8, 31 is a single crystal silicon island for high breakdown voltage, and 87 is a high concentration buried layer.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決する発明の手段は1俵数個の単結晶シ
リコン島が、シリコン酸化膜を介して該単結晶シリコン
島の一面が露出する状態で、多結晶シリコン中に埋込ま
れた半導体基板を構成し、該単結晶シリコン島の一面が
露出する該半導体基板の主表面にシリコン酸化膜−とシ
リコン窒化膜とを順次形成し、次に該シリコン酸゛化膜
のうち前記多結晶シリコンと前記単結晶シリコン島の高
濃度埋込層および前記多結晶シリコンと前記単結晶シリ
コン島とにはさまれたシリコン酸化膜に接触する部分の
一部が露出するように前記シリコン窒化膜をエツチング
により選択除去し、シリコン♀化膜をマスクとして熱酸
化法により半導体基板の主表面を選択酸化した後、前記
シリコン窒化膜を全面除去し1次に選択拡散法により半
導体基板の主表面から不純物を拡散して回路素子を形成
することを特徴とする半導体集積回路の製造方法である
The means of the invention for solving the above problems is that several single-crystal silicon islands in one bale are embedded in polycrystalline silicon with one side of the single-crystal silicon islands exposed through a silicon oxide film. A silicon oxide film and a silicon nitride film are sequentially formed on the main surface of the semiconductor substrate constituting the substrate and one side of the single crystal silicon island is exposed, and then, of the silicon oxide film, the polycrystalline silicon and etching the silicon nitride film so as to expose a portion of the high concentration buried layer of the single crystal silicon island and a portion that contacts the silicon oxide film sandwiched between the polycrystalline silicon and the single crystal silicon island. After selectively oxidizing the main surface of the semiconductor substrate by thermal oxidation using the silicon nitride film as a mask, the silicon nitride film is completely removed and impurities are first removed from the main surface of the semiconductor substrate by selective diffusion. This is a method of manufacturing a semiconductor integrated circuit characterized by forming circuit elements by diffusion.

〔実施例〕〔Example〕

次に1本発明を実施例により図面を参照して説明する。 Next, one embodiment of the present invention will be described with reference to the drawings.

$1図(a) 、 (b) 、 (c) 、(d)は本
発明ノー実施例の断面図である。第1図(a)に示すよ
うに、多結晶シリコン5中に分離シリコン酸化膜6およ
び高濃度埋込層7を介して高耐圧素子用単結晶シリコン
島1および低耐圧素子用シリコン島2が埋込まれ1両シ
リコン島1,2の一部が表面に露出して誘電体分離型半
導体基板4が形成される。まずこの半導体基板4のシリ
コン島1.2の露出する表面にシリコン酸化H3、さら
にこれにシリコン窒化8aを形成する。
$1 Figures (a), (b), (c), and (d) are cross-sectional views of a non-embodiment of the present invention. As shown in FIG. 1(a), a single crystal silicon island 1 for a high breakdown voltage element and a silicon island 2 for a low breakdown voltage element are formed in a polycrystalline silicon 5 through an isolated silicon oxide film 6 and a high concentration buried layer 7. Parts of the buried silicon islands 1 and 2 are exposed at the surface to form a dielectric isolation type semiconductor substrate 4. First, silicon oxide H3 is formed on the exposed surface of the silicon island 1.2 of this semiconductor substrate 4, and then silicon nitride 8a is formed thereon.

この場合シリコン酸化膜8は従来より薄く形成されてい
る。
In this case, silicon oxide film 8 is formed thinner than before.

次に第1図(b)に示すようにシリコン窒化膜4を選択
エツチングし高耐圧素子を形成する単結晶シリコン島1
の高濃度埋込層7に接触する部分のシリコン酸化膜3b
を露出させる。一方低耐圧素子を形成する単結晶シリコ
ン島2およびその近傍はシリコン窒化膜8aで覆ったま
まである。
Next, as shown in FIG. 1(b), the silicon nitride film 4 is selectively etched to form a single crystal silicon island 1 to form a high breakdown voltage element.
The silicon oxide film 3b in the portion that contacts the high concentration buried layer 7 of
expose. On the other hand, the single crystal silicon island 2 forming the low breakdown voltage element and its vicinity remain covered with the silicon nitride film 8a.

次に第1図(c)に示すように熱酸化法を用いてシリコ
ン窒化膜8aをマスクとして基板表面を選択酸化する。
Next, as shown in FIG. 1(c), the substrate surface is selectively oxidized using a thermal oxidation method using the silicon nitride film 8a as a mask.

ここで露出した部分のシリコン酸化膜3.8b厚く形成
される。
The exposed portion of the silicon oxide film 3.8b is formed to be thick.

次にシリコン窒化i3aを全面除去し、第1図(d)に
示すように不純物を選択拡散し、単結晶シリフン島1,
2円に不純物拡散領域9を形成した後金属配線 8 を
設ける。以上のように嘴成した半導体集積回路の高耐圧
素子は、金属配線8と高濃度埋込層7に接触する表面酸
化膜4を十分厚くすることができ、高い耐圧を実現する
ことができる。
Next, silicon nitride i3a is completely removed, impurities are selectively diffused as shown in FIG. 1(d), and single crystal silicon islands 1,
After forming an impurity diffusion region 9 in two circles, a metal wiring 8 is provided. In the high breakdown voltage element of the semiconductor integrated circuit formed with the beak as described above, the surface oxide film 4 in contact with the metal wiring 8 and the high concentration buried layer 7 can be made sufficiently thick, and a high breakdown voltage can be realized.

また低耐圧素子が存在する個所では単結晶シリコン島2
と単結晶シリコン島2の間も含めて、素子表面の酸化膜
8の厚さが比較的薄く、シかも表面段差が軽減される。
In addition, in areas where low-voltage elements exist, single-crystal silicon islands 2
The thickness of the oxide film 8 on the element surface, including between the single-crystal silicon island 2 and the single-crystal silicon island 2, is relatively thin, and the surface level difference can be reduced.

〔発明の効果〕〔Effect of the invention〕

以と説明したように1本発明によれば、誘電体分離型の
半導体基板を用いて高耐圧素子と低耐圧素子の混在した
半導体集積回路を製造において。
As explained above, according to one aspect of the present invention, a semiconductor integrated circuit having a mixture of high-voltage elements and low-voltage elements can be manufactured using a dielectric-separated semiconductor substrate.

シリコン窒化膜をマスクとした選択酸化法を用いること
により高耐圧素:F部分にのみ厚い表面酸化膜を形成す
るので、低耐圧素子部分は薄い平坦な酸化膜を形成する
ことができ、従って、低耐圧素子を小さくすることが可
能で、かつ金属配線の段切れを防止できるという効果を
奏する。
By using a selective oxidation method using a silicon nitride film as a mask, a thick surface oxide film is formed only on the high breakdown voltage element: F part, so a thin and flat oxide film can be formed on the low breakdown voltage element part. It is possible to reduce the size of the low-voltage element, and it is possible to prevent the metal wiring from breaking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b) 、 (c) 、 (d)は
本発明の製造方法の一実施例の説明のための断面図、第
2図(a) 、 (b) 、 (c)および第3図は従
来の半導体集権回路製造方法の説明のための断面図であ
る。 1・・・高耐圧素子用単結晶シリコン島2・・・低耐昆
素子用単結晶シリコン島3・・・表面シリコン酸化膜 8a・・・シリコン窒化膜 5・・・多結晶シリコン 6・・・分離シリコン酸化膜 7・・・高濃度埋込層 8・・・金属配線 9・・・不純物拡散領域
FIGS. 1(a), (b), (c), and (d) are cross-sectional views for explaining one embodiment of the manufacturing method of the present invention, and FIGS. 2(a), (b), and (c) and FIG. 3 is a cross-sectional view for explaining a conventional semiconductor integrated circuit manufacturing method. 1... Single-crystal silicon island for high-voltage elements 2... Single-crystal silicon island for low-voltage elements 3...Surface silicon oxide film 8a...Silicon nitride film 5...Polycrystalline silicon 6...・Isolated silicon oxide film 7...High concentration buried layer 8...Metal wiring 9...Impurity diffusion region

Claims (1)

【特許請求の範囲】[Claims]  複数個の単結晶シリコン島が、シリコン酸化膜を介し
て該単結晶シリコン島の一面が露出する状態で、多結晶
シリコン中に埋込まれた半導体基板を構成し、該単結晶
シリコン島の一面が露出する該半導体基板の主表面にシ
リコン酸化膜とシリコン窒化膜とを順次形成し、次に該
シリコン酸化膜のうち前記多結晶シリコンと前記単結晶
シリコン島の高濃度埋込層および前記多結晶シリコンと
前記単結晶シリコン島とにはさまれたシリコン酸化膜に
接触する部分の一部が露出するように前記シリコン窒化
膜をエッチングにより選択除去し、シリコン窒化膜をマ
スクとして熱酸化法により半導体基板の主表面を選択酸
化した後、前記シリコン窒化膜を全面除去し、次に選択
拡散法により半導体基板の主表面から不純物を拡散しと
回路素子を形成することを特徴とする半導体集積回路の
製造方法。
A plurality of single-crystal silicon islands constitute a semiconductor substrate embedded in polycrystalline silicon with one surface of the single-crystal silicon islands exposed through a silicon oxide film, and one surface of the single-crystal silicon islands is A silicon oxide film and a silicon nitride film are sequentially formed on the main surface of the semiconductor substrate where the silicon oxide film is exposed. The silicon nitride film is selectively removed by etching to expose a part of the silicon oxide film sandwiched between the crystalline silicon and the single crystal silicon island, and then thermal oxidation is performed using the silicon nitride film as a mask. A semiconductor integrated circuit characterized in that after selectively oxidizing the main surface of a semiconductor substrate, the silicon nitride film is completely removed, and then impurities are diffused from the main surface of the semiconductor substrate by a selective diffusion method to form a circuit element. manufacturing method.
JP3195185A 1985-02-20 1985-02-20 Manufacture of semiconductor integrated circuit Pending JPS61191042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3195185A JPS61191042A (en) 1985-02-20 1985-02-20 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3195185A JPS61191042A (en) 1985-02-20 1985-02-20 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS61191042A true JPS61191042A (en) 1986-08-25

Family

ID=12345267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3195185A Pending JPS61191042A (en) 1985-02-20 1985-02-20 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS61191042A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249333A (en) * 1987-04-06 1988-10-17 Hitachi Ltd Manufacture of power ic
US4856699A (en) * 1987-03-02 1989-08-15 Veb Elektromat Dresden Driving mechanism for a high-speed wire contacting device
JPH0225052A (en) * 1988-07-13 1990-01-26 Toshiba Corp Manufacture of dielectric-isolated semiconductor device
JPH02158153A (en) * 1988-12-12 1990-06-18 Nec Corp Dielectric insulator isolation type semiconductor integrated circuit
US5114875A (en) * 1991-05-24 1992-05-19 Motorola, Inc. Planar dielectric isolated wafer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856699A (en) * 1987-03-02 1989-08-15 Veb Elektromat Dresden Driving mechanism for a high-speed wire contacting device
JPS63249333A (en) * 1987-04-06 1988-10-17 Hitachi Ltd Manufacture of power ic
JPH0225052A (en) * 1988-07-13 1990-01-26 Toshiba Corp Manufacture of dielectric-isolated semiconductor device
JPH02158153A (en) * 1988-12-12 1990-06-18 Nec Corp Dielectric insulator isolation type semiconductor integrated circuit
US5114875A (en) * 1991-05-24 1992-05-19 Motorola, Inc. Planar dielectric isolated wafer

Similar Documents

Publication Publication Date Title
US4160260A (en) Planar semiconductor devices and method of making the same
JPH0231504B2 (en)
JPS60234372A (en) Manufacture of semiconductor device
JPS61191042A (en) Manufacture of semiconductor integrated circuit
US4722912A (en) Method of forming a semiconductor structure
EP0076147B1 (en) Method of producing a semiconductor device comprising an isolation region
JPH0368170A (en) Manufacture of thin film semiconductor element
JPS61172346A (en) Semiconductor integrated circuit device
JP2798953B2 (en) Semiconductor device and manufacturing method thereof
JP2767104B2 (en) Method for manufacturing semiconductor device
JP3133425B2 (en) Semiconductor device and manufacturing method thereof
JP2950620B2 (en) Semiconductor device
JPH0420266B2 (en)
KR960012643B1 (en) Method for forming the element isolation film of the semiconductor element
KR100189732B1 (en) Method for forming an element isolation region in a semiconductor device
JPS6113383B2 (en)
JPS62242335A (en) Formation of element isolating region of semiconductor integrated circuit
JPS6312380B2 (en)
JPH07176751A (en) Semiconductor device
JPH1032264A (en) Semiconductor device and manufacture thereof
JPS62183563A (en) Manufacture of semiconductor device
JPS6238857B2 (en)
JPH01101649A (en) Element isolation of semiconductor device
JPH065731B2 (en) Power IC manufacturing method
JPS6165447A (en) Manufacture of semiconductor device