JPS62242335A - Formation of element isolating region of semiconductor integrated circuit - Google Patents

Formation of element isolating region of semiconductor integrated circuit

Info

Publication number
JPS62242335A
JPS62242335A JP8575186A JP8575186A JPS62242335A JP S62242335 A JPS62242335 A JP S62242335A JP 8575186 A JP8575186 A JP 8575186A JP 8575186 A JP8575186 A JP 8575186A JP S62242335 A JPS62242335 A JP S62242335A
Authority
JP
Japan
Prior art keywords
nitride film
silicon nitride
oxide film
silicon
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8575186A
Other languages
Japanese (ja)
Inventor
Yasutaka Ikushima
生嶋 康孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8575186A priority Critical patent/JPS62242335A/en
Publication of JPS62242335A publication Critical patent/JPS62242335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Local Oxidation Of Silicon (AREA)

Abstract

PURPOSE:To make it feasible to form an element isolating region with less pattern conversion difference and stress concentration on transient regions by a method wherein both sides of a silicon oxide film is tapered and covered with thin silicon nitride film to be selectively oxidized. CONSTITUTION:A silicon nitride film 3 and a silicon oxide film 2 are successively etched at rslatively small selection ratio of etching speed between the silicon oxide film 2, the silicon nitride film 3 and a photoresist 4 to expose the surface of a single crystal substrate 1. Thus, the sides of silicon nitride film 3 and the silicon oxide film 2 are formed into a taper 5. Successively a channel cut regions 6 are formed. Next, after removing a photoresist 4, the second silicon nitride film 7 is formed to cover the surface of silicon single crystal substrate 1, the taper region 5 and the silicon nitride film 3. Finally, the second silicon nitride film 7 is anisotropically etched to be left only on a part of the taper part 5 mainly on the silicon oxide film 2 removing all of the other parts.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路の素子分離領域の形成方法に関
し、特に、パターン変換差が少なく、かつ、遷移領域へ
の応力集中が少ない半導体集積回路の素子分離領域の形
成方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming an element isolation region in a semiconductor integrated circuit, and in particular, to a semiconductor integrated circuit in which pattern conversion differences are small and stress concentration in transition regions is small. The present invention relates to a method for forming an element isolation region.

〔従来の技術〕[Conventional technology]

従来の半導体集積回路の素子分離領域の形成方法として
、例えば、第2図に示すものがある。この形成方法は、
耐酸化性膜である第1の窒化ケイ素膜21の側壁に第2
の窒化ケイ素膜22を形成して酸化を行うもので、例え
ば、ジャパニーズ・ジャーナル・オブ・アプライド・フ
ィズクスの第20巻、サブルメント2〇−1、P P5
5−61.1981年に発表されたものである。
As a conventional method for forming an element isolation region of a semiconductor integrated circuit, there is a method shown in FIG. 2, for example. This formation method is
A second silicon nitride film 21 is formed on the side wall of the first silicon nitride film 21, which is an oxidation-resistant film.
For example, Japanese Journal of Applied Physics Vol. 20, Sublument 20-1, P P5
5-61. Published in 1981.

即ち、第2図に示されるように、所定の導電型のシリコ
ン単結晶基板1に選択的に残された酸化ケイ素膜2−ヒ
に位置する第1の窒化ケイ素膜21と、その側壁の第2
の窒化ケイ素膜22をマスクとして選択酸化を行うこと
によって素子分離領域用の酸化膜23を形成するもので
ある。
That is, as shown in FIG. 2, the first silicon nitride film 21 located on the silicon oxide film 2-1 selectively left on the silicon single crystal substrate 1 of a predetermined conductivity type, and the first silicon nitride film 21 on the sidewall thereof. 2
By performing selective oxidation using the silicon nitride film 22 as a mask, an oxide film 23 for an element isolation region is formed.

第3図はLOCO3法として広く知られている形成方法
によるもので、シリコン単結晶基板1に酸化ケイ素膜2
が位置し、その上の窒化ケイ素膜31をマスクとして素
子分離領域用の酸化膜33を形成するものである。
Figure 3 shows a silicon oxide film 2 formed on a silicon single crystal substrate 1 using a formation method widely known as the LOCO3 method.
is located thereon, and an oxide film 33 for an element isolation region is formed using the silicon nitride film 31 thereon as a mask.

第2図の形成方法によれば、第1の窒化ケイ素膜21の
側壁が第2の窒化ケイ素膜22で完全に覆われているた
め、選択酸化時に形成れるパターン変換差に相当するバ
ーズビーク量が極めて小さくなる。そのため、酸化領域
と非酸化領域の遷移領域の距離p2を短くすることがで
きる(その結果、傾斜角θ2が大になる)。
According to the formation method shown in FIG. 2, since the sidewall of the first silicon nitride film 21 is completely covered with the second silicon nitride film 22, the amount of bird's beak corresponding to the pattern conversion difference formed during selective oxidation is reduced. becomes extremely small. Therefore, the distance p2 between the transition region between the oxidized region and the non-oxidized region can be shortened (as a result, the inclination angle θ2 becomes large).

これに対して、第3図の1. OCOS法によれば、窒
化ケイ素膜31の両端に酸化膜33の一部が食い込んで
形成されるため、遷移領域の距離13は短くならない(
その結果、傾斜角θ3は小さい)。
In contrast, 1 in Figure 3. According to the OCOS method, part of the oxide film 33 is formed by digging into both ends of the silicon nitride film 31, so the distance 13 of the transition region is not shortened (
As a result, the inclination angle θ3 is small).

〔発明が解決する問題点〕[Problems solved by the invention]

しかし、第2図に示した半導体集積回路の素子分離領域
の形成方法によれば、前述した遷移領域の距離12が短
いため(傾斜角θ2が大きいため)、この領域への応力
集中が著しくなり、厚い酸化膜を形成すると外部ストレ
スによって転位が発生し、リーク電流が増大する恐れが
生じる。
However, according to the method of forming the element isolation region of the semiconductor integrated circuit shown in FIG. 2, since the distance 12 of the transition region mentioned above is short (because the inclination angle θ2 is large), stress concentration in this region becomes significant. If a thick oxide film is formed, dislocations may occur due to external stress, which may increase leakage current.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は上記に鑑みてなされたものであり、パターン変
換差が少なく、;乞移領域への応力集中が少ない素子分
離領域を形成できるようにするため。選択酸化用マスク
となる窒化ケイ素膜が位置する酸化ケイ素層の両端にテ
ーパーを付し、このテーパー面を薄い窒化ケイ素膜で覆
って選択酸化を行うようにした半導体集積回路の素子分
離領域の形成方法を提供するものである。
The present invention has been made in view of the above-mentioned problems, and aims to form an element isolation region with less difference in pattern conversion and less stress concentration on the transient region. Formation of an element isolation region for a semiconductor integrated circuit in which a silicon oxide layer is tapered at both ends where a silicon nitride film serving as a mask for selective oxidation is located, and this tapered surface is covered with a thin silicon nitride film to perform selective oxidation. The present invention provides a method.

以下、本発明の半導体集積回路の素子分離領域の形成方
法を詳細に説明する。
Hereinafter, a method for forming an element isolation region of a semiconductor integrated circuit according to the present invention will be explained in detail.

〔実施例〕〔Example〕

第1図fa)より第1図fe)は本発明の一実施例を示
す。
FIG. 1 fa) to FIG. 1 fe) show an embodiment of the present invention.

まず、第1図fa)に示すように、シリコン単結晶基板
1の表面に酸化ケイ素膜2および窒化ケイ素膜3を形成
し、ひき続きフォトレジスト4のパターンを形成する。
First, as shown in FIG. 1fa), a silicon oxide film 2 and a silicon nitride film 3 are formed on the surface of a silicon single crystal substrate 1, and subsequently a pattern of a photoresist 4 is formed.

酸化ケイ素膜2は、50乃至1 、000人、窒化ケイ
素膜3は100乃至2,000人の厚さである。
The silicon oxide film 2 is 50 to 1,000 thick, and the silicon nitride film 3 is 100 to 2,000 thick.

次に、第2図(blに示すように、酸化ケイ素膜2およ
び窒化ケイ素膜3とフォトレジスト4のエツチング速度
の選択比が、例えば、0゜5〜3の比較的小さい条件で
窒化ケイ素膜3及び酸化ケイ素膜2を順次エツチングし
、シリコン単結晶基板1の表面を露出する。上述の如く
、選択比の比較的小さい条件、即ち、フォトレジストの
エツチング速度の相対的に大きい条件でエツチングする
ことにより、窒化ケイ素膜3および酸化ケイ素膜2の側
面にはテーパー5が形成される。ひき続いて既知の方法
で、チャンネルカット用イオン注入を行い、チャンネル
カット領域6を形成する。
Next, as shown in FIG. 2 (bl), the silicon nitride film is etched under the condition that the etching rate selectivity of the silicon oxide film 2 and the silicon nitride film 3 and the photoresist 4 is relatively small, for example, 0.5 to 3. 3 and the silicon oxide film 2 are sequentially etched to expose the surface of the silicon single crystal substrate 1. As mentioned above, the etching is performed under conditions where the selectivity is relatively low, that is, the etching rate of the photoresist is relatively high. As a result, a taper 5 is formed on the side surfaces of the silicon nitride film 3 and the silicon oxide film 2.Subsequently, channel cut ions are implanted by a known method to form a channel cut region 6.

次に、第1図(C1に示すように、フォトレジスト4を
除去後、第二の窒化ケイ素膜7をシリコン単結晶基板1
の表面、テーパー領域5および窒化ケイ素膜3の表面を
覆うように形成する。この窒化ケイ素膜7の厚さは、窒
化ケイ素膜3よりも薄くシておく。
Next, as shown in FIG. 1 (C1), after removing the photoresist 4, the second silicon nitride film 7 is deposited on the silicon single crystal substrate
, the tapered region 5 and the surface of the silicon nitride film 3. The thickness of this silicon nitride film 7 is set to be thinner than the silicon nitride film 3.

次に、第1図1dlに示すように、第二窒化ケイ素膜7
に異方性エツチングを施し、この窒化ケイ素膜7をテー
パー領域5の一部分、主として酸化ケイ素膜2にのみ残
存させて他の部分を除去する。このように、テーパー領
域の一部にのみ窒化ケイ素膜7を残存させるためには、
窒化ケイ素膜3の50〜500人の厚さの表面部tがエ
ツチング除去されるようにする。これはオーバーエツチ
ングを実施することにより達成される。
Next, as shown in FIG. 1 1dl, the second silicon nitride film 7
Anisotropic etching is applied to the silicon nitride film 7 to leave only a portion of the tapered region 5, mainly the silicon oxide film 2, and remove the other portions. In this way, in order to leave the silicon nitride film 7 only in a part of the tapered region,
The surface portion t of the silicon nitride film 3 having a thickness of 50 to 500 nm is etched away. This is achieved by performing overetching.

最後に、第1図(elに示すように、窒化ケイ素膜3お
よび7をマスクとして、選択酸化を行い、素子分離用酸
化ケイ素膜9を形成する。
Finally, as shown in FIG. 1 (el), selective oxidation is performed using the silicon nitride films 3 and 7 as masks to form a silicon oxide film 9 for element isolation.

尚、この後、ゲート電極、ソースおよびドレイン、電極
パターン等が形成されてMOSトランジスタが形成され
る。
Note that after this, a gate electrode, a source and a drain, an electrode pattern, etc. are formed to form a MOS transistor.

以」二の工程を経て形成された素子分離用酸化ケイ素膜
9は、第1図te+に示すように、前述した12と13
との関係テN、 <j!、 <n3の適切な値の遷移領
域の距離l、を有し、それによって(頃斜角θ、は、θ
3〈θ1くθ2の関係になって応力集中を緩和すること
ができる。
The silicon oxide film 9 for element isolation formed through the following two steps is as shown in FIG.
Relationship with TeN, <j! , <n3, with a suitable value of the transition region distance l, so that (approximately the oblique angle θ, is θ
3<θ1 x θ2, stress concentration can be alleviated.

〔発明の効果〕〔Effect of the invention〕

以上説明した3mす、本発明の半導体素子の素子分離領
域の形成方法によれば、選択酸化用マスクとなる窒化ケ
イ素膜が位置する酸化ケイ素層の両端にテーパーを付し
、このテーパー面を薄い窒化ケイ素膜で覆って選択酸化
を行うようにしたため、パターン変換差が少なく、遷移
領域への応力集中が少ない素子分離領域を形成すること
ができる。
According to the method for forming an element isolation region of a semiconductor element according to the present invention, both ends of the silicon oxide layer where the silicon nitride film serving as a mask for selective oxidation is located are tapered, and this tapered surface is thinned. Since selective oxidation is performed by covering with a silicon nitride film, it is possible to form an element isolation region with less difference in pattern conversion and less stress concentration in the transition region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ta+より第1図te+は本発明の一実施例を示
す断面図。第2図および第3図は従来の素子分離領域の
形成方法を示す断面図。 符号の説明
FIG. 1 ta+ to FIG. 1 te+ are sectional views showing one embodiment of the present invention. FIGS. 2 and 3 are cross-sectional views showing a conventional method of forming an element isolation region. Explanation of symbols

Claims (1)

【特許請求の範囲】 半導体基板表面の酸化膜上の窒化膜をマスクとして選択
酸化を行う半導体集積回路の素子分離領域の形成方法に
おいて、 前記酸化膜および前記窒化膜の積層構造の側面にテーパ
ー面を形成する段階と、 前記積層構造面に他の窒化膜を形成する段階と、 前記他の窒化膜を前記酸化膜の側面に残して除去する段
階を含み、 前記積層構造および前記側面に残された前記他の窒化膜
をマスクとして前記選択酸化を行うことを特徴とする半
導体集積回路の素子分離領域の形成方法。
[Scope of Claim] A method for forming an element isolation region of a semiconductor integrated circuit in which selective oxidation is performed using a nitride film on an oxide film on a surface of a semiconductor substrate as a mask, comprising: forming a tapered surface on a side surface of a laminated structure of the oxide film and the nitride film; forming another nitride film on the stacked structure surface; and removing the other nitride film leaving it on the side surface of the oxide film, A method for forming an element isolation region of a semiconductor integrated circuit, characterized in that the selective oxidation is performed using the other nitride film as a mask.
JP8575186A 1986-04-14 1986-04-14 Formation of element isolating region of semiconductor integrated circuit Pending JPS62242335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8575186A JPS62242335A (en) 1986-04-14 1986-04-14 Formation of element isolating region of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8575186A JPS62242335A (en) 1986-04-14 1986-04-14 Formation of element isolating region of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS62242335A true JPS62242335A (en) 1987-10-22

Family

ID=13867556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8575186A Pending JPS62242335A (en) 1986-04-14 1986-04-14 Formation of element isolating region of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS62242335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702978A (en) * 1996-04-30 1997-12-30 Vlsi Technology, Inc. Sloped silicon nitride etch for smoother field oxide edge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702978A (en) * 1996-04-30 1997-12-30 Vlsi Technology, Inc. Sloped silicon nitride etch for smoother field oxide edge

Similar Documents

Publication Publication Date Title
JPH05206451A (en) Mosfet and its manufacture
JPS61247051A (en) Manufacture of semiconductor device
JPS6242382B2 (en)
JPS62242335A (en) Formation of element isolating region of semiconductor integrated circuit
KR100214534B1 (en) Method of forming a device isolation structure of semiconductor device
JPS6272171A (en) Semiconductor memory
KR960006339B1 (en) Fabricating method of semiconductor device
JP2594121B2 (en) Method for manufacturing semiconductor device
JP3850933B2 (en) Manufacturing method of semiconductor device
JPS58180061A (en) Manufacture of semiconductor device
JPH0377376A (en) Manufacture of semiconductor device
JPS6321847A (en) Forming method for element separating region for semiconductor integrated circuit
JPH01223741A (en) Semiconductor device and manufacture thereof
JPS6399563A (en) Manufacture of semiconductor device
JPS5943832B2 (en) Manufacturing method of semiconductor device
JPS6312380B2 (en)
JPH02170569A (en) Mos type semiconductor integrated circuit
JPH05166831A (en) Manufacture of semiconductor device
JPS61198682A (en) Manufacture of semiconductor device
JPS624358A (en) Manufacture of semiconductor memory device
JPS61135119A (en) Manufacture of semiconductor device
JPS60149168A (en) Manufacture of semiconductor device
JPS61112375A (en) Manufacture of semiconductor device
JPS63202052A (en) Manufacture of mis type semiconductor memory device
JPS5829620B2 (en) hand tai souchi no seizou houhou