JPS6119076A - Charge-discharge method of solid electrolyte secondary battery - Google Patents

Charge-discharge method of solid electrolyte secondary battery

Info

Publication number
JPS6119076A
JPS6119076A JP59140882A JP14088284A JPS6119076A JP S6119076 A JPS6119076 A JP S6119076A JP 59140882 A JP59140882 A JP 59140882A JP 14088284 A JP14088284 A JP 14088284A JP S6119076 A JPS6119076 A JP S6119076A
Authority
JP
Japan
Prior art keywords
solid electrolyte
charge
secondary battery
battery
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59140882A
Other languages
Japanese (ja)
Inventor
Tadashi Tonomura
正 外邨
Satoshi Sekido
聰 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOUDENSEI MUKI KAGOUBUTSU GIJUTSU KENKYU KUMIAI
Original Assignee
DOUDENSEI MUKI KAGOUBUTSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOUDENSEI MUKI KAGOUBUTSU GIJUTSU KENKYU KUMIAI filed Critical DOUDENSEI MUKI KAGOUBUTSU GIJUTSU KENKYU KUMIAI
Priority to JP59140882A priority Critical patent/JPS6119076A/en
Publication of JPS6119076A publication Critical patent/JPS6119076A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve charge-discharge performance by limiting the x value of a positive active material within a specified range during use in a secondary battery using mainly Cu as a negative electrode, mainly CuxTiS2 compound as a positive electrode, and conductive solid electrolyte. CONSTITUTION:A solid electrolyte secondary battery is formed with a negative electrode mainly comprising Cu, a positive electrode mainly comprising an intermetallic compound selected from CuxTiS2, CuxTiCryS2+1.5y, (0<=x<0.20, 0.01< y<0.2), and a Cu<+> ion conductive solid electrolyte such as RbCu4I1.25C3.75. When the battery is discharged and charged, the x value of the positive active material is limited to -0.1-0.21. By this charge-discharge method, charge-discharge performance of the battery is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、固体電解質二次電池の充・放電方式従来例の
構成とその問題点 一般に二次電池は、用いられる正極活物質、負極活物質
、電解質の可逆性、過電圧2分解電圧等の電気化学的性
質によシ決定されるその電池系固有の、その電圧値ある
いは電気量を越えるとくり2へ一/ 返し充・放電特性が極端に低下する充・放電限界電圧あ
るいは電気量を有している。すなわち、従来の二次電池
の代表例であるニッケル・カドミウム電池とか鉛蓄電池
とかも、長年に経る検討を加え、それぞれの電池系に固
有の充・放電限界電圧あるいは電気量を見定め現在の充
・放電方式をとるに至っている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the structure of a conventional charging/discharging system for solid electrolyte secondary batteries and its problems. Exceeding the voltage value or amount of electricity unique to the battery system determined by the electrochemical properties such as electrolyte reversibility, overvoltage, and decomposition voltage will cause an extreme drop in charging and discharging characteristics. It has a charging/discharging limit voltage or quantity of electricity. In other words, we have studied the typical examples of conventional secondary batteries, such as nickel-cadmium batteries and lead-acid batteries, over many years, and have determined the charge/discharge limit voltage or amount of electricity unique to each battery system, and determined the current charge/discharge voltage. A discharge method has been adopted.

新しい正極活物質、負極活物質、電解質により構成され
る二次電池を実用に供するためには、この電池系固有の
充・放電限界電圧あるいは電気量を見定め、この電池系
固有の充・放電方式を与えることは必須の要件となる。
In order to put a secondary battery composed of a new positive electrode active material, negative electrode active material, and electrolyte into practical use, the charging/discharging limit voltage or amount of electricity unique to this battery system must be determined, and the charging/discharging method unique to this battery system must be determined. It is an essential requirement to provide

一方、在来の液体電解質を用いるニッケル・カドミウム
電池等の二次電池とは異り、固体状の電解質を用いる固
体電解質二次電池は、原理的に液もれがなく小形・うす
形化がきわめて簡便にできることから、近年発展が著し
い省電力・省エネルギーが達成されるマイクロエレクト
ロニクス分野の小型電源として注目されるに至っている
。この固体電解質二次電池の中でも、Cu工TiS2と
か3ベ−ノ Cu、 Ti CryS2+1.sy等の層間化合物全
正極活物質とし、Cu■イオン導電性固体電解質を用い
る二次電池は、正極活物質の可逆性が優れ、固体電解質
のイオン伝導度は有機電解液電解質に匹適するくらい高
くかつ化学的に安定であることから優れた電池特性が期
待できる固体電解質二次電池として注目されるに至って
いる。
On the other hand, unlike secondary batteries such as nickel-cadmium batteries that use conventional liquid electrolytes, solid electrolyte secondary batteries that use solid electrolytes do not leak in principle and can be made smaller and thinner. Because it is extremely easy to use, it has attracted attention as a compact power source for the microelectronics field, which has achieved remarkable power and energy savings in recent years. Among these solid electrolyte secondary batteries, Cu-TiS2, 3-vano Cu, TiCryS2+1. A secondary battery that uses an intercalation compound such as sy as an all-positive electrode active material and a Cu ion conductive solid electrolyte has excellent reversibility of the positive electrode active material, and the ionic conductivity of the solid electrolyte is high enough to be comparable to an organic electrolyte. Since it is also chemically stable, it has attracted attention as a solid electrolyte secondary battery that can be expected to have excellent battery characteristics.

該固体電解質二次電池の電池反応は: 放電 Cu x+ 6 T iS2 ’t  Cux+ a T I CryS2+1.67
れておらず、したがって、該電池の良好なくり返し特性
を与える充・放電限界を定め難く、該固体電解質二次電
池を実用に供するために難点があった。
The battery reaction of the solid electrolyte secondary battery is: Discharge Cu x+ 6 T iS2 't Cux+ a T I CryS2+1.67
Therefore, it is difficult to determine the charge/discharge limits that will give the battery good cycling characteristics, and this poses a problem in putting the solid electrolyte secondary battery into practical use.

発明の目的 本発明は、固体電解質二次電池について、良好なくり返
し充・放電特性を与える充・放電方式を提供することを
目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a charging/discharging method that provides good repeated charging/discharging characteristics for a solid electrolyte secondary battery.

発明の構成 本発明を適用する固体電解質二次電池は、Cuを主体と
する負極s Cu xT I S2 ! CuxT i
Cr yS2 + 1 、ts。
Structure of the Invention A solid electrolyte secondary battery to which the present invention is applied has a negative electrode mainly composed of Cu. CuxT i
Cr yS2 + 1, ts.

(o<x<o、2. o、ol(y(o、2)の一群よ
シ選ばれる化合物を主体とする正極、RbCu 4 I
 1 、5 C13,5+Rbcu4RbCu4I”3
.75等t7) Cu” イ、t 7 導t 性固体電
解質により構成される。そして該電池の使用に際しては
、上記正極化合物のIの値が−0,1〜0.21の間で
充・放電をくり返す。
(o<x<o, 2. o, ol(y(o, 2), a positive electrode mainly composed of a compound selected from the group of
1,5 C13,5+Rbcu4RbCu4I"3
.. 75, etc. t7) Cu" i, t 7 Conductive solid electrolyte. When using the battery, charging and discharging are performed when the value of I of the positive electrode compound is between -0.1 and 0.21. Repeat.

実施例の説明 下記に示した構成の固体電解質二次電池を構成し、本発
明を適用する。
Description of Examples A solid electrolyte secondary battery having the configuration shown below is constructed and the present invention is applied thereto.

6ページ 〔実施例1〕 電解質 : RbCu4I、 、6C1,6を0.5 
qr 。
Page 6 [Example 1] Electrolyte: RbCu4I, , 6C1,6 at 0.5
qr.

負極合剤:Cu粉末80重量%とCu2S2o重量%の
混合物4.76重量部と前記 電解質1.26重量部の混合物を 0.2 qr 。
Negative electrode mixture: 0.2 qr of a mixture of 4.76 parts by weight of a mixture of 80% by weight of Cu powder and % by weight of Cu2S2o and 1.26 parts by weight of the electrolyte.

正極合剤:Cuo、1TiS22重量部と前記電解質3
重量部の混合物をo、os gr。
Positive electrode mixture: Cuo, 1TiS22 parts by weight and the electrolyte 3
Parts by weight of the mixture were o, os gr.

上記の材料を2トン/cdの圧力で三層に加圧成型して
直径7頗、厚さ約11の電池を組み立てた。
The above materials were pressure molded into three layers at a pressure of 2 tons/cd to assemble a battery with a diameter of 7 mm and a thickness of about 11 mm.

これらの電池を室温で、100μへの定電流で、次表に
示す6種類の充・、放電サイクル試験a−fを行なった
These batteries were subjected to six types of charge/discharge cycle tests a to f shown in the following table at room temperature and at a constant current of 100μ.

次表に示したCuxTiS2  のX値は、次に示すC
uo、、T I S21 ’;r r当りの充電あるい
は放電容量0(Ah/cyr)とXの変化量であるΔX
との関係式よシ求めたΔX値を用いて求めたものである
The X value of CuxTiS2 shown in the following table is
uo,, T I S21 '; r ΔX which is the amount of change in charge or discharge capacity 0 (Ah/cyr) per r and X
It was determined using the ΔX value determined from the relational expression.

26.8 たとえば、試験電池を100μAで5時間放電した62
、−7 ときのΔX値は、 と与えられ、放電前のCuxTiS2  のX値を0.
1とすると、放電後のCux T iS2 のX値は、
x = 0.1 + 0.092 = 0.192とな
る。
26.8 For example, a test cell was discharged at 100 μA for 5 hours62
, -7, the ΔX value is given as follows, and the X value of CuxTiS2 before discharge is 0.
1, the X value of Cux T iS2 after discharge is
x = 0.1 + 0.092 = 0.192.

100μAで5時間充電した場合は、同様に算出して、 サイクル数と、各サイクル試験においてXの値が7ベー
/ 最大値をとる放電来電圧との関係を示しており、本発明
に従い、充・放電範囲が−o、1(x (o、 21で
あるサイクル試験a、b、c、e、では実用に耐える良
好なくり返し充・放電特性を与えることがわかる。
When charging at 100 μA for 5 hours, the relationship between the number of cycles and the discharge voltage at which the value of X takes the maximum value in each cycle test is calculated in the same way. - It can be seen that the cycle tests a, b, c, and e, in which the discharge range is -o, 1(x (o, 21), give good repeated charge/discharge characteristics that can withstand practical use.

〔実施例2〕 電解質 : RbCu 4I * 、5C13,5を0
.05 gr 0負極合剤:Cu粉80重量係とCu2
S20重量%の混合物4.75重量部と前記電 解質1.26  重量部の混合物を0.2g r 。
[Example 2] Electrolyte: RbCu 4I *, 5C13,5 0
.. 05 gr 0 negative electrode mixture: Cu powder 80 weight ratio and Cu2
0.2 g r of a mixture of 4.75 parts by weight of a mixture containing 20% by weight of S and 1.26 parts by weight of the electrolyte.

正極合剤:Cuo、o5TiCro、o26S2.03
762重量部と前記電解質3重量部の混合物 を0.06gr0 上記の材料を2トン/d の圧力で三層に加圧成型して
直径7頗、厚さ約1ml+の電池を組み立てた。
Positive electrode mixture: Cuo, o5TiCro, o26S2.03
A mixture of 762 parts by weight of the electrolyte and 3 parts by weight of the above electrolyte was pressure-molded into three layers at a pressure of 2 tons/d2 to assemble a battery having a diameter of 7 mm and a thickness of about 1 ml+.

これらの電池を室温で、1ooμAの定電流で、次表に
示す6種類の充・放電サイクル試験a′〜f′を行なっ
た。
These batteries were subjected to six types of charge/discharge cycle tests a' to f' shown in the following table at room temperature and a constant current of 1 ooμA.

次表に示したCuxTiCro、。26S2.。3□5
のX値は、次に示す’ CuO,05TiCr0.02
5S2.03571qr当りの充電あるいは放電容量Q
(Ah/qr)とXの変化量であるΔXとの関係式より
求めたΔχ値を用いて求めたものである。
CuxTiCro, shown in the following table. 26S2. . 3□5
The X value of 'CuO,05TiCr0.02
Charging or discharging capacity Q per 5S2.03571qr
It is determined using the Δχ value determined from the relational expression between (Ah/qr) and ΔX, which is the amount of change in X.

たとえば、試験電池を100μAで5時間放電したとき
のΔX値は、 と与えられ、放電前のCuxTiCroD26S2.0
3□5のX値を0.05とすると、放電後のX値は、x
 = 0.05+0.091−= 0.141   と
なる100μAで5時間充電した場合は、同様に算出し
て、 x = 0.05−0.091 = −0,041とな
る。
For example, when the test battery is discharged at 100 μA for 5 hours, the ΔX value is given as: CuxTiCroD26S2.0 before discharge
If the X value of 3□5 is 0.05, the X value after discharge is x
= 0.05 + 0.091 - = 0.141 When charging for 5 hours at 100 μA, the calculation is made in the same manner as x = 0.05 - 0.091 = -0,041.

以下余白 9 ベーン 本発明に従い、充拳放電範囲が−0,1(x <0.2
1であるサイクル試験a′、b′、C′、e′では実用
に耐える良好なくり返し充・放電特性を与えることがわ
かる。
According to the present invention, the charging and discharging range is −0,1 (x <0.2
It can be seen that in the cycle tests a', b', C', and e', which are No. 1, good repeated charge/discharge characteristics that can withstand practical use are provided.

次に、本発明の充・放電方式についてその根拠を探るた
めに、実施例1で示した構成の固体電解質二次電池を1
oo/−1Aの一定電流でXが0までなるように充電し
た後、同じく1oOμAで放電を行ない、放電深さの異
なるすなわちX値の異なる電10’\ 池の正極のX線回折を行なった。
Next, in order to explore the basis for the charging/discharging method of the present invention, a solid electrolyte secondary battery having the configuration shown in Example 1 was constructed.
After charging with a constant current of oo/-1A so that .

Cu xT I S 2  の結晶形について分析した
ところ、Xの値が0.21 を越える付近から、層状構
造を有した六方晶系のT z S2構造に帰属される回
折ピークの他に、立方晶系の層状構造をもたないCu7
.44Ti16S32に帰属される回折ピークが出現し
始めることを見とめた。また、第3図は、この際の電池
電圧とX値の関係を示しているが、電池電圧は、Xが0
から0.2付近までは一様に減少し、すなわち、層状構
造をもつCuxTiS2 内でのCuの活量が一様に増
加するにつれてネルンスト式に従い電池電圧は一様に減
少する。Xが0.2付近を越えると電池電圧の減少はゆ
るやかになりほぼ平坦な電圧値を与え、先のX線回折の
結果と合わせて考えると正極には2つの結晶相が存在し
ていることがほぼ推定できる。
An analysis of the crystal form of Cu x T I S 2 revealed that, in addition to the diffraction peaks attributed to the hexagonal T z S2 structure with a layered structure, from the vicinity where the value of X exceeds 0.21, a cubic crystal structure was observed. Cu7 does not have a layered structure
.. It was observed that a diffraction peak attributed to 44Ti16S32 began to appear. In addition, Fig. 3 shows the relationship between the battery voltage and the X value in this case.
In other words, as the activity of Cu in CuxTiS2 having a layered structure uniformly increases, the battery voltage uniformly decreases according to the Nernst equation. When X exceeds around 0.2, the battery voltage decreases slowly and gives an almost flat voltage value, which, when considered together with the previous X-ray diffraction results, indicates that two crystal phases exist in the positive electrode. can be roughly estimated.

以上のことから、充・放電くり返し試験においてXが0
.21以上では、くり返し特性が極端に悪くなる原因は
、正極活物質であるCu xT i S 2  あるい
はCu xT I Cr yS 2 + 1.5yの層
状構造が、Xが0.2111 ベーン を越えてくり返し充・放電することで徐々に破壊される
ことにあると本発明者らは考えている。なお、X値の下
限についても同様なことが考えられると本発明者らは考
えている。
From the above, in the repeated charge/discharge test, X is 0.
.. 21 or more, the reason why the repeatability becomes extremely poor is that the layered structure of Cu xT i S 2 or Cu xT I Cr yS 2 + 1.5y, which is the positive electrode active material, repeats over the vane where X is 0.2111. The inventors believe that this is due to the fact that it is gradually destroyed by charging and discharging. Note that the present inventors believe that the same holds true for the lower limit of the X value.

発明の効果 本発明によれば、固体電解質二次電池に良好なくり返し
充・放電特性を発揮させることができる。
Effects of the Invention According to the present invention, a solid electrolyte secondary battery can exhibit good repeated charge/discharge characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の一実施例の充・放電方
式における充・放電サイクル数と、各サイクルの放電末
電池電圧との関係を示す図、第3図は、電池の放電電圧
とCu xT I S2 のX値との関係を示す図であ
る。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名手続
補正書 昭和59年11 月λλ日
Figures 1 and 2 are diagrams showing the relationship between the number of charging/discharging cycles in the charging/discharging method of an embodiment of the present invention and the battery voltage at the end of discharge in each cycle, and Figure 3 is a diagram showing the relationship between the battery discharge voltage at the end of each cycle. It is a figure which shows the relationship between voltage and the X value of Cu xT I S2. Name of agent: Patent attorney Toshio Nakao and one other person Procedural amendment November 1980, λλ

Claims (1)

【特許請求の範囲】[Claims] 金属銅を主体とする負極と、Cu_xTiS_2、CU
_xTiCr_yS_2_+_1_._5_y(0<x
<0.20、0.01<y<0.2)の一群より選ばれ
る化合物を主体とする正極と、Cu^■イオン導電性固
体電解質で構成される固体電解質二次電池の充・放電を
、前記正極化合物のxの値が−0.1〜0.21の間で
くり返し行なうことを特徴とする固体電解質二次電池の
充・放電方式。
Negative electrode mainly made of metallic copper, Cu_xTiS_2, CU
_xTiCr_yS_2_+_1_. _5_y(0<x
<0.20, 0.01<y<0.2) A positive electrode mainly composed of a compound selected from the group of A charging/discharging method for a solid electrolyte secondary battery, characterized in that the positive electrode compound is repeatedly charged and discharged while the value of x is between -0.1 and 0.21.
JP59140882A 1984-07-06 1984-07-06 Charge-discharge method of solid electrolyte secondary battery Pending JPS6119076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59140882A JPS6119076A (en) 1984-07-06 1984-07-06 Charge-discharge method of solid electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59140882A JPS6119076A (en) 1984-07-06 1984-07-06 Charge-discharge method of solid electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS6119076A true JPS6119076A (en) 1986-01-27

Family

ID=15278960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59140882A Pending JPS6119076A (en) 1984-07-06 1984-07-06 Charge-discharge method of solid electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS6119076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048730A (en) * 2014-08-27 2016-04-07 株式会社日本触媒 Thermoelectric conversion material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569964A (en) * 1978-08-21 1980-05-27 Haering Rudolph Roland Cathode for molybdenum disulfide lithium battery
JPS57107568A (en) * 1980-12-25 1982-07-05 Matsushita Electric Ind Co Ltd Reversible copper electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569964A (en) * 1978-08-21 1980-05-27 Haering Rudolph Roland Cathode for molybdenum disulfide lithium battery
JPS57107568A (en) * 1980-12-25 1982-07-05 Matsushita Electric Ind Co Ltd Reversible copper electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048730A (en) * 2014-08-27 2016-04-07 株式会社日本触媒 Thermoelectric conversion material

Similar Documents

Publication Publication Date Title
JPS6119076A (en) Charge-discharge method of solid electrolyte secondary battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JPS581971A (en) Organic electrolyte battery
JPS61165956A (en) Sealed type lead acid battery
JPS6012665A (en) Reversible copper electrode
JPH07111151A (en) Hydrogen storage electrode active material
JPS6119075A (en) Charge-discharge method of solid electrolyte secondary battery
JP3082341B2 (en) Hydrogen storage electrode
JPH01149376A (en) Sealed lead-acid battery
JPS6012677A (en) Solid electrolyte secondary battery
JPH01132049A (en) Hydrogen storage electrode
JPS617566A (en) Manufacture of paste type cadmium negative electrode
JPS62126551A (en) Manufacture of cathode plate for lead-acid battery
JPH04363862A (en) Lithium secondary battery
JPS61264668A (en) Cadmium negative electrode for alkaline storage battery
JPS5822868B2 (en) nickel zinc alkaline storage battery
JPS628466A (en) Solid electrolyte secondary battery
JPS6199279A (en) Solid electrolyte secondary battery
JPH06279900A (en) Hydrogen storage alloy and electrode using the alloy
JPH0536437A (en) Method for initial charge and discharge of alkaline storage battery
JPH03280363A (en) Lithium battery
JPS58206060A (en) Nonaqueous electrolyte battery
JPS60151966A (en) Nonsintered cadmium negative electrode
JPH0785861A (en) Lithium secondary battery