JP2016048730A - Thermoelectric conversion material - Google Patents

Thermoelectric conversion material Download PDF

Info

Publication number
JP2016048730A
JP2016048730A JP2014173148A JP2014173148A JP2016048730A JP 2016048730 A JP2016048730 A JP 2016048730A JP 2014173148 A JP2014173148 A JP 2014173148A JP 2014173148 A JP2014173148 A JP 2014173148A JP 2016048730 A JP2016048730 A JP 2016048730A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
copper
composite metal
metal sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014173148A
Other languages
Japanese (ja)
Other versions
JP6389085B2 (en
Inventor
威夫 赤塚
Takeo Akatsuka
威夫 赤塚
博信 小野
Hironobu Ono
博信 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2014173148A priority Critical patent/JP6389085B2/en
Publication of JP2016048730A publication Critical patent/JP2016048730A/en
Application granted granted Critical
Publication of JP6389085B2 publication Critical patent/JP6389085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion material made of a metal sulfide including copper (Cu), which is high in mechanical strength, low in manufacturing cost, and superior in mass productivity.SOLUTION: A thermoelectric conversion material has a crystal structure of cubic crystal, hexagonal crystal, tetragonal crystal, orthorhombic crystal or trigonal crystal, and comprises, as primary components, copper, sulfur, and at least one metal other than copper, which is a first transition element or a p-block element.SELECTED DRAWING: Figure 1

Description

本発明は、熱電変換材料に関する。   The present invention relates to a thermoelectric conversion material.

従来、ゼーベック効果により材料両端の温度差によって電流を生じさせ熱エネルギーを電気エネルギーに変換する、又は、ペルチェ効果により電気エネルギーによって温度差を生じさせる熱電変換材料が知られている。熱電変換材料としては、熱エネルギーの高い方から低い方へ電子の移動により電流が生じるn型熱電変換材料と、正孔の移動により電流が生じるp型熱電変換材料とが存在する。   Conventionally, thermoelectric conversion materials are known in which a current is generated by a temperature difference between both ends of a material by the Seebeck effect and heat energy is converted into electric energy, or a temperature difference is generated by electric energy by a Peltier effect. As the thermoelectric conversion material, there are an n-type thermoelectric conversion material in which an electric current is generated by movement of electrons from a higher heat energy to a lower one, and a p-type thermoelectric conversion material in which an electric current is generated by movement of holes.

近年では、未利用エネルギーを有効利用するために、熱電変換材料を用いて廃熱を電気エネルギーに変換する技術の開発が進められている。未利用の廃熱の多くは、200℃以下の比較的低温の廃熱である。このため、300℃以下、好ましくは200℃以下の比較的低温の温度領域において高い活性を有する熱電変換材料が望まれている。比較的低温の温度領域で高い活性を示す熱電変換材料としては、テルル(Te)とビスマス(Bi)との化合物又はテルルとアンチモン(Sb)との化合物等が知られている。しかし、テルル及びアンチモンは、毒性が高いという問題を有している。そこで、テルル及びアンチモン等の毒性が疑われる元素を用いない熱電変換材料として、例えば、金属硫化物に関する検討が行われている。   In recent years, in order to effectively use unused energy, development of technology for converting waste heat into electrical energy using a thermoelectric conversion material has been advanced. Most of the unused waste heat is relatively low-temperature waste heat of 200 ° C. or lower. For this reason, a thermoelectric conversion material having high activity in a relatively low temperature range of 300 ° C. or lower, preferably 200 ° C. or lower is desired. Known thermoelectric conversion materials exhibiting high activity in a relatively low temperature range include a compound of tellurium (Te) and bismuth (Bi) or a compound of tellurium and antimony (Sb). However, tellurium and antimony have a problem of high toxicity. Thus, for example, metal sulfides have been studied as thermoelectric conversion materials that do not use elements that are suspected of toxicity such as tellurium and antimony.

特許文献1には、熱電変換材料用硫化ランタン焼結体が記載されている。この熱電変換材料用硫化ランタン焼結体は、β型硫化ランタン粉末と金属パラジウム粒を混合して焼結した、結晶構造がβ型を主成分とし、微量のγ型成分を有する硫化ランタン焼結体である。また、この熱電変換材料用硫化ランタン焼結体は、1〜5質量%の金属パラジウムを含有している。さらに、この熱電変換材料用硫化ランタン焼結体の比抵抗は100kΩ・cm以下である。   Patent Document 1 describes a lanthanum sulfide sintered body for a thermoelectric conversion material. This lanthanum sulfide sintered compact for thermoelectric conversion materials is a sintered lanthanum sulfide having a β-type lanthanum sulfide powder and metallic palladium particles mixed and sintered, the crystal structure of which is β-type as a main component and a small amount of γ-type components Is the body. Moreover, this lanthanum sulfide sintered compact for thermoelectric conversion materials contains 1-5 mass% metallic palladium. Furthermore, the specific resistance of the lanthanum sulfide sintered body for thermoelectric conversion material is 100 kΩ · cm or less.

特許文献2には、熱電変換材料として利用可能な希土類硫化物焼結体が記載されている。この希土類硫化物焼結体は、正方晶の希土類三二硫化物にチタンを0.1wt%から20wt%の範囲で添加して焼結して得られる。また、この希土類硫化物焼結体は、正方晶から変態した相を有する。   Patent Document 2 describes a rare earth sulfide sintered body that can be used as a thermoelectric conversion material. This rare earth sulfide sintered body is obtained by adding titanium to tetragonal rare earth tridisulfide in the range of 0.1 wt% to 20 wt% and sintering. The rare earth sulfide sintered body has a phase transformed from tetragonal crystal.

特許文献3には、パイライト構造を有するp型の熱電変換材料が記載されている。この熱電変換材料の組成は、Fe1-xx2-yyで表わされる。元素MはV、Cr、Mn、Zr、Nb、Mo、Hf、Ta、Wから選ばれる少なくとも一種類の元素であり、元素TはB、C、Al、Si、Ge、Sn、N、O、P、Biから選ばれる少なくとも1種類の元素である。また、x及びyは、0<x<0.5、0<y<1の条件を満たす。 Patent Document 3 describes a p-type thermoelectric conversion material having a pyrite structure. The composition of this thermoelectric conversion material is represented by Fe 1-x M x S 2-y T y . The element M is at least one element selected from V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, and W, and the element T is B, C, Al, Si, Ge, Sn, N, O, At least one element selected from P and Bi. X and y satisfy the conditions of 0 <x <0.5 and 0 <y <1.

特許文献4には、CdI2類縁型層状構造を有する熱電変換材料が記載されている。この熱電変換材料は、一般式AXBC2-y(0≦x≦2、0≦y<1)で表される。実施例としては、Bサイトがチタン(Ti)によって占有され、Cサイトが硫黄(S)によって占有された材料が記載されている。また、実施例として、Aサイトが銅(Cu)によって占有されている材料が記載されている。 Patent Document 4 describes a thermoelectric conversion material having a CdI 2 -related layered structure. This thermoelectric conversion material is represented by the general formula A X BC 2-y (0 ≦ x ≦ 2, 0 ≦ y <1). As an example, a material in which the B site is occupied by titanium (Ti) and the C site is occupied by sulfur (S) is described. Further, as an example, a material in which the A site is occupied by copper (Cu) is described.

特許文献5には、一般式(AC)m(BC2nで表され、NaCl類縁型のAC層とCdI2類縁型のBC2層が格子不整合で積層したミスフィット構造を持つ熱電変換材料が記載されている。Aはスズ(Sn)を、Bはチタン(Ti)を、Cは硫黄(S)を表し、0.5≦m≦1.5、n=1、2、3、4又は5である。実施例として、Bサイトの一部が銅(Cu)に置換された材料及びBC2層同士が積層した層間のインターカレーション可能なサイトであるDサイトに銅(Cu)が配置された材料が記載されている。 Patent Document 5 discloses a thermoelectric conversion represented by the general formula (AC) m (BC 2 ) n and having a misfit structure in which an NaCl-like AC layer and a CdI 2 -like BC 2 layer are laminated in a lattice mismatch. The materials are listed. A represents tin (Sn), B represents titanium (Ti), C represents sulfur (S), and 0.5 ≦ m ≦ 1.5 and n = 1, 2, 3, 4, or 5. As an example, there is a material in which a part of the B site is replaced with copper (Cu) and a material in which copper (Cu) is disposed at the D site, which is an intercalable site between the layers in which the BC 2 layers are laminated. Have been described.

特許文献6には、熱電変換材料として有用な複合金属硫化物の製造方法が記載されている。実施例として、複合金属硫化物であるNdCuS2の単相を生成する方法及びNdCuS2の結晶構造を保っている非化学量論比のNd0.5CuS2を生成する方法が記載されている。 Patent Document 6 describes a method for producing a composite metal sulfide useful as a thermoelectric conversion material. As an example, a method for producing a single phase of NdCuS 2 which is a composite metal sulfide and a method for producing a non-stoichiometric ratio of Nd 0.5 CuS 2 while maintaining the crystal structure of NdCuS 2 are described.

非特許文献1には、Cu2S、Cu1.98S、及びCu1.97Sに関し、電気伝導度及びゼーベック係数と、温度との関係が記載されている。 Non-Patent Document 1 describes the relationship between electrical conductivity, Seebeck coefficient, and temperature for Cu 2 S, Cu 1.98 S, and Cu 1.97 S.

特開2003−258322号公報JP 2003-258322 A 特開2005−060122号公報JP-A-2005-060122 特開2013−219218号公報JP 2013-219218 A 特開2002−270907号公報JP 2002-270907 A 特開2003−188425号公報JP 2003-188425 A 特開2008−239363号公報JP 2008-239363 A

Ying He、外6名、「High Thermoelectric Performance in Non-Toxic Earth-Abundant Copper Sulfide」、ADVANCED MATERIALS、第26巻、第23号、p.3974−3978、2014年6月Ying He, 6 others, “High Thermoelectric Performance in Non-Toxic Earth-Abundant Copper Sulfide”, ADVANCED MATERIALS, Vol. 26, No. 23, p. 3974-3978, June 2014

特許文献4〜6及び非特許文献1に記載されているように、熱電変換材料として、銅(Cu)を含む金属硫化物を用いることが考えられる。特許文献4に記載の熱電変換材料は、CdI2類縁型層状構造を有するので、層同士の間で剥離などが起こりやすく、機械的強度が十分でない可能性がある。また、層状構造は異方性が高いので単結晶を用いて材料を構成する必要があり、特許文献4に記載の熱電変換材料の量産には困難が伴う可能性が有る。さらに、特許文献4に記載の熱電変換材料は、その構造に起因して、熱電変換材料の特性の異方性が高い可能性がある。特許文献5に記載の熱電変換材料は、NaCl類縁型の層とCdI2類縁型の層が格子不整合で積層したミスフィット構造を持つので、層同士の間で剥離などが起こりやすく、機械的強度が十分でない可能性がある。また、特許文献5に記載の熱電変換材料は、その構造に起因して、熱電変換材料の特性の異方性が高い可能性がある。 As described in Patent Documents 4 to 6 and Non-Patent Document 1, it is conceivable to use a metal sulfide containing copper (Cu) as the thermoelectric conversion material. Since the thermoelectric conversion material described in Patent Document 4 has a CdI 2 -related layered structure, peeling or the like is likely to occur between layers, and mechanical strength may not be sufficient. In addition, since the layered structure has high anisotropy, it is necessary to form the material using a single crystal, and mass production of the thermoelectric conversion material described in Patent Document 4 may be difficult. Furthermore, the thermoelectric conversion material described in Patent Document 4 may have high anisotropy in characteristics of the thermoelectric conversion material due to its structure. The thermoelectric conversion material described in Patent Document 5 has a misfit structure in which a NaCl-related layer and a CdI 2 -related layer are laminated in a lattice mismatch, so that peeling or the like easily occurs between the layers. The strength may not be sufficient. In addition, the thermoelectric conversion material described in Patent Document 5 may have high anisotropy in characteristics of the thermoelectric conversion material due to its structure.

特許文献6に記載の方法で、複合金属硫化物であるNdCuS2の単相を生成する場合、希少元素であるネオジム(Nd)を使用するので、熱電変換材料の製造コストが高くなってしまう可能性がある。 When a single phase of NdCuS 2 that is a composite metal sulfide is generated by the method described in Patent Document 6, neodymium (Nd) that is a rare element is used, which may increase the manufacturing cost of the thermoelectric conversion material. There is sex.

非特許文献1に記載された硫化銅は、銅(Cu)と硫黄(S)との2つの元素による化合物であるので、この硫化銅で熱電変換材料を量産する場合、銅(Cu)と硫黄(S)との量論比を一定に制御することが難しい。このため、非特許文献1に記載された硫化銅は、熱電変換材料としては、量産性の観点から改良の余地を有する。   Since the copper sulfide described in Non-Patent Document 1 is a compound of two elements of copper (Cu) and sulfur (S), when mass-producing a thermoelectric conversion material with this copper sulfide, copper (Cu) and sulfur It is difficult to keep the stoichiometric ratio with (S) constant. For this reason, the copper sulfide described in Non-Patent Document 1 has room for improvement as a thermoelectric conversion material from the viewpoint of mass productivity.

そこで、本発明は、銅(Cu)を含む金属硫化物でできており、高い機械的強度、低い製造コスト、及び優れた量産性を有する熱電変換材料を提供することを目的とする。   Therefore, an object of the present invention is to provide a thermoelectric conversion material that is made of a metal sulfide containing copper (Cu) and has high mechanical strength, low manufacturing cost, and excellent mass productivity.

本発明は、
立方晶、六方晶、正方晶、斜方晶、又は三方晶の結晶構造を有し、銅と、第1遷移元素又はpブロック元素である、銅以外の少なくとも一つの金属とを主成分として含む複合金属硫化物でできた、熱電変換材料を提供する。
The present invention
It has a cubic, hexagonal, tetragonal, orthorhombic, or trigonal crystal structure, and contains copper and at least one metal other than copper, which is a first transition element or p-block element, as main components. A thermoelectric conversion material made of a composite metal sulfide is provided.

本発明によれば、熱電変換材料が、立方晶、六方晶、正方晶、斜方晶、又は三方晶の結晶構造を有する複合金属硫化物でできているので、熱電変換材料が高い機械的強度を有する。また、本発明の熱電変換材料は、異方性の低い構造を有するので、単結晶の状態で熱電変換材料を製造せずとも高い出力因子を示すことができる。さらに、熱電変換材料が、銅と、第1遷移元素又はpブロック元素である、銅以外の少なくとも一つの金属とを主成分として含む複合金属硫化物でできているので、製造コストが低く、かつ、量産性に優れる。   According to the present invention, since the thermoelectric conversion material is made of a composite metal sulfide having a cubic, hexagonal, tetragonal, orthorhombic, or trigonal crystal structure, the thermoelectric conversion material has high mechanical strength. Have Moreover, since the thermoelectric conversion material of this invention has a structure with low anisotropy, it can show a high output factor, without manufacturing a thermoelectric conversion material in the state of a single crystal. Furthermore, since the thermoelectric conversion material is made of a composite metal sulfide containing, as a main component, copper and at least one metal other than copper, which is the first transition element or p-block element, the manufacturing cost is low, and Excellent in mass productivity.

本発明の一の実施例に係る熱電変換材料のX線回折スペクトルを示す図The figure which shows the X-ray-diffraction spectrum of the thermoelectric conversion material which concerns on one Example of this invention. 本発明の一の実施例に係る熱電変換材料のX線回折スペクトルを示す図The figure which shows the X-ray-diffraction spectrum of the thermoelectric conversion material which concerns on one Example of this invention. 本発明の一の実施例に係る熱電変換材料のX線回折スペクトルを示す図The figure which shows the X-ray-diffraction spectrum of the thermoelectric conversion material which concerns on one Example of this invention. 本発明の一の実施例に係る熱電変換材料のX線回折スペクトルを示す図The figure which shows the X-ray-diffraction spectrum of the thermoelectric conversion material which concerns on one Example of this invention.

以下、本発明の実施形態について説明する。なお、以下の説明は本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。   Hereinafter, embodiments of the present invention will be described. The following description relates to an example of the present invention, and the present invention is not limited to these.

本発明に係る熱電変換材料は、複合金属硫化物でできている。この複合金属硫化物は、立方晶、六方晶、正方晶、斜方晶、又は三方晶の結晶構造を有する。これにより、熱電変換材料が高い機械的強度を有する。なぜなら、層状構造を有する構造などと異なり、剥離が生じにくいと考えられるからである。また、熱電変換材料が立体的に対称性の高い結晶構造を有するので、熱電変換材料の特性の異方性が小さい。そのため、熱電変換材料の特性の異方性を調整するために単結晶の状態で熱電変換材料を製造する必要がなく、熱電変換材料の量産が容易である。また、熱電変換材料を単結晶の状態で製造する必要がないので、ナノ粒子の焼結体として熱電変換材料を製造した場合でも、熱電変換材料の出力因子は、単結晶で構成された熱電変換材料の出力因子よりわずかに低いにすぎない。また、ナノ粒子の焼結体として製造された熱電変換材料は、単結晶で構成された熱電変換材料に比べて、フォノンを効果的に散乱させることができる。換言すると、ナノ粒子の焼結体として製造された熱電変換材料は、低い熱伝導率を示しやすい。このため、ナノ粒子の焼結体として製造された熱電変換材料は、高い性能指数を示しやすい。このように、本発明に係る熱電変換材料の特性の異方性が低いことにより、熱電変換材料を構成する粒子のサイズ又は形状を自由に調整することができることで、熱電変換材料素子を作製する際の形状などの制約が少なくなり、高い性能指数を確保しつつ多様な素子を作ることができる。   The thermoelectric conversion material according to the present invention is made of a composite metal sulfide. The composite metal sulfide has a cubic, hexagonal, tetragonal, orthorhombic, or trigonal crystal structure. Thereby, the thermoelectric conversion material has high mechanical strength. This is because, unlike a structure having a layered structure, it is considered that peeling is unlikely to occur. In addition, since the thermoelectric conversion material has a three-dimensionally symmetric crystal structure, the anisotropy of the characteristics of the thermoelectric conversion material is small. Therefore, it is not necessary to manufacture the thermoelectric conversion material in a single crystal state in order to adjust the anisotropy of the characteristics of the thermoelectric conversion material, and mass production of the thermoelectric conversion material is easy. In addition, since it is not necessary to manufacture the thermoelectric conversion material in a single crystal state, even when the thermoelectric conversion material is manufactured as a nanoparticle sintered body, the output factor of the thermoelectric conversion material is a thermoelectric conversion composed of a single crystal. It is only slightly lower than the power factor of the material. Moreover, the thermoelectric conversion material manufactured as a nanoparticle sintered body can scatter phonons more effectively than a thermoelectric conversion material composed of a single crystal. In other words, the thermoelectric conversion material manufactured as a nanoparticle sintered body tends to exhibit low thermal conductivity. For this reason, the thermoelectric conversion material manufactured as a nanoparticle sintered compact tends to show a high figure of merit. Thus, the thermoelectric conversion material element is produced by having the low anisotropy of the characteristics of the thermoelectric conversion material according to the present invention, so that the size or shape of the particles constituting the thermoelectric conversion material can be freely adjusted. There are fewer restrictions on the shape of the pattern, and various elements can be made while ensuring a high figure of merit.

複合金属硫化物は、銅(Cu)と、第1遷移元素又はpブロック元素である、銅(Cu)以外の少なくとも一つの金属と、硫黄とを主成分として含む。ここで、「主成分」とは、複合金属硫化物において、少なくとも5重量%以上、好ましくは10重量%以上含まれる元素を意味する。複合金属硫化物に主成分として含まれる銅(Cu)以外の第1遷移元素としては、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、又はニッケル(Ni)を挙げることができる。複合金属硫化物に主成分として含まれる銅(Cu)以外の第1遷移元素は、好ましくは、チタン、バナジウム、クロム、マンガン、鉄、コバルト、又はニッケルである。複合金属硫化物に主成分として含まれるpブロック元素である、銅(Cu)以外の金属としては、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、スズ(Sn)、タリウム(Tl)、鉛(Pb)、又はビスマス(Bi)を挙げることができる。複合金属硫化物に主成分として含まれるpブロック元素は、好ましくは、アルミニウム、ガリウム、インジウム、又はスズである。複合金属硫化物に、銅と、銅以外の金属とが主成分として含まれていることにより、熱電変換材料を量産する際に、複合金属硫化物における各元素の量論比を一定に制御しやすい。このため、本発明の熱電変換材料が量産性に優れる。また、複合金属硫化物に主成分として含まれる銅以外の金属が第1遷移元素又はpブロック元素であると、第1遷移元素及びpブロック元素の多くは比較的入手しやすいので、熱電変換材料の製造コストを低減できる。複合金属硫化物に主成分として含まれる銅以外の金属は、望ましくは、4価の金属である。4価の金属としては、チタン又はスズを挙げることができる。   The composite metal sulfide contains copper (Cu), at least one metal other than copper (Cu), which is the first transition element or p-block element, and sulfur as main components. Here, the “main component” means an element contained in the composite metal sulfide at least 5 wt% or more, preferably 10 wt% or more. As the first transition element other than copper (Cu) contained as a main component in the composite metal sulfide, scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron ( Fe), cobalt (Co), or nickel (Ni). The first transition element other than copper (Cu) contained as a main component in the composite metal sulfide is preferably titanium, vanadium, chromium, manganese, iron, cobalt, or nickel. Examples of metals other than copper (Cu), which are p-block elements contained as a main component in the composite metal sulfide, include aluminum (Al), gallium (Ga), indium (In), tin (Sn), and thallium (Tl). , Lead (Pb), or bismuth (Bi). The p block element contained as a main component in the composite metal sulfide is preferably aluminum, gallium, indium, or tin. Because the composite metal sulfide contains copper and metals other than copper as the main components, the stoichiometric ratio of each element in the composite metal sulfide is controlled to be constant when mass-producing thermoelectric conversion materials. Cheap. For this reason, the thermoelectric conversion material of this invention is excellent in mass-productivity. In addition, when the metal other than copper contained as a main component in the composite metal sulfide is the first transition element or the p block element, most of the first transition element and the p block element are relatively easily available. The manufacturing cost can be reduced. The metal other than copper contained as a main component in the composite metal sulfide is desirably a tetravalent metal. Examples of the tetravalent metal include titanium and tin.

複合金属硫化物に主成分として含まれる銅以外の金属は、望ましくは、コバルト(Co)、チタン(Ti)、鉄(Fe)、亜鉛(Zn)、スズ(Sn)、アルミニウム(Al)、及びインジウム(In)からなる群から選ばれる少なくとも1つの金属である。   The metals other than copper contained as a main component in the composite metal sulfide are desirably cobalt (Co), titanium (Ti), iron (Fe), zinc (Zn), tin (Sn), aluminum (Al), and It is at least one metal selected from the group consisting of indium (In).

複合金属硫化物は、上記の金属のうち2種類以上の金属を、銅以外の金属の主成分として含んでいてもよい。複合金属硫化物に主成分として含まれる銅以外の2種類の金属の組み合わせとしては、例えば、コバルト(Co)とチタン(Ti)との組み合わせ、鉄(Fe)とスズ(Sn)との組み合わせ、鉄(Fe)とチタン(Ti)との組み合わせ、又は亜鉛(Zn)とチタン(Ti)との組み合わせを挙げることができる。   The composite metal sulfide may contain two or more kinds of metals among the above metals as main components of metals other than copper. As a combination of two kinds of metals other than copper contained as a main component in the composite metal sulfide, for example, a combination of cobalt (Co) and titanium (Ti), a combination of iron (Fe) and tin (Sn), A combination of iron (Fe) and titanium (Ti) or a combination of zinc (Zn) and titanium (Ti) can be given.

複合金属硫化物において、銅(Cu)の含有量は、例えば、5重量%以上90重量%以下であり、好ましくは、10重量%以上80重量%以下であり、より好ましくは15重量%以上70重量%以下である。   In the composite metal sulfide, the content of copper (Cu) is, for example, 5 wt% or more and 90 wt% or less, preferably 10 wt% or more and 80 wt% or less, more preferably 15 wt% or more and 70 wt% or less. % By weight or less.

熱電変換材料の性能を示す指標の一つとして無次元性能指数ZTが知られている。ここで、Zは性能指数を意味し、K-1の次元を有する。また、Tは絶対温度を意味する。無次元性能指数ZTの値が大きいほど、熱電変換材料が高い性能を示す。熱電変換材料の無次元性能指数ZTは、以下の式(1)で定義される。α、σ、及びκは、それぞれ、熱電変換材料の、ゼーベック係数、電気伝導率、及び熱伝導率を意味する。
ZT=α2σT/κ (1)
また、熱電変換材料の性能を示す別の指標として、出力因子(パワーファクター)Pが知られている。熱電変換材料の出力因子Pは、以下の式(2)で定義される。
P=α2σ (2)
A dimensionless figure of merit ZT is known as one of the indexes indicating the performance of thermoelectric conversion materials. Here, Z means a figure of merit and has a dimension of K- 1 . T means absolute temperature. The larger the dimensionless figure of merit ZT, the higher the performance of the thermoelectric conversion material. The dimensionless figure of merit ZT of the thermoelectric conversion material is defined by the following formula (1). α, σ, and κ mean the Seebeck coefficient, electrical conductivity, and thermal conductivity of the thermoelectric conversion material, respectively.
ZT = α 2 σT / κ (1)
Further, as another index indicating the performance of the thermoelectric conversion material, an output factor (power factor) P is known. The output factor P of the thermoelectric conversion material is defined by the following formula (2).
P = α 2 σ (2)

式(1)から分かるように、無次元性能指数ZTを向上させるためには、熱伝導率κを低減させることが望ましい。熱伝導率κを低減させる方法の一つとして、熱電変換材料の結晶子サイズを所定の範囲とすることが考えられる。この観点から、焼結体のX線回折スペクトルのメインピークからScherrerの式を用いて求まる熱電変換材料の結晶子サイズは、1000nm以下であることが望ましい。また、熱電変換材料の結晶子サイズは、1nm〜500nmであることが望ましく、2nm〜200nmであることがより望ましく、5nm〜100nmであることがさらに望ましい。これにより、熱電変換材料の熱伝導率κを低減して、熱電変換材料の性能を高めることができる。   As can be seen from Equation (1), in order to improve the dimensionless figure of merit ZT, it is desirable to reduce the thermal conductivity κ. As one method for reducing the thermal conductivity κ, it can be considered that the crystallite size of the thermoelectric conversion material is set within a predetermined range. From this viewpoint, it is desirable that the crystallite size of the thermoelectric conversion material obtained from the main peak of the X-ray diffraction spectrum of the sintered body using the Scherrer equation is 1000 nm or less. Further, the crystallite size of the thermoelectric conversion material is preferably 1 nm to 500 nm, more preferably 2 nm to 200 nm, and further preferably 5 nm to 100 nm. Thereby, the thermal conductivity (kappa) of a thermoelectric conversion material can be reduced, and the performance of a thermoelectric conversion material can be improved.

熱電変換材料において、比較的低温の廃熱(例えば300℃以下、好ましくは200℃以下)によって電子の熱励起を生じさせて熱電変換材料の性能を向上させるためには、熱電変換材料が所定のバンドギャップを有していることが望ましい。この観点から、熱電変換材料が、0.3eV〜2.5eVのバンドギャップを有していることが好ましく、0.5eV〜2.0eVのバンドギャップを有していることがより好ましい。   In thermoelectric conversion materials, in order to improve the performance of thermoelectric conversion materials by causing thermal excitation of electrons by relatively low-temperature waste heat (for example, 300 ° C. or less, preferably 200 ° C. or less), It is desirable to have a band gap. From this viewpoint, the thermoelectric conversion material preferably has a band gap of 0.3 eV to 2.5 eV, and more preferably has a band gap of 0.5 eV to 2.0 eV.

次に、本発明に係る熱電変換材料の製造方法の一例を説明する。本発明の熱電変換材料は、複合金属硫化物の原料を混合する混合工程と、その混合工程により得られた混合物を所定の圧力で加圧しながら焼結する焼結工程と、を備える。混合工程において、硫黄、銅、及び銅以外の上記の金属を含む、複合金属硫化物の原料となる単体又は化合物が所定のモル比で混合される。複合金属硫化物の原料となる化合物としては、例えば、金属硫化物を用いることができる。原料の形状及び大きさは、特に制限されず、ある程度の大きさを有する塊であってもよいし、粒体又は粉体であってもよい。原料を混合する方法は、特に制限されず、例えば、遊星ボールミル、ビーズミル、又は粉体ミキサーなどを用いて粉砕混合を行う方法などが考えられる。これにより、原料を粉砕しつつ、均一に混合することができる。原料を混合する方法としては、粉砕混合による方法以外に、乾式混合又は湿式混合として知られている公知の方法を用いることもできる。   Next, an example of a method for producing a thermoelectric conversion material according to the present invention will be described. The thermoelectric conversion material of the present invention includes a mixing step of mixing the raw materials of the composite metal sulfide, and a sintering step of sintering the mixture obtained by the mixing step while pressing the mixture at a predetermined pressure. In the mixing step, a simple substance or a compound that is a raw material of the composite metal sulfide containing sulfur, copper, and the above-described metal other than copper is mixed at a predetermined molar ratio. For example, a metal sulfide can be used as a compound that is a raw material for the composite metal sulfide. The shape and size of the raw material are not particularly limited, and may be a lump having a certain size, or a granule or powder. The method for mixing the raw materials is not particularly limited, and for example, a method of performing pulverization and mixing using a planetary ball mill, a bead mill, a powder mixer, or the like can be considered. Thereby, it can mix uniformly, grind | pulverizing a raw material. As a method of mixing the raw materials, a known method known as dry mixing or wet mixing can be used in addition to the method by pulverization mixing.

また、複合金属硫化物は、溶液中で合成されてもよい。例えば、金属の硝酸塩、金属塩化物、若しくは金属酢酸塩などの金属塩の水溶液又は金属アセチルアセトナートなどの金属錯体の水溶液に硫化剤を加えることによって、複合金属硫化物を合成できる。この場合、硫化剤としては、例えば、硫化ナトリウム若しくは硫化カリウムなどのアルカリ金属の硫化物、アルカリ土類金属の硫化物、又は硫化アンモニウムなどのアンモニウムイオンの硫化物などの硫化物が挙げられる。また、複合金属硫化物は、金属イオンが溶解している水溶液に適切な水素イオン濃度のもとで硫化水素ガスを吹き込んで複合金属硫化物の沈殿物を生じさせることによっても得ることができる。   The composite metal sulfide may be synthesized in a solution. For example, a composite metal sulfide can be synthesized by adding a sulfiding agent to an aqueous solution of a metal salt such as metal nitrate, metal chloride, or metal acetate or an aqueous solution of a metal complex such as metal acetylacetonate. In this case, examples of the sulfiding agent include sulfides such as sulfides of alkali metals such as sodium sulfide or potassium sulfide, sulfides of alkaline earth metals, and sulfides of ammonium ions such as ammonium sulfide. The composite metal sulfide can also be obtained by blowing hydrogen sulfide gas into an aqueous solution in which metal ions are dissolved under an appropriate hydrogen ion concentration to generate a precipitate of the composite metal sulfide.

複合金属硫化物は、有機溶媒中で合成されてもよい。この場合、複合金属硫化物の一次粒子の粒径を数ナノメールまで小さくすることができる。例えば、トリエチレンテトラミン若しくはオクチルアミンなどのアミン系溶媒、又は、オクタンチオール若しくはデカンチオールなどのチオール系溶媒中に、金属の硝酸塩、金属塩化物、若しくは金属酢酸塩などの金属塩又は金属アセチルアセトナートなどの金属錯体と、チオ尿素、チオアセトアミド、若しくはジチオカルバミン酸などの含硫黄有機化合物又は硫黄粉末とを所定量混合し還流することによって、複合金属硫化物を得ることができる。   The composite metal sulfide may be synthesized in an organic solvent. In this case, the particle size of the primary particles of the composite metal sulfide can be reduced to several nanomails. For example, a metal salt such as a metal nitrate, metal chloride, or metal acetate or a metal acetylacetonate in an amine solvent such as triethylenetetramine or octylamine, or a thiol solvent such as octanethiol or decanethiol. A composite metal sulfide can be obtained by mixing and refluxing a predetermined amount of a metal complex such as thiourea, thioacetamide, or a sulfur-containing organic compound such as dithiocarbamic acid or sulfur powder.

水溶液中又は有機溶媒中で得られた複合金属硫化物は、ろ過又は遠心分離などの固液分離方法によって水溶液中又は有機溶媒中から分離される。この場合、複合金属硫化物の粒子の表面には、水溶液、有機溶媒、又は原料に由来する不純物である分子が付着しているので、以下に述べる焼結工程の前に、洗浄又は仮焼成などの公知の方法で不純物を複合金属硫化物の粒子から取り除いておくことが好ましい。水溶液中又は有機溶媒中で得られた複合金属硫化物に、以下に述べる焼結工程を施して熱電変換材料を製造することができる。   The composite metal sulfide obtained in an aqueous solution or an organic solvent is separated from the aqueous solution or the organic solvent by a solid-liquid separation method such as filtration or centrifugation. In this case, the surface of the particles of the composite metal sulfide is attached with molecules that are impurities derived from an aqueous solution, an organic solvent, or a raw material. It is preferable to remove impurities from the composite metal sulfide particles by the known method. A thermoelectric conversion material can be produced by subjecting the composite metal sulfide obtained in an aqueous solution or an organic solvent to a sintering step described below.

焼結工程において、原料を混合することによって得られた混合物又は合成された複合金属硫化物が所定の形状の型に充填され、加圧されながら焼結される。このように、混合物又は合成された複合金属硫化物を加圧しながら焼結する方法としては、例えば、放電プラズマ焼結(Spark Plasma Sintering)を用いることができる。焼結温度は特に制限されないが、例えば、150℃〜1500℃であり、好ましくは、200℃〜1000℃である。焼結時間は、例えば、0分〜10分であり、好ましくは、0〜5分である。また、焼結工程の開始から焼結工程中の最高温度に到達するまでに必要な昇温時間は、例えば、2分〜10分である。例えば、混合物又は合成された複合金属硫化物が充填された型の内部の温度を上記の昇温速度で最高温度まで昇温させ、型の内部の温度を最高温度で所定の時間(焼結時間)だけ維持し、その後加熱を停止して焼結体を自然冷却させる。このように、焼結時間を短くすることによって、一次粒子サイズを維持させたまま焼結することが可能となる。これにより、熱伝導率を下げ性能指数を向上させることができる。焼結工程中に混合物又は合成された複合金属硫化物を加圧する圧力は、例えば、0.5MPa〜100MPaであり、好ましくは、5MPa〜50MPaである。この焼結工程は、不活性ガス雰囲気又は真空雰囲気において行うことができる。この焼結工程は、好ましくは、真空雰囲気で行われる。このようにして、上記の複合金属硫化物でできた熱電変換材料を得ることができる。このように、原料の混合物又は合成された複合金属硫化物が加圧しながら焼結されることによって、高い機械的強度を有する熱電変換材料を製造できる。   In the sintering step, a mixture obtained by mixing raw materials or a synthesized composite metal sulfide is filled in a mold having a predetermined shape and sintered while being pressed. As described above, for example, spark plasma sintering can be used as a method of sintering the mixture or the synthesized composite metal sulfide while applying pressure. The sintering temperature is not particularly limited, and is, for example, 150 ° C to 1500 ° C, and preferably 200 ° C to 1000 ° C. The sintering time is, for example, 0 minutes to 10 minutes, preferably 0 to 5 minutes. Moreover, the temperature increase time required from the start of a sintering process until it reaches the maximum temperature in a sintering process is 2 minutes-10 minutes, for example. For example, the temperature inside the mold filled with the mixture or the synthesized composite metal sulfide is raised to the maximum temperature at the above temperature increase rate, and the temperature inside the mold is kept at the maximum temperature for a predetermined time (sintering time). ), And then the heating is stopped and the sintered body is allowed to cool naturally. Thus, by shortening the sintering time, it becomes possible to sinter while maintaining the primary particle size. Thereby, a thermal conductivity can be lowered | hung and a performance index can be improved. The pressure which pressurizes the mixture or the synthesized composite metal sulfide during the sintering step is, for example, 0.5 MPa to 100 MPa, and preferably 5 MPa to 50 MPa. This sintering step can be performed in an inert gas atmosphere or a vacuum atmosphere. This sintering step is preferably performed in a vacuum atmosphere. In this way, a thermoelectric conversion material made of the above composite metal sulfide can be obtained. Thus, a thermoelectric conversion material having high mechanical strength can be produced by sintering a mixture of raw materials or a synthesized composite metal sulfide while applying pressure.

以下に、実施例を用いて本発明を詳細に説明する。なお、以下の実施例は本発明の一例であり、本発明は以下の実施例に限定されない。   Hereinafter, the present invention will be described in detail with reference to examples. The following examples are examples of the present invention, and the present invention is not limited to the following examples.

<実施例1>
銅と、コバルトと、チタンと、硫黄とのモル比が2:1:1:4になるように、単体の銅の粉末、単体のコバルトの粉末、単体のチタンの粉末、及び単体の硫黄の粉末を秤量して遊星ボールミルの容器の内部に入れ、遊星ボールミルによって乾式粉砕混合して混合サンプルを得た。この混合サンプルを型に充填し、放電プラズマ焼結装置(株式会社シンターランド製、型番:LABOX−125)を用いて、30MPaで加圧しながら真空中で焼結を行った。放電プラズマ焼結装置の通電加熱によって、約100℃/分の昇温速度で型の内部の温度を600℃まで上昇させた後、型の内部の温度を600℃で5分間維持した。その後、放電プラズマ焼結装置の通電加熱を停止し、自然冷却により焼結体を室温まで冷却し、型から焼結体を取り出した。焼結体は、直径約10mm及び厚さ約2mmの円盤形状を有していた。このようにして、実施例1に係る、複合金属硫化物(Cu2CoTiS4)でできた熱電変換材料を得た。
<Example 1>
A simple copper powder, a simple cobalt powder, a simple titanium powder, and a simple sulfur so that the molar ratio of copper, cobalt, titanium and sulfur is 2: 1: 1: 4. The powder was weighed and placed in a planetary ball mill container, and dry pulverized and mixed with the planetary ball mill to obtain a mixed sample. This mixed sample was filled into a mold and sintered in a vacuum while being pressurized at 30 MPa using a discharge plasma sintering apparatus (manufactured by Sinterland, model number: LABOX-125). The temperature inside the mold was increased to 600 ° C. at a rate of temperature increase of about 100 ° C./min by energization heating of the discharge plasma sintering apparatus, and then the temperature inside the mold was maintained at 600 ° C. for 5 minutes. Thereafter, the energization heating of the discharge plasma sintering apparatus was stopped, the sintered body was cooled to room temperature by natural cooling, and the sintered body was taken out from the mold. The sintered body had a disk shape with a diameter of about 10 mm and a thickness of about 2 mm. In this way, a thermoelectric conversion material made of composite metal sulfide (Cu 2 CoTiS 4 ) according to Example 1 was obtained.

<実施例2>
銅と、鉄と、スズと、硫黄とのモル比が2:1:1:4になるように、単体の銅の粉末、単体の鉄の粉末、単体のスズの粉末、及び単体の硫黄の粉末を秤量して遊星ボールミルの容器の内部に入れた以外は、実施例1と同様にして、実施例2に係る、複合金属硫化物(Cu2FeSnS4)でできた熱電変換材料を得た。
<Example 2>
In order for the molar ratio of copper, iron, tin, and sulfur to be 2: 1: 1: 4, simple copper powder, simple iron powder, simple tin powder, and simple sulfur A thermoelectric conversion material made of a composite metal sulfide (Cu 2 FeSnS 4 ) according to Example 2 was obtained in the same manner as in Example 1 except that the powder was weighed and placed inside the planetary ball mill container. .

<実施例3>
銅と、鉄と、チタンと、硫黄とのモル比が2:1:1:4になるように、単体の銅の粉末、単体の鉄の粉末、単体のチタンの粉末、及び単体の硫黄の粉末を秤量して遊星ボールミルの容器の内部に入れ、放電プラズマ焼結装置による通電加熱の条件を以下のように変更した以外は、実施例1と同様にして、実施例3に係る、複合金属硫化物(Cu2FeTiS4)でできた熱電変換材料を得た。約100℃/分の昇温速度で型の内部の温度を400℃まで上昇させた後、型の内部の温度を400℃で5分間維持して、放電プラズマ焼結装置の通電加熱を停止した。
<Example 3>
In order for the molar ratio of copper, iron, titanium, and sulfur to be 2: 1: 1: 4, simple copper powder, simple iron powder, simple titanium powder, and simple sulfur The composite metal according to Example 3 in the same manner as in Example 1 except that the powder was weighed and put into the container of the planetary ball mill, and the conditions of current heating by the discharge plasma sintering apparatus were changed as follows. A thermoelectric conversion material made of sulfide (Cu 2 FeTiS 4 ) was obtained. After the temperature inside the mold was raised to 400 ° C. at a rate of temperature increase of about 100 ° C./min, the temperature inside the mold was maintained at 400 ° C. for 5 minutes to stop the electric heating of the discharge plasma sintering apparatus. .

<実施例4>
銅と、スズと、硫黄とのモル比が2:1:3となるように、単体の銅の粉末、単体のスズの粉末、及び単体の硫黄の粉末を秤量して遊星ボールミルの容器の内部に入れ、放電プラズマ焼結装置による通電加熱の条件を以下のように変更した以外は、実施例1と同様にして、実施例4に係る、複合金属硫化物(Cu2SnS3)でできた熱電変換材料を得た。約100℃/分の昇温速度で型の内部の温度を400℃まで上昇させた後、型の内部の温度を400℃で5分間維持して、放電プラズマ焼結装置の通電加熱を停止した。
<Example 4>
Inside the planetary ball mill container, weigh the simple copper powder, simple tin powder, and simple sulfur powder so that the molar ratio of copper, tin, and sulfur is 2: 1: 3. The composite metal sulfide (Cu 2 SnS 3 ) according to Example 4 was made in the same manner as in Example 1 except that the conditions of the electric heating by the discharge plasma sintering apparatus were changed as follows. A thermoelectric conversion material was obtained. After the temperature inside the mold was raised to 400 ° C. at a rate of temperature increase of about 100 ° C./min, the temperature inside the mold was maintained at 400 ° C. for 5 minutes to stop the electric heating of the discharge plasma sintering apparatus. .

<実施例5>
銅と、亜鉛と、スズと、硫黄とのモル比が2:1:1:4になるように、単体の銅の粉末、単体の亜鉛の粉末、単体のスズの粉末、及び単体の硫黄の粉末を秤量して遊星ボールミルの容器の内部に入れ、放電プラズマ焼結装置による通電加熱の条件を以下のように変更した以外は、実施例1と同様にして、実施例5に係る、複合金属硫化物(Cu2ZnSnS4)でできた熱電変換材料を得た。約100℃/分の昇温速度で型の内部の温度を500℃まで上昇させ、型の内部の温度が500℃に達した直後に放電プラズマ焼結装置による通電加熱を停止した。
<Example 5>
A simple copper powder, a simple zinc powder, a simple tin powder, and a simple sulfur so that the molar ratio of copper, zinc, tin and sulfur is 2: 1: 1: 4. The composite metal according to Example 5 is the same as Example 1, except that the powder is weighed and placed in the container of the planetary ball mill, and the conditions of the electric heating by the discharge plasma sintering apparatus are changed as follows. A thermoelectric conversion material made of sulfide (Cu 2 ZnSnS 4 ) was obtained. The temperature inside the mold was increased to 500 ° C. at a rate of temperature increase of about 100 ° C./min. Immediately after the temperature inside the mold reached 500 ° C., the energization heating by the discharge plasma sintering apparatus was stopped.

<実施例6>
銅と、鉄と、硫黄とのモル比が5:1:4になるように、単体の銅の粉末、単体の鉄の粉末、及び単体の硫黄の粉末を秤量して遊星ボールミルの容器の内部に入れ、放電プラズマ焼結装置による通電加熱の条件を以下のように変更した以外は、実施例1と同様にして実施例6に係る、複合金属硫化物(Cu5FeS4)でできた熱電変換材料を得た。約100℃/分の昇温速度で型の内部の温度を400℃まで上昇させた後、型の内部の温度を400℃で5分間維持して、放電プラズマ焼結装置の通電加熱を停止した。
<Example 6>
Inside the planetary ball mill container, weigh the simple copper powder, simple iron powder, and simple sulfur powder so that the molar ratio of copper, iron and sulfur is 5: 1: 4. In the same manner as in Example 1, except that the conditions for the electric heating by the discharge plasma sintering apparatus were changed as follows, the thermoelectric made of the composite metal sulfide (Cu 5 FeS 4 ) according to Example 6 was used. A conversion material was obtained. After the temperature inside the mold was raised to 400 ° C. at a rate of temperature increase of about 100 ° C./min, the temperature inside the mold was maintained at 400 ° C. for 5 minutes to stop the electric heating of the discharge plasma sintering apparatus. .

<実施例7>
銅と、アルミニウムと、硫黄とのモル比が1:1:2になるように、単体の銅の粉末、単体のアルミニウムの粉末、及び単体の硫黄の粉末を秤量して遊星ボールミルの容器の内部に入れ、放電プラズマ焼結装置による通電加熱の条件を以下のように変更した以外は、実施例1と同様にして、実施例7に係る、複合金属硫化物(CuAlS2)でできた熱電変換材料を得た。約100℃/分の昇温速度で型の内部の温度を400℃まで上昇させた後、型の内部の温度を400℃で5分間維持して、放電プラズマ焼結装置の通電加熱を停止した。
<Example 7>
Inside the planetary ball mill container, weigh the simple copper powder, simple aluminum powder, and simple sulfur powder so that the molar ratio of copper, aluminum, and sulfur is 1: 1: 2. The thermoelectric conversion made of the composite metal sulfide (CuAlS 2 ) according to Example 7 was performed in the same manner as in Example 1 except that the conditions of the electric current heating by the discharge plasma sintering apparatus were changed as follows. Obtained material. After the temperature inside the mold was raised to 400 ° C. at a rate of temperature increase of about 100 ° C./min, the temperature inside the mold was maintained at 400 ° C. for 5 minutes to stop the electric heating of the discharge plasma sintering apparatus. .

<実施例8>
銅と、鉄と、硫黄とのモル比が1:1:2になるように、単体の銅の粉末、単体の鉄の粉末、及び単体の硫黄の粉末を秤量して遊星ボールミルの容器の内部に入れ、放電プラズマ焼結装置による通電加熱の条件を以下のように変更した以外は、実施例1と同様にして実施例8に係る、複合金属硫化物(CuFeS2)でできた熱電変換材料を得た。約100℃/分の昇温速度で型の内部の温度を200℃まで上昇させた後、型の内部の温度を500℃で5分間維持して、放電プラズマ焼結装置の通電加熱を停止した。
<Example 8>
Inside the planetary ball mill container, weigh the simple copper powder, simple iron powder, and simple sulfur powder so that the molar ratio of copper, iron and sulfur is 1: 1: 2. And a thermoelectric conversion material made of a composite metal sulfide (CuFeS 2 ) according to Example 8 in the same manner as in Example 1 except that the conditions of current heating by the discharge plasma sintering apparatus were changed as follows. Got. The temperature inside the mold was raised to 200 ° C. at a rate of temperature increase of about 100 ° C./min, and then the temperature inside the mold was maintained at 500 ° C. for 5 minutes to stop the electric heating of the discharge plasma sintering apparatus. .

<実施例9>
銅と、インジウムと、硫黄とのモル比が1:1:2になるように、単体の銅の粉末、単体のインジウムの粉末、及び単体の硫黄の粉末を秤量して遊星ボールミルの容器の内部に入れた以外は、実施例1と同様にして実施例9に係る、複合金属硫化物(CuInS2)でできた熱電変換材料を得た。
<Example 9>
Inside the planetary ball mill container, weigh the simple copper powder, simple indium powder, and simple sulfur powder so that the molar ratio of copper, indium, and sulfur is 1: 1: 2. A thermoelectric conversion material made of a composite metal sulfide (CuInS 2 ) according to Example 9 was obtained in the same manner as in Example 1 except that it was put in the process.

<実施例10>
銅と、チタンと、硫黄とのモル比が1:2:4になるように、単体の銅の粉末、単体のチタンの粉末、及び単体の硫黄の粉末を秤量して遊星ボールミルの容器の内部に入れ、放電プラズマ焼結装置による通電加熱の条件を以下のように変更した以外は、実施例1と同様にして実施例10に係る、複合金属硫化物(CuTi24)でできた熱電変換材料を得た。約100℃/分の昇温速度で型の内部の温度を500℃まで上昇させた後、型の内部の温度を500℃で2分間維持して、放電プラズマ焼結装置の通電加熱を停止した。
<Example 10>
Inside the planetary ball mill container, weigh the single copper powder, single titanium powder, and single sulfur powder so that the molar ratio of copper, titanium and sulfur is 1: 2: 4. In the same manner as in Example 1 except that the conditions of the electric heating by the discharge plasma sintering apparatus were changed as follows, a thermoelectric made of a composite metal sulfide (CuTi 2 S 4 ) according to Example 10 was used. A conversion material was obtained. The temperature inside the mold was raised to 500 ° C. at a rate of temperature increase of about 100 ° C./min, and then the temperature inside the mold was maintained at 500 ° C. for 2 minutes to stop the electric heating of the discharge plasma sintering apparatus. .

<熱電変換材料の特性評価>
各実施例の熱電変換材料の円柱状の試料の二つの底面を研磨機によって湿式研磨し、各実施例の熱電変換材料について、四端子測定法によって室温(約25℃)での電気抵抗率を測定した。また、各実施例の複数の熱電変換材料の試料の上面において、平均温度が約25℃となるように一部を温め、別の一部を冷やすことによって、熱電変換材料の試料の上面に所定の温度差を生じさせ、この状態で起電力を測定した。それぞれの試料における温度差及び起電力の関係を示す、縦軸を起電力とし、横軸を温度差とするグラフを作成した。このグラフの傾きから、各実施例の熱電変換材料のゼーベック係数を算出した。また、各実施例の熱電変換材料の出力因子Pを、P=(ゼーベック係数)2/電気抵抗率の関係に基づき算出した。表1に、各実施例の熱電変換材料の電気抵抗率、ゼーベック係数、及び出力因子Pを示す。
<Characteristic evaluation of thermoelectric conversion material>
Two bottom surfaces of the columnar sample of the thermoelectric conversion material of each example were wet-polished by a polishing machine, and the thermoelectric conversion material of each example was measured for electric resistivity at room temperature (about 25 ° C.) by a four-terminal measurement method. It was measured. Further, on the upper surface of the plurality of thermoelectric conversion material samples of each example, a predetermined temperature is applied to the upper surface of the thermoelectric conversion material sample by heating a part so that the average temperature is about 25 ° C. and cooling another part. The electromotive force was measured in this state. A graph showing the relationship between the temperature difference and the electromotive force in each sample and having the vertical axis as the electromotive force and the horizontal axis as the temperature difference was created. From the slope of this graph, the Seebeck coefficient of the thermoelectric conversion material of each example was calculated. Moreover, the output factor P of the thermoelectric conversion material of each Example was calculated based on the relationship of P = (Seebeck coefficient) 2 / electric resistivity. Table 1 shows the electrical resistivity, Seebeck coefficient, and output factor P of the thermoelectric conversion material of each example.

<X線回折測定>
X線回折装置(Rigaku社製、試料水平型X線回折装置 Smart Lab)を用いて各実施例の熱電変換材料についてX線回折スペクトルを測定した。X線回折スペクトルの測定結果から、各実施例の熱電変換材料が表1に記載されている結晶構造を主として有することが確認された。また、X線回折スペクトルのメインピークからScherrerの式を用いて各実施例の熱電変換材料の結晶子サイズを求めた。結果を表1に示す。また、実施例2、5、7、及び10に係る熱電変換材料のX線回折スペクトルをそれぞれ図1、2、3、及び4に示す。
<X-ray diffraction measurement>
An X-ray diffraction spectrum was measured for the thermoelectric conversion material of each example using an X-ray diffractometer (manufactured by Rigaku, sample horizontal X-ray diffractometer Smart Lab). From the measurement result of the X-ray diffraction spectrum, it was confirmed that the thermoelectric conversion material of each Example mainly has the crystal structure described in Table 1. Moreover, the crystallite size of the thermoelectric conversion material of each Example was calculated | required using the Scherrer formula from the main peak of the X-ray diffraction spectrum. The results are shown in Table 1. Moreover, the X-ray-diffraction spectrum of the thermoelectric conversion material which concerns on Example 2, 5, 7, and 10 is shown to FIG. 1, 2, 3, and 4, respectively.

<バンドギャップの測定>
実施例4、5、及び9に係る熱電変換材料を硫酸バリウム白板に少量載せ、表面を平らにした。このようにして作製した測定用試料の拡散反射UV−VisスペクトルをUV−Vis−NIR分光器(島津製作所社製、型番:UV3100PC)を用いて測定した。得られた拡散反射UV−VisスペクトルをKubelka-Munk変換して得られるTaucプロットの接線から、実施例4、5、及び9に係る熱電変換材料のバンドギャップを求めた。
<Measurement of band gap>
A small amount of the thermoelectric conversion material according to Examples 4, 5, and 9 was placed on a white barium sulfate plate to flatten the surface. The diffuse reflection UV-Vis spectrum of the measurement sample thus prepared was measured using a UV-Vis-NIR spectrometer (manufactured by Shimadzu Corporation, model number: UV3100PC). The band gap of the thermoelectric conversion materials according to Examples 4, 5, and 9 was determined from the tangent line of the Tauc plot obtained by Kubelka-Munk conversion of the obtained diffuse reflection UV-Vis spectrum.

Figure 2016048730
Figure 2016048730

Claims (4)

立方晶、六方晶、正方晶、斜方晶、又は三方晶の結晶構造を有し、銅と、第1遷移元素又はpブロック元素である、銅以外の少なくとも一つの金属とを主成分として含む複合金属硫化物でできた、熱電変換材料。   It has a cubic, hexagonal, tetragonal, orthorhombic, or trigonal crystal structure, and contains copper and at least one metal other than copper, which is a first transition element or p-block element, as main components. Thermoelectric conversion material made of composite metal sulfide. 前記金属が4価の金属である、請求項1に記載の熱電変換材料。   The thermoelectric conversion material according to claim 1, wherein the metal is a tetravalent metal. X線回折スペクトルのメインピークからScherrerの式を用いて求まる結晶子サイズが1000nm以下である、請求項1又は2に記載の熱電変換材料。   The thermoelectric conversion material according to claim 1 or 2, wherein the crystallite size obtained from the main peak of the X-ray diffraction spectrum using the Scherrer equation is 1000 nm or less. 0.3eV〜2.5eVのバンドギャップを有する、請求項1〜3のいずれか1項に記載の熱電変換材料。   The thermoelectric conversion material according to any one of claims 1 to 3, which has a band gap of 0.3 eV to 2.5 eV.
JP2014173148A 2014-08-27 2014-08-27 Thermoelectric conversion material Active JP6389085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014173148A JP6389085B2 (en) 2014-08-27 2014-08-27 Thermoelectric conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014173148A JP6389085B2 (en) 2014-08-27 2014-08-27 Thermoelectric conversion material

Publications (2)

Publication Number Publication Date
JP2016048730A true JP2016048730A (en) 2016-04-07
JP6389085B2 JP6389085B2 (en) 2018-09-12

Family

ID=55649479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014173148A Active JP6389085B2 (en) 2014-08-27 2014-08-27 Thermoelectric conversion material

Country Status (1)

Country Link
JP (1) JP6389085B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203938A1 (en) * 2016-05-25 2017-11-30 株式会社日本触媒 Thermoelectric conversion material, thermoelectric conversion element, powder for thermoelectric conversion material, and method for producing thermoelectric conversion material
JP2018088458A (en) * 2016-11-28 2018-06-07 株式会社日本触媒 Thermoelectric conversion material
JP2018142685A (en) * 2016-05-25 2018-09-13 株式会社日本触媒 Thermoelectric conversion material, thermoelectric element, fine particle for thermoelectric conversion material, and manufacturing method of thermoelectric conversion material
JP2019149524A (en) * 2018-02-28 2019-09-05 株式会社日本触媒 Sulfide, thermoelectric conversion material, and thermoelectric conversion element
JP2020155760A (en) * 2018-09-12 2020-09-24 株式会社日本触媒 Thermoelectric conversion material, thermoelectric conversion element, and sulfide
CN115101653A (en) * 2022-07-08 2022-09-23 中南大学 Manganese-selenium-doped copper-sulfur-based thermoelectric material and preparation method thereof
JP7548796B2 (en) 2020-12-01 2024-09-10 トヨタ自動車株式会社 Thermoelectric materials and modules

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496402A (en) * 1977-12-28 1979-07-30 Outokumpu Oy Method for controlling energy and equalizing temperature in various sulfurizing processure
JPS6119076A (en) * 1984-07-06 1986-01-27 Doudensei Muki Kagoubutsu Gijutsu Kenkyu Kumiai Charge-discharge method of solid electrolyte secondary battery
JPH0341781A (en) * 1989-07-10 1991-02-22 Agency Of Ind Science & Technol Manufacture of thermoelectric material
JP2002270907A (en) * 2001-03-06 2002-09-20 Nec Corp Thermoelectric conversion material and device using the same
JP2010087362A (en) * 2008-10-01 2010-04-15 Chubu Electric Power Co Inc Thermoelectric conversion material and manufacturing method thereof
JP2013219308A (en) * 2012-04-12 2013-10-24 Toyota Industries Corp Bismuth-tellurium based thermoelectric material
WO2014008414A1 (en) * 2012-07-06 2014-01-09 Board Of Trustees Of Michigan State University Thermoelectric materials based on tetrahedrite structure for thermoelectric devices
JP2014138125A (en) * 2013-01-17 2014-07-28 Toyota Central R&D Labs Inc Thermoelectric material and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496402A (en) * 1977-12-28 1979-07-30 Outokumpu Oy Method for controlling energy and equalizing temperature in various sulfurizing processure
JPS6119076A (en) * 1984-07-06 1986-01-27 Doudensei Muki Kagoubutsu Gijutsu Kenkyu Kumiai Charge-discharge method of solid electrolyte secondary battery
JPH0341781A (en) * 1989-07-10 1991-02-22 Agency Of Ind Science & Technol Manufacture of thermoelectric material
JP2002270907A (en) * 2001-03-06 2002-09-20 Nec Corp Thermoelectric conversion material and device using the same
JP2010087362A (en) * 2008-10-01 2010-04-15 Chubu Electric Power Co Inc Thermoelectric conversion material and manufacturing method thereof
JP2013219308A (en) * 2012-04-12 2013-10-24 Toyota Industries Corp Bismuth-tellurium based thermoelectric material
WO2014008414A1 (en) * 2012-07-06 2014-01-09 Board Of Trustees Of Michigan State University Thermoelectric materials based on tetrahedrite structure for thermoelectric devices
JP2014138125A (en) * 2013-01-17 2014-07-28 Toyota Central R&D Labs Inc Thermoelectric material and method for producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOICHIRO SUEKUNI,外8名: "High-performance thermoelectric mineral Cu12-xNixSb4S13 tetrahedrite", JOURNAL OF APPLIED PHYSICS, vol. 113, no. 4, JPN5015008051, 28 January 2013 (2013-01-28), US, pages 043712 - 1, ISSN: 0003858398 *
MIN-LING LIU,外3名: "A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4(Q=S, S", APPLIED PHYSICS LETTERS, vol. 94, no. 20, JPN7018000273, 19 May 2009 (2009-05-19), US, pages 202103 - 1, ISSN: 0003729969 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203938A1 (en) * 2016-05-25 2017-11-30 株式会社日本触媒 Thermoelectric conversion material, thermoelectric conversion element, powder for thermoelectric conversion material, and method for producing thermoelectric conversion material
JP2018142685A (en) * 2016-05-25 2018-09-13 株式会社日本触媒 Thermoelectric conversion material, thermoelectric element, fine particle for thermoelectric conversion material, and manufacturing method of thermoelectric conversion material
US11631794B2 (en) 2016-05-25 2023-04-18 Nippon Shokubai Co., Ltd. Thermoelectric material, thermoelectric device, powder for thermoelectric material, and method for producing thermoelectric material
JP2018088458A (en) * 2016-11-28 2018-06-07 株式会社日本触媒 Thermoelectric conversion material
JP2019149524A (en) * 2018-02-28 2019-09-05 株式会社日本触媒 Sulfide, thermoelectric conversion material, and thermoelectric conversion element
JP2020155760A (en) * 2018-09-12 2020-09-24 株式会社日本触媒 Thermoelectric conversion material, thermoelectric conversion element, and sulfide
JP7548796B2 (en) 2020-12-01 2024-09-10 トヨタ自動車株式会社 Thermoelectric materials and modules
CN115101653A (en) * 2022-07-08 2022-09-23 中南大学 Manganese-selenium-doped copper-sulfur-based thermoelectric material and preparation method thereof

Also Published As

Publication number Publication date
JP6389085B2 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
JP6389085B2 (en) Thermoelectric conversion material
Li et al. Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders
CN107078201B (en) Thermo-electric converting material
CA2738771C (en) Nanocomposite thermoelectric conversion material, thermoelectric conversion element including the same, and method of producing nanocomposite thermoelectric conversion material
Li et al. Effect of the annealing atmosphere on crystal phase and thermoelectric properties of copper sulfide
Weller et al. Thermoelectric performance of tetrahedrite synthesized by a modified polyol process
EP2606160B1 (en) P-type skutterudite material and method of making the same
JP2018525304A (en) Aqueous-based method for preparing metal chalcogenide nanomaterials
Feng et al. Hydrothermal synthesis of SnQ (Q= Te, Se, S) and their thermoelectric properties
Prasoetsopha et al. Synthesis and thermoelectric properties of Ca 3 Co 4 O 9 prepared by a simple thermal hydro-decomposition method
Nan et al. Bottom-up synthesis of SnTe-based thermoelectric composites
JP6110421B2 (en) Phonon scattering material, nanocomposite thermoelectric material and manufacturing method thereof
Zubair et al. Precursor-Mediated Colloidal Synthesis of Compositionally Tunable Cu–Sb–M–S (M= Zn, Co, and Ni) Nanocrystals and Their Transport Properties
Nan et al. Engineering of thermoelectric composites based on silver selenide in aqueous solution and ambient temperature
JP6588194B2 (en) Thermoelectric materials and thermoelectric modules
JP6749831B2 (en) Thermoelectric conversion material
JP7290915B2 (en) Sulfides, thermoelectric conversion materials, and thermoelectric conversion elements
JP2021044424A (en) Thermoelectric conversion material
JP6747828B2 (en) Thermoelectric conversion material and manufacturing method thereof
JP6718800B2 (en) Sulfide, semiconductor material, and thermoelectric conversion material
Zheng et al. Mechanical alloying-spark plasma sintering synthesis and thermoelectric properties of n-type NiSe 2+ x semiconductors: analysis of intrinsic defects and phase structures
JP6877814B2 (en) Thermoelectric materials and thermoelectric elements containing them
JP2013521630A (en) Thermoelectric materials, preparation of these thermoelectric materials, and thermoelectric elements containing these thermoelectric materials
JP6793087B2 (en) Manufacturing method of thermoelectric conversion material, thermoelectric conversion element, powder for thermoelectric conversion material, and thermoelectric conversion material
Li Solution-Based Bottom-Up Processing of Chalcogenide Thermoelectric Nanomaterials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180816

R150 Certificate of patent or registration of utility model

Ref document number: 6389085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150