JPS6119075A - Charge-discharge method of solid electrolyte secondary battery - Google Patents

Charge-discharge method of solid electrolyte secondary battery

Info

Publication number
JPS6119075A
JPS6119075A JP59140881A JP14088184A JPS6119075A JP S6119075 A JPS6119075 A JP S6119075A JP 59140881 A JP59140881 A JP 59140881A JP 14088184 A JP14088184 A JP 14088184A JP S6119075 A JPS6119075 A JP S6119075A
Authority
JP
Japan
Prior art keywords
charge
discharge
solid electrolyte
battery
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59140881A
Other languages
Japanese (ja)
Other versions
JPH0534788B2 (en
Inventor
Tadashi Tonomura
正 外邨
Satoshi Sekido
聰 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOUDENSEI MUKI KAGOUBUTSU GIJUTSU KENKYU KUMIAI
Original Assignee
DOUDENSEI MUKI KAGOUBUTSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOUDENSEI MUKI KAGOUBUTSU GIJUTSU KENKYU KUMIAI filed Critical DOUDENSEI MUKI KAGOUBUTSU GIJUTSU KENKYU KUMIAI
Priority to JP59140881A priority Critical patent/JPS6119075A/en
Publication of JPS6119075A publication Critical patent/JPS6119075A/en
Publication of JPH0534788B2 publication Critical patent/JPH0534788B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve charge-discharge performance by specifying limiting battery voltage for charge and discharge in a secondary battery using mainly Cu as a negative electrode, mainly CuxTiS2 compound as a positive electrode, and conductive solid electrolyte. CONSTITUTION:A solid electrolyte secondary battery is formed with a negative electrode mainly comprising Cu, a positive electrode mainly comprising an intermetallic compound selected from CuxTiS2, CuxTiCryS2+1.5y, (0<=x<0.2, 0.01<y< 0.2), and a Cu ion conductive solid electrolyte such as RbCu4I1.25Cl3.75. Charge limiting battery voltage is specified to 0.60+ic.RcV or less, and discharge limiting battery voltage is specified to 0.33-id.RdV or more. By this charge-discharge method, good charge-discharge performance is obtained. Where, ic and id show charge and discharge current values respectively, and Rc and Rd show d.c. internal resistance values of battery in charge and discharge respectively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、固体電解質二次電池の充・放電方式従来例の
構成とその問題点 一般に二次電池は、用いられる正極活物質、負極活物質
、電解質の可逆性、過電圧1分解電圧等の電気化学的性
質により決定されるその電池系特有の、その電圧値ある
いは電気量を越えるとくり返し充・放電特性が極端に低
下する充・放電限界電圧あるいは電気量を有している。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the structure of a conventional charging/discharging system for solid electrolyte secondary batteries and its problems. The charge/discharge limit voltage, which is determined by the electrochemical properties such as electrolyte reversibility, overvoltage, and decomposition voltage, and which is unique to the battery system and whose repeated charge/discharge characteristics deteriorate extremely when the voltage value or quantity of electricity is exceeded. It has electricity.

すなわち、従来の二次電池の代表例であるニッケルーカ
ドミウム電池とか鉛蓄電池とかも、長年にわたる検討が
加えられ、それぞれの電池系に固有の充・放電限界電圧
あるいは電気量を見定め現在の充・放電方式をとるに至
っている。
In other words, nickel-cadmium batteries and lead-acid batteries, which are typical examples of conventional secondary batteries, have been studied for many years, and the current charging and discharging limit voltage or amount of electricity unique to each battery system has been determined. A discharge method has been adopted.

新しい正極活物質、負極活物質、電解質により構成され
る二次電池を実用に供するためには、この電池系固有の
充・放電限界電圧あるいは電気量を3ベージ 見定め、この電池系固有の充・放電方式を与えることは
必須の要件となる。
In order to put into practical use a secondary battery composed of a new positive electrode active material, negative electrode active material, and electrolyte, the charging/discharging limit voltage or the amount of electricity unique to this battery system must be determined on three basis. Providing a discharge method is an essential requirement.

一方、在来の液体電解質を用いるニッケル・カドミウム
電池等とは異なり、固体状の電解質を用いる固体電解質
二次電池は、原理的に液もれがなく小形・うす形化がき
わめて簡便にできることから、近年発展が著しい省電力
・省エネルギーが達成されるマイクロエレクトロニクス
分野の小結電源として注目されるに至っている。この固
体電解質二次電池の中でも、Cu!TiS2とかCu 
TICryS2+1.67 等の眉間化合物を正極活物
質とし、Cu■イオン導電性固体電解質を用いる二次電
池は、正極活物質の可逆性が優れ、固体電解質のイオン
伝導度は有機電解液電解質に匹適するくらい高くかつ化
学的に安定であることから優れた電池特性が期待できる
固体電解質二次電池として注目されるに至っている。
On the other hand, unlike conventional nickel-cadmium batteries that use liquid electrolytes, solid electrolyte secondary batteries that use solid electrolytes do not leak in principle and can be made smaller and thinner very easily. It has been attracting attention as a small power source for the microelectronics field, which has achieved remarkable power and energy savings in recent years. Among these solid electrolyte secondary batteries, Cu! TiS2 or Cu
A secondary battery that uses a eyebrow compound such as TICryS2+1.67 as a positive electrode active material and a Cu ion conductive solid electrolyte has excellent reversibility of the positive electrode active material, and the ionic conductivity of the solid electrolyte is comparable to that of an organic electrolyte. It is attracting attention as a solid electrolyte secondary battery that can be expected to have excellent battery characteristics because of its high chemical stability and chemical stability.

該固体電解質二次電池の電池反応は と表されるが、負極の反応は、銅(Cu )の溶解析出
反応であり、その可逆性については特別な制限はない。
The battery reaction of the solid electrolyte secondary battery is expressed as follows; however, the reaction at the negative electrode is a dissolution precipitation reaction of copper (Cu), and there is no particular restriction on its reversibility.

正極の反応については、Cu■がTiS2あるいはTi
CryS2+1.6V のSとSの層間を出入りする反
応であるが、その可逆性については全く知られておらず
、したがって該電池の良好なくり返し特性を与える充・
放電限′界を定め難く、該固体電解質二次電池を実用に
供するだめの障害となっている。
Regarding the reaction at the positive electrode, Cu■ is TiS2 or Ti
CryS2+1.6V is a reaction that moves between S and S layers, but its reversibility is completely unknown.
It is difficult to determine the discharge limit, which is an obstacle to putting the solid electrolyte secondary battery into practical use.

発明の目的 本発明は、固体電解質二次電池について、良好なくり返
し充・放電特性を与える充・放電方式を提供することを
目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a charging/discharging method that provides good repeated charging/discharging characteristics for a solid electrolyte secondary battery.

発明の構成 5ページ 本発明を適用する固体電解質二次電池は、Cuを主体と
゛する負極、Cu xT I S2 + Cu xT 
* Cr yS2c 、5y(O<!<0.2.0.0
1 <y<0.2)の一群より選ばれる化合物を主体と
する正極、RbCu4I 1.5CI3.5゜RbCu
411.2.C13,76等のCu■イオン導電性固体
電解質により構成される。そして、該電池の使用に際し
ては、充電限界電池電圧として、0.65+t、、no
(ボルト)以下、放電限界電池電圧として0 、33−
1 d−Rc1(ボルト)以上の条件を満足するように
充・放電をくり返し行うようにする。
Structure of the Invention Page 5 A solid electrolyte secondary battery to which the present invention is applied has a negative electrode mainly composed of Cu, Cu xT I S2 + Cu xT
* Cr yS2c , 5y (O<!<0.2.0.0
1<y<0.2), a positive electrode mainly composed of a compound selected from the group of RbCu4I 1.5CI3.5°RbCu
411.2. It is composed of a Cu ion conductive solid electrolyte such as C13,76. When using the battery, the charging limit battery voltage is 0.65+t, no.
(Volt) Below, the discharge limit battery voltage is 0,33-
Charge and discharge are repeated so that the condition of 1 d-Rc1 (volt) or more is satisfied.

ここで、i、、idは、それぞれ充電9.放電電流値−
ム。電池の充電中あるいは放電中に、約100ミリ秒間
、充電電流あるいは放電電流を10分の9にしたときの
電池の電圧■。。、Vdcと、電流を減じる直前の電池
電圧V。o、VdcからRo=10・(vcc −vc
o )/ t。
Here, i, , id are respectively charging 9. Discharge current value -
Mu. Battery voltage ■ when the charging or discharging current is reduced to 9/10 for approximately 100 milliseconds while the battery is being charged or discharged. . , Vdc, and the battery voltage V immediately before reducing the current. o, Vdc to Ro=10・(vcc −vc
o)/t.

Rd=10・(Vdo−Vdc)/idで求められる値
である。
This is a value determined by Rd=10.(Vdo-Vdc)/id.

6ペーノ ここで言う、充電限界電池電圧とは、充電はこの電圧値
以下で行うという意味での限界電圧であり、放電限界電
池電圧とは、放電は、この電圧以上で行うという意味で
の限界電圧である。
The charging limit battery voltage mentioned here is the limit voltage in the sense that charging is performed below this voltage value, and the discharge limit battery voltage is the limit in the sense that discharging is performed above this voltage value. It is voltage.

実施例の説明 下記に示した構成の固体電解質二次電池を構成し、本発
明を適用する。
Description of Examples A solid electrolyte secondary battery having the configuration shown below is constructed and the present invention is applied thereto.

〔実施例1〕 電解質: RbCu4I 1.5Ct3.6を0.05
gr負極合剤:Cu粉80重量%とCu2S20重量%
の混合物4.75重量部と前記電解 質1.25重量部の混合物を0.2g r正極合剤:C
uo、1TiS22重量部と前記電解質3重量部の混合
物を0.06gr 上記の材料を2トン/−の圧力で三層に加圧成型して直
径7 w+、厚さ約1m+の電池を組み立てた。
[Example 1] Electrolyte: RbCu4I 1.5Ct3.6 to 0.05
gr negative electrode mixture: Cu powder 80% by weight and Cu2S 20% by weight
0.2 g of a mixture of 4.75 parts by weight of the mixture and 1.25 parts by weight of the electrolyte.
0.06 gr of a mixture of 22 parts by weight of 1TiS and 3 parts by weight of the electrolyte.The above materials were pressure molded into three layers at a pressure of 2 tons/- to assemble a battery with a diameter of 7 W+ and a thickness of about 1 m+.

これらの電池を室温で通常は100μAで、60秒間に
1回100ミリ秒間9opAとなる定電流パルスで、次
表に示す9種類の充・放電サイクル試験a−hを行なっ
た。同表に、第1サイクル目7ヘーノ 充電中、放電中共に変化はほとんどなく、試験した全サ
イクルに渡り常温でほぼ同じR3’:: Rd:220
Ω第1図は、a−hの各サイクル試験における、サイク
ル数と放電末電圧(実線)、充電末電圧(破線)との関
係を示しており、本発明の充・放電方式に従い、充電限
界電圧が、0 、60+10””・220=0.622
ボルト以下でかつ放電限界電圧が、0.33−10””
’ @220=0.308ボルト以上である充・放電サ
イクル試験、a、b、c、d、eでは実用に耐える良好
なくり返し充・放電特性を与えることがわかる。
These batteries were subjected to nine types of charge/discharge cycle tests a-h shown in the following table at room temperature with a constant current pulse of 9 opA for 100 milliseconds once every 60 seconds, typically at 100 μA. In the same table, there is almost no change during the first cycle 7 during charging and discharging, and R3':: Rd: 220 is almost the same at room temperature over all the cycles tested.
Ω Figure 1 shows the relationship between the number of cycles, the end-of-discharge voltage (solid line), and the end-of-charge voltage (broken line) in each cycle test of a to h, and according to the charge/discharge method of the present invention, the charge limit The voltage is 0, 60+10''・220=0.622
volt or less and the discharge limit voltage is 0.33-10""
It can be seen that the charge/discharge cycle tests a, b, c, d, and e, where @220 = 0.308 volts or more, give good repeated charge/discharge characteristics that can withstand practical use.

また、d、eにおいてサイクル試験の末期になって充電
電圧あるいは放電電圧が本発明により示される限界電圧
を越えると、急激にくり返し充・放電特性が劣化するこ
とがわかる。
Furthermore, it can be seen that when the charging voltage or the discharging voltage exceeds the limit voltage indicated by the present invention at the end of the cycle test in d and e, the charging/discharging characteristics repeatedly deteriorate rapidly.

〔実施例2〕 電解質:Rb Cu 4I 1.s CZa 、sを0
.05gr負極合剤:Cu粉80重量%とCu2S 2
0重量%の混合物4.76重量部と前記電解 質1.25重量部の混合物0,2qr 正極合剤:CuO006TiCro、026S2.03
762重量部と前記電解質3重量部の混合 物を0.06gr 上記の材料を2トン/ cdの圧力で三層に加圧成型9
ページ し2直径7咽、厚さ約1閣の電池を組み立てた。
[Example 2] Electrolyte: Rb Cu 4I 1. s CZa, s is 0
.. 05gr negative electrode mixture: 80% by weight of Cu powder and Cu2S2
A mixture of 4.76 parts by weight of 0% by weight mixture and 1.25 parts by weight of the electrolyte 0.2qr Positive electrode mixture: CuO006TiCro, 026S2.03
A mixture of 762 parts by weight and 3 parts by weight of the electrolyte was press-molded into three layers with 0.06 gr of the above materials at a pressure of 2 tons/cd9.
I made a page and assembled a battery that was 2 inches in diameter and about 1 inch thick.

これらの電池を室温で、通常は100μAで60秒間に
1回1ooミリ秒間90μAとなる定電流パルスで、次
表に示す9種類の充・放電サイクル試験a′〜h′を行
った。同表に、第1サイクル目充電中、放電中共に変化
はほとんどなく、試験した全サイクルに渡V、常温でほ
ぼ同じR8二Rd二220Ωである。
These batteries were subjected to nine types of charge/discharge cycle tests a' to h' shown in the following table at room temperature, using a constant current pulse of 90 μA for 10 milliseconds once every 60 seconds at 100 μA. In the same table, there is almost no change during charging and discharging in the first cycle, and V and Rd2220Ω are almost the same at room temperature over all the cycles tested.

10−・ 第2図は、a′〜h′各サイクル試験における、サイク
ル数と放電末電圧(実線)、充電末電圧(破線)との関
係を示しており、本発明の充・放電方式に従い、充電限
界電圧が、0.60 + 10”−’・220=0.6
22ボルト以下でかつ放電限界電圧が、0.33−10
””−220=0.308ポル)以上である充・放電サ
イクル試験a、b、C,d、 eでは実用に耐える良好
なくり返し充・放電特性を与えることがわかる。
10-. Figure 2 shows the relationship between the number of cycles, the end-of-discharge voltage (solid line), and the end-of-charge voltage (dashed line) in each cycle test from a' to h'. , the charging limit voltage is 0.60 + 10"-'・220=0.6
22 volts or less and the discharge limit voltage is 0.33-10
It can be seen that in the charge/discharge cycle tests a, b, C, d, and e, which are equal to or higher than ""-220=0.308 pol), good repeated charge/discharge characteristics that can withstand practical use are provided.

また、d、eにおいて、サイクル試験の末期になって充
電電圧あるいは放電電圧が本発明により示される限界電
圧を越えると、急激にくり返し充・放電特性が劣化する
ことがわかる。
Furthermore, in d and e, it can be seen that when the charging voltage or the discharging voltage exceeds the limit voltage indicated by the present invention at the end of the cycle test, the charging/discharging characteristics repeatedly deteriorate rapidly.

発明の効果 本発明によれば、固体電解質二次電池に良好なくり返し
充・放電特性を発揮させることができる。
Effects of the Invention According to the present invention, a solid electrolyte secondary battery can exhibit good repeated charge/discharge characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の充・放電方式の効果を示す
充・放電サイクル数と、充電時の電池電圧特性図、第2
図は同放電時の電池電圧との関係11ベー〕f 図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名−―
凭嚇−号 城 手続補正書 昭和69年11月ユ2日
Figure 1 shows the number of charging/discharging cycles and battery voltage characteristics during charging, showing the effects of the charging/discharging method of an embodiment of the present invention.
The figure shows the relationship with the battery voltage at the time of discharge. Name of agent: Patent attorney Toshio Nakao and one other person --
凭凭 - Gojo Procedures Amendment Book November 2, 1986

Claims (1)

【特許請求の範囲】 金属銅を主体とする負極と、Cu_xTiS_2、Cu
_xTiCr_yS_2_+_1_._5_y(0<x
<0.2、0.01<y<0.2)の一群より選ばれる
化合物を主体とする正極と、Cu^■イオン導電性固体
電解質で構成される固体電解質二次電池の充放電を、充
電限界電池電圧が0.60+i_cR_c以下、放電限
界電池電圧が0.33−i_dR_d以上とすることを
特徴とする固体電解質二次電池の充・放電方式。 ただし、i_c、i_dはそれぞれ充電放電電流値、R
_c、R_dはそれぞれ充電、放電時の電池の直流内部
抵抗値であり、 R_c=10・(V_c_c−V_c_o)/i_cR
_d=10・(V_d_o−V_d_c)/i_dで与
えられる値、V_c_o、V_d_oは、充電中、放電
中に、約100ミリ秒間、充電電流値あるいは放電電流
値を10分の9に減じた際の電池電圧であり、V_c_
c、V_d_cは減じる前の電池電圧である。
[Claims] A negative electrode mainly made of metallic copper, Cu_xTiS_2, Cu
_xTiCr_yS_2_+_1_. _5_y(0<x
<0.2, 0.01<y<0.2) A positive electrode mainly composed of a compound selected from the group of A charging/discharging method for a solid electrolyte secondary battery, characterized in that a charge limit battery voltage is 0.60+i_cR_c or less and a discharge limit battery voltage is 0.33-i_dR_d or more. However, i_c and i_d are charging and discharging current values, R
_c and R_d are the DC internal resistance values of the battery during charging and discharging, respectively, R_c=10・(V_c_c−V_c_o)/i_cR
The value given by _d=10・(V_d_o−V_d_c)/i_d, V_c_o, V_d_o, is the value when the charging current value or discharging current value is reduced to 9/10 for about 100 milliseconds during charging and discharging. is the battery voltage, V_c_
c and V_d_c are the battery voltages before being reduced.
JP59140881A 1984-07-06 1984-07-06 Charge-discharge method of solid electrolyte secondary battery Granted JPS6119075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59140881A JPS6119075A (en) 1984-07-06 1984-07-06 Charge-discharge method of solid electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59140881A JPS6119075A (en) 1984-07-06 1984-07-06 Charge-discharge method of solid electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS6119075A true JPS6119075A (en) 1986-01-27
JPH0534788B2 JPH0534788B2 (en) 1993-05-24

Family

ID=15278935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59140881A Granted JPS6119075A (en) 1984-07-06 1984-07-06 Charge-discharge method of solid electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS6119075A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107568A (en) * 1980-12-25 1982-07-05 Matsushita Electric Ind Co Ltd Reversible copper electrode
JPS599875A (en) * 1982-07-08 1984-01-19 Japan Storage Battery Co Ltd Lead storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107568A (en) * 1980-12-25 1982-07-05 Matsushita Electric Ind Co Ltd Reversible copper electrode
JPS599875A (en) * 1982-07-08 1984-01-19 Japan Storage Battery Co Ltd Lead storage battery

Also Published As

Publication number Publication date
JPH0534788B2 (en) 1993-05-24

Similar Documents

Publication Publication Date Title
EP1636870B1 (en) Stacked-type lithium-ion rechargeable battery
KR940006306A (en) Secondary Battery of Water-insoluble Electrolyte and Manufacturing Method Thereof
CN101286577A (en) Lithium ion power cell with high power
KR960032791A (en) METHOD FOR MANUFACTURING ALKALIARY SECONDARY BATTERY, BOTH ELECTRODE OF ALKALIARY SECONDARY BATTERY, ALKALIARY SECONDARY BATTERY,
CN106785139A (en) A kind of method for lifting lithium battery circulation performance
JP3223051B2 (en) Lithium secondary battery
JPS6119075A (en) Charge-discharge method of solid electrolyte secondary battery
JP4365625B2 (en) Electrochemical cell
JPS5894770A (en) Leakage-less closed type lead battery
JP2841378B2 (en) Non-aqueous electrolyte secondary battery charging method
JPS62176069A (en) Charging method for sealed lead-acid battery
JPH0574464A (en) Sealed lead-acid storage battery
JPS5916279A (en) Lead storage battery
JPS6119076A (en) Charge-discharge method of solid electrolyte secondary battery
JPS6017867A (en) Solid electrolyte secondary battery
JPH08287970A (en) Layered secondary battery
JPS6012677A (en) Solid electrolyte secondary battery
JPH04363862A (en) Lithium secondary battery
Coates et al. Development of a long cycle life sealed nickel-zinc battery for high energy-density applications
JPS60148061A (en) Manufacture of sealed lead-acid battery
JPH01294374A (en) Charging method for nonaqueous lithium-secondary battery
JPH0534789B2 (en)
McLarnon et al. Estimation of power-energy plots for secondary batteries
Jarvis et al. Polarization characteristics of electrochemical battery hybrid system
Minami et al. High Rate Discharge for Removing the Antimony Effect of the Lead-Acid Batteries for EVs