JPH0534788B2 - - Google Patents

Info

Publication number
JPH0534788B2
JPH0534788B2 JP59140881A JP14088184A JPH0534788B2 JP H0534788 B2 JPH0534788 B2 JP H0534788B2 JP 59140881 A JP59140881 A JP 59140881A JP 14088184 A JP14088184 A JP 14088184A JP H0534788 B2 JPH0534788 B2 JP H0534788B2
Authority
JP
Japan
Prior art keywords
charging
discharging
battery
voltage
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59140881A
Other languages
Japanese (ja)
Other versions
JPS6119075A (en
Inventor
Tadashi Tonomura
Satoshi Sekido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI
Original Assignee
DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI filed Critical DODENSEI MUKI KAGOBUTSU GIJUTSU KENKYU KUMIAI
Priority to JP59140881A priority Critical patent/JPS6119075A/en
Publication of JPS6119075A publication Critical patent/JPS6119075A/en
Publication of JPH0534788B2 publication Critical patent/JPH0534788B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、固体電解質二次電池の充・放電方式
に関する。 従来例の構成とその問題点 一般に二次電池は、用いられる正極活物質、負
極活物質、電解質の可逆性、過電圧、分解電圧等
の電気化学的性質により決定されるその電池系特
有の、その電圧値あるいは電気量を越えるとくり
返し充・放電特性が極端に低下する充・放電限界
電圧あるいは電気量を有している。 すなわち、従来の二次電池の代表例であるニツ
ケル・カドミウム電池とか鉛蓄電池とかも、長年
にわたる検討が加えられ、それぞれの電池系に固
有の充・放電限界電圧あるいは電気量を見定め現
在の充・放電方式をとるに至つている。 新しい正極活物質、負極活物質、電解質により
構成される二次電池を実用に供するためには、こ
の電池系固有の充・放電限界電圧あるいは電気量
を見定め、この電池系固有の充・放電方式を与え
ることは必須の要件となる。 一方、在来の液体電解質を用いるニツケル・カ
ドミウム電池等とは異なり、固体状の電解質を用
いる固体電解質二次電池は、原理的に液もれがな
く小形・うす形化がきわめて簡便にできることか
ら、近年発展が著しい省電力・省エネルギーが達
成されるマイクロエレクトロニクス分野の小型電
源として注目されるに至つている。この固体電解
質二次電池の中でも、CuxTiS2とかCuxTiCry
S2+1.5y等の層間化合物を正極活物質とし、Cu
イオン導電性固体電解質を用いる二次電池は、正
極活物質の可逆性が優れ、固体電解質のイオン伝
導度は有機電解液電解質に匹適するくらい高くか
つ化学的に安定であることから優れた電池特性が
期待できる固体電解質二次電池として注目される
に至つている。 介固体電解質二次電池の電池反応は 負極;Cu放電 ――→ ←―― 充電Cu +e 正極;CuxTiS2 CuxTiCrgS2+1.5y+δCu +δe 放電 ――→ ←―― 充電Cux+δTiS2 Cux+δTiCrgS2+1.5y と表されるが、負極の反応は、銅(Cu)の溶解
析出反応であり、その可逆性については特別な制
限はない。正極の反応については、Cu がTiSあ
るいはTiCryS2+1.5yのSとSの層間を出入りす
る反応であるが、その可逆性については全く知ら
れでおらず、したがつて該電池の良好なくり返し
特性を与える充・放電限界を定め難く、該固体電
解質二次電池を実用に供するための障害となつて
いる。 発明の目的 本発明は、固体電解質二次電池について、良好
なくり返し充・放電特性を与える充・放電方式を
提供することを目的とする。 発明の構成 本発明を適用する固体電解質二次電池は、Cu
を主体とする正極、CuxTiS2、CuxTiCryS2+1.5y
(0=x<0.2、0.01<y<0.2)の一群より選ばれ
る化合物を主体とする正極、RbCu4I1.5Cl3.5
RbCu4I1.25Cl3.75等のCu イオン導電性固体電解
質により構成される。そして、該電池の使用に際
しては、充電限界電池電圧として、0.60+icRc(ボ
ルト)以下、放電限界電池圧として0.33−idRd
(ボールト)以上の条件を満足するように充・放
電をくり返し行うようにする。 ここで、icdは、それぞれ充電、放電電流値で
単位はアンベアである。Rc、Rdは、それぞれ充
電、放電時の電池を直流内部抵抗値で、単位はオ
ーム。電池の充電中あるいは放電中に、約100ミ
リ秒間、充電電流あるいは放電電流を10分の9に
したときの電池の電圧Vcp、Vdpと、電流を減じる
直前の電池電圧Vcc、Vdcから Rc=10・(Vcc−Vcp/ic Rd=10・(Vdp−Vdc/id で求められる値である。 ここで言う、充電限界電池電圧とは、充電はこの
電圧値以下で行うという意味での限界電圧であ
り、放電限界電池電圧とは、放電は、この電圧以
上で行うという意味での限界電圧である。 実施例の説明 下記に示した構成の固体電解質二次電池を構成
し、本発明を適用する。 実施例 1 電解質:RbCu4I1.5Cl3.5を0.05gr 負極合剤:Cu粉80重量%とCu2S20重量%の混合
物4.75重量部と前記電解質1.25重量部の混合物
を0.2gr 正極合剤:Cu0.1TiS2の2重量部と前記電解質3
重量部の混合物を0.06gr 上記の材料を2トン/cm2の圧力で三層に加圧成
型して直径7mm、圧さ約1mmの電池を組み立て
た。これらの電池を室温で通常は100μAで、60秒
間に1回100ミリ秒間90μAとなる定電流パルス
で、次表に示す9種類の充・放電サイクル試験a
〜hを行なつた。同表に、第1サイクル目の放電
未および充電未の電池電圧を示す。 a〜hの各試験第1表に用いた電池の直流内部
抵抗は、充電中、放電中共に変化はほとんどな
く、試験した全サイクルに渡り常温でほぼ同じ
RcRd220Ωである。
INDUSTRIAL APPLICATION FIELD The present invention relates to a charging/discharging method for solid electrolyte secondary batteries. Structures of conventional examples and their problems In general, secondary batteries have characteristics specific to the battery system determined by the electrochemical properties such as the positive electrode active material, negative electrode active material, reversibility of the electrolyte, overvoltage, and decomposition voltage. It has a charging/discharging limit voltage or quantity of electricity beyond which the repeated charging/discharging characteristics are extremely degraded. In other words, nickel-cadmium batteries and lead-acid batteries, which are typical examples of conventional secondary batteries, have been studied for many years, and the current charging and discharging limit voltages and electricity amount unique to each battery system have been determined. A discharge method has been adopted. In order to put a secondary battery composed of a new positive electrode active material, negative electrode active material, and electrolyte into practical use, the charging/discharging limit voltage or amount of electricity unique to this battery system must be determined, and the charging/discharging method unique to this battery system must be determined. It is an essential requirement to provide On the other hand, unlike conventional nickel-cadmium batteries that use liquid electrolytes, solid electrolyte secondary batteries that use solid electrolytes do not leak in principle and can be made smaller and thinner very easily. , has been attracting attention as a small power source for the microelectronics field, which has achieved remarkable power and energy savings in recent years. Among these solid electrolyte secondary batteries, Cu x TiS 2 and Cu x TiCr y
An interlayer compound such as S 2+1.5y is used as a positive electrode active material, and Cu
Secondary batteries that use ionic conductive solid electrolytes have excellent battery characteristics because the positive electrode active material has excellent reversibility, and the ionic conductivity of the solid electrolyte is high enough to be comparable to organic electrolytes and is chemically stable. It is now attracting attention as a solid electrolyte secondary battery that is promising. The battery reaction of the solid electrolyte secondary battery is negative electrode; Cu discharge ---→ ←-- charging Cu +e positive electrode; Cu x TiS 2 Cu x TiCr g S 2+1.5y +δCu +δe discharge ---→ ←-- charging Cu x Although expressed as +δTiS 2 Cu x +δTiCr g S 2+1.5y , the reaction at the negative electrode is a dissolution precipitation reaction of copper (Cu), and there is no particular restriction on its reversibility. The reaction at the positive electrode is a reaction in which Cu enters and exits between the S and S layers of TiS or TiCr y S 2+1.5 y, but the reversibility of this reaction is not known at all, and therefore there is a possibility that the battery will not perform well. It is difficult to determine the charge/discharge limits that provide repeatability characteristics, which is an obstacle to putting the solid electrolyte secondary battery into practical use. OBJECTS OF THE INVENTION An object of the present invention is to provide a charging/discharging method that provides good repeated charging/discharging characteristics for a solid electrolyte secondary battery. Structure of the Invention A solid electrolyte secondary battery to which the present invention is applied is a Cu
Positive electrode mainly composed of Cu x TiS 2 , Cu x TiCr y S 2+1.5y
(0=x<0.2, 0.01<y<0.2) A positive electrode mainly composed of a compound selected from the group of RbCu 4 I 1.5 Cl 3.5 ,
It is composed of a Cu ion conductive solid electrolyte such as RbCu 4 I 1.25 Cl 3.75 . When using the battery, the charging limit battery voltage should be 0.60 + i c R c (volts) or less, and the discharging limit battery pressure should be 0.33 - i d R d
(Vault) Charging and discharging should be repeated to satisfy the above conditions. Here, i c and d are charging and discharging current values, respectively, and the unit is ambare. R c and R d are the DC internal resistance values of the battery during charging and discharging, respectively, in ohms. The battery voltages V cp and V dp when the charging or discharging current is reduced to 9/10 for approximately 100 milliseconds while the battery is being charged or discharged, and the battery voltages V cc and V dc just before the current is reduced . From this, R c = 10・(V cc −V cp /i c R d = 10・(V dp −V dc /i d ). This is the limit voltage in the sense that discharge is performed below the voltage value, and the discharge limit battery voltage is the limit voltage in the sense that discharge is performed above this voltage.Description of Examples Solid electrolyte with the configuration shown below A secondary battery is constructed and the present invention is applied. Example 1 Electrolyte: 0.05 gr of RbCu 4 I 1.5 Cl 3.5 Negative electrode mixture: 4.75 parts by weight of a mixture of 80% by weight Cu powder and 20% by weight Cu 2 S and the electrolyte 0.2gr of 1.25 parts by weight mixture Positive electrode mixture: 2 parts by weight of Cu 0.1 TiS 2 and the electrolyte 3
The above materials were pressure molded into three layers at a pressure of 2 tons/cm 2 to assemble a battery with a diameter of 7 mm and a pressure of about 1 mm. These batteries were subjected to nine types of charge/discharge cycle tests shown in the following table a at room temperature with constant current pulses of 90 μA for 100 milliseconds once every 60 seconds, typically at 100 μA.
I did ~h. The same table shows the undischarged and uncharged battery voltages in the first cycle. The DC internal resistance of the batteries used in Table 1 for each test a to h shows almost no change during charging or discharging, and remains almost the same at room temperature over all the cycles tested.
R c R d is 220Ω.

【表】【table】

【表】 第1図は、a〜hの各サイクル試験における、
サイクル数と放電未電圧(実線)、充電未電圧
(破線)との関係を示しており、本発明の充・放
電方式に従い、充電限界電圧が、0.60+10-4
220=0.622ボルト以下でかつ放電限界電圧が、
0.33−10-4・220=0.308ボルト以上である充・放
電サイクル試験、a、b、c、d、eでは実用に
耐える良好なくり返し充・放電特性を与えること
がわかる。 また、d、eにおいてサイクル試験の末期にな
つて充電電圧あるいは放電電圧が本発明により示
される限界電圧を越えると、急激にくり返し充・
放電特性が劣化することがわかる。 実施例 2 電解質:RbCu4I1.5Cl3.5を0.05gr 負極合剤:Cu粉80重量%とCu2S20重量%の混合
物4.75重量部と前記電解質1.25重量部の混合物
を0.2gr 正極合剤:Cu0.05TiCr0.025S2.03752重量部と前記
電解質3重量部の混合物を0.06gr 上記の材料を2トン/cm2の圧力で三層に加圧成
型して2直径7mm、圧さ約1mmの電池を組み立て
た。これらの電池を室温で、通常は100μAで、60
秒間に1回100ミリ秒間90μAとなる定電流パルス
で、次表に示す9種類の充・放電サイクル試験
a′〜h′を行なつた。同表に、1サイクル目の放電
未および充電未の電池電圧を示す。 a′〜h′の各試験第2表に用いた電池の直流内部
抵抗は、充電中、放電中共に変化はほとんどな
く、試験した全サイクルに渡り、常温でほぼ同じ
RcRd220Ωである。
[Table] Figure 1 shows the results in each cycle test from a to h.
It shows the relationship between the number of cycles and the undischarged voltage (solid line) and the charged unvoltage (broken line), and according to the charging/discharging method of the present invention, the charging limit voltage is 0.60 + 10 -4 ·
220 = 0.622 volt or less and the discharge limit voltage is
It can be seen that the charge/discharge cycle tests a, b, c, d, and e, in which the voltage was 0.33−10 −4 ·220 = 0.308 volt or higher, provided good repeated charge/discharge characteristics that could withstand practical use. In addition, when the charging voltage or discharging voltage exceeds the limit voltage indicated by the present invention at the end of the cycle test in d and e, the charging and discharging voltages are suddenly repeated.
It can be seen that the discharge characteristics deteriorate. Example 2 Electrolyte: 0.05gr of RbCu 4 I 1.5 Cl 3.5 Negative electrode mixture: 0.2gr of a mixture of 4.75 parts by weight of a mixture of 80% by weight Cu powder and 20% by weight of Cu 2 S and 1.25 parts by weight of the electrolyte Positive electrode mixture: Cu A mixture of 2 parts by weight of 0.05 TiCr 0.025 S 2.0375 and 3 parts by weight of the electrolyte was press-molded into 3 layers with 0.06 gr of the above materials at a pressure of 2 tons/cm 2 to form a battery with a diameter of 7 mm and a pressure of approximately 1 mm. Assembled. These batteries at room temperature, typically 100μA, 60
Nine types of charge/discharge cycle tests shown in the table below are performed using a constant current pulse of 90 μA for 100 milliseconds once every second.
I did steps a′ to h′. The same table shows the undischarged and uncharged battery voltages in the first cycle. The DC internal resistance of the batteries used in Table 2 for each test a' to h' hardly changes during charging or discharging, and remains almost the same at room temperature over all the cycles tested.
R c R d is 220Ω.

【表】 第2図は、a′〜h′各サイクル試験における、サ
イクル数と放電未電圧(実線)、充電未電圧(破
線)との関係を示しており、本発明の充・放電方
式に従い、充電限界電圧が、0.60+10-4・220=
0.622ボルト以下でかつ放電限界電圧が、0.33−
10-4・220=0.308ボルト以上である充・放電サイ
クル試験、a、b、c、d、eでは実用に耐える
良好なくり返し充・放電特性を与えることがわか
る。 また、d、eにおいて、サイクル試験の末期に
なつて充電電圧あるいは放電電圧が本発明により
示される限界電圧を越えると、急激にくり返し
充・放電特性が劣化することがわかる。 発明の効果 本発明によれば、固体電解質二次電池に良好な
くり返し充・放電特性を発揮させることができ
る。
[Table] Figure 2 shows the relationship between the number of cycles, discharge and no-voltage (solid line), and charge and no-voltage (dashed line) in each cycle test from a' to h'. , the charging limit voltage is 0.60+10 -4・220=
0.622 volt or less and discharge limit voltage is 0.33−
It can be seen that the charge/discharge cycle tests a, b, c, d, and e, in which the voltage is 10 -4 · 220 = 0.308 volts or more, provide good repeated charge/discharge characteristics that can withstand practical use. Furthermore, in d and e, it can be seen that when the charging voltage or discharging voltage exceeds the limit voltage indicated by the present invention at the end of the cycle test, the charging/discharging characteristics rapidly deteriorate repeatedly. Effects of the Invention According to the present invention, a solid electrolyte secondary battery can exhibit good repeated charge/discharge characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の充・放電方式の効
果を示す充・放電サイクル数と、充・放電時の電
池電圧特性図、第2図は同じく充・放電時の電池
電圧との関係図である。
Figure 1 shows the number of charging/discharging cycles and battery voltage characteristics during charging/discharging, showing the effects of the charging/discharging method of an embodiment of the present invention, and Figure 2 shows the characteristics of the battery voltage during charging/discharging. It is a relationship diagram.

Claims (1)

【特許請求の範囲】 1 金属銅を主体とする負極と、CuxTiS2、Cux
TiCryS2+1.5y(0x<0.2、0.01<y<0.2)の一
群より選ばれる化合物を主体とする正極と、Cu
イオン導電性固体電解質で構成される固体電解
質二次電池の充放電を、充電限界電池電圧が0.60
+icRc以下、放電限界電池電圧が0.33−idRd以上
とすることを特徴とする固体電解質二次電池の
充・放電方式。 ただし、ic、idはそれぞれ充電および放電電流
値(単位はアンペア)、Rc、Rdはそれぞれ充電、
放電時の電池の直流内部抵抗値(単位はオーム)
であり、 Rc=10・(Vcc−Vcp/ic Rd=10・(Vdp−Vdc/id で与えられる値、Vcp、Vdpは、充電中、放電中
に、約100ミリ秒間、充電電流値あるいは放電電
流値を10分の9に減じた際の電池電圧(単位はボ
ルト)であり、Vcc、Vdcは減じる前の電池電圧
(単位はボルト)である。
[Claims] 1. A negative electrode mainly made of metallic copper, Cu x TiS 2 , Cu x
A positive electrode mainly composed of a compound selected from the group of TiCr y S 2+1.5y (0x<0.2, 0.01<y<0.2) and Cu
When charging and discharging a solid electrolyte secondary battery composed of an ionically conductive solid electrolyte, the charging limit battery voltage is 0.60.
A charging/discharging method for a solid electrolyte secondary battery, characterized in that the discharge limit battery voltage is 0.33−i d R d or more and the discharge limit battery voltage is 0.33 i d R d or more. However, i c and i d are the charging and discharging current values (in amperes), respectively, and R c and R d are the charging and discharging current values, respectively.
DC internal resistance value of battery during discharge (unit: ohm)
The value given by R c = 10・(V cc −V cp /i c R d =10・(V dp −V dc /i d) , V cp and V dp are during charging and discharging, This is the battery voltage (in volts) when the charging current value or discharging current value is reduced by 9/10 for approximately 100 milliseconds, and V cc and V dc are the battery voltages (in volts) before the reduction. .
JP59140881A 1984-07-06 1984-07-06 Charge-discharge method of solid electrolyte secondary battery Granted JPS6119075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59140881A JPS6119075A (en) 1984-07-06 1984-07-06 Charge-discharge method of solid electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59140881A JPS6119075A (en) 1984-07-06 1984-07-06 Charge-discharge method of solid electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS6119075A JPS6119075A (en) 1986-01-27
JPH0534788B2 true JPH0534788B2 (en) 1993-05-24

Family

ID=15278935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59140881A Granted JPS6119075A (en) 1984-07-06 1984-07-06 Charge-discharge method of solid electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS6119075A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107568A (en) * 1980-12-25 1982-07-05 Matsushita Electric Ind Co Ltd Reversible copper electrode
JPS599875A (en) * 1982-07-08 1984-01-19 Japan Storage Battery Co Ltd Lead storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107568A (en) * 1980-12-25 1982-07-05 Matsushita Electric Ind Co Ltd Reversible copper electrode
JPS599875A (en) * 1982-07-08 1984-01-19 Japan Storage Battery Co Ltd Lead storage battery

Also Published As

Publication number Publication date
JPS6119075A (en) 1986-01-27

Similar Documents

Publication Publication Date Title
JP3019326B2 (en) Lithium secondary battery
Karami et al. A novel dry bipolar rechargeable battery based on polyaniline
JPH05325973A (en) Positive electrode active material and battery using this material
JP3186811B2 (en) Method of charging lithium secondary battery
JPS60220574A (en) Chargeable electrochemical apparatus
JP3223051B2 (en) Lithium secondary battery
JPH06203829A (en) Nonaqueous electrolyte secondary battery
JPH0534788B2 (en)
US7311997B2 (en) Rechargeable batteries based on nonconjugated conductive polymers
JPH02204976A (en) Electrochenical battery and its manufacture
JP2555710B2 (en) Zinc electrode
JP2002050407A (en) Nonaqueous electrolyte secondary cell and control method of charge and discharge
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JP3163197B2 (en) Collective battery
JPS58117658A (en) Sealed lead-acid battery
JPH0467302B2 (en)
JPH0574464A (en) Sealed lead-acid storage battery
Brodd On the Internal Resistance of Dry Cells: A New Pulse Method
JP2819201B2 (en) Lithium secondary battery
JPH01304659A (en) Nonaqueous electrolyte secondary battery
JPS6017867A (en) Solid electrolyte secondary battery
JPS62176069A (en) Charging method for sealed lead-acid battery
JPS6012677A (en) Solid electrolyte secondary battery
JP3168615B2 (en) Non-aqueous electrolyte secondary battery
JP2808685B2 (en) Lead storage battery