JPS61184882A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPS61184882A
JPS61184882A JP2502785A JP2502785A JPS61184882A JP S61184882 A JPS61184882 A JP S61184882A JP 2502785 A JP2502785 A JP 2502785A JP 2502785 A JP2502785 A JP 2502785A JP S61184882 A JPS61184882 A JP S61184882A
Authority
JP
Japan
Prior art keywords
region
channel region
thin film
impurity
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2502785A
Other languages
Japanese (ja)
Inventor
Masahiko Oota
昌彦 太田
Masafumi Shinpo
新保 雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2502785A priority Critical patent/JPS61184882A/en
Publication of JPS61184882A publication Critical patent/JPS61184882A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To obtain excellent ohmic contact between a channel region and an electrode region, by adding impurities to the electrode region in an adequate material, forming a TFT, and thereafter performing suitable heat treatment. CONSTITUTION:On an insulating substrate 1, a selectively formed gate region, a gate insulating film 3 thereon, a channel region 4 and an impurity added metal thin film 5 are deposited. After selective removal, suitable heat treatment is performed, and impurities are diffused to the channel region. Thus ohmic contact is obtained. In etching the metal thin film 5, a sufficient etching rate ratio between the film 5 and the channel region 4 can be applied. By this method, process difficulty due to forcible time control is alleviated. Since no restriction is applied to the thickness of the channel region, excellent condition for characteristics can be arbitrarily selected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、液晶表示装置等に用いる薄膜トランジスタ
(以下TPTと称す)の工程簡略化の方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for simplifying the process of thin film transistors (hereinafter referred to as TPT) used in liquid crystal display devices and the like.

〔発明の概要〕[Summary of the invention]

この発明は、液晶表示装置等に用いるTPTにおいて、
電極領域に高融点金属もしくはケイ素化金属を用いるこ
とにより、前記電極領域に不純物添加が可能となり、チ
ャンネル領域と電極領域のオーミックコンタクト管前記
チャンネル領域と1に他領域の間に別々薄膜層(例えば
不純物添加されたチャンネル層)を設けることなく得る
ことができるようにしたものである。
This invention provides a TPT for use in liquid crystal display devices, etc.
By using a high melting point metal or a metal silicide for the electrode region, it is possible to dope the electrode region with impurities, and a separate thin film layer (e.g. This makes it possible to obtain the structure without providing a channel layer doped with impurities.

〔従来の技術〕[Conventional technology]

従来、TPTの基本構造としては第2図に示すように基
板1の上にゲート領域2を選択的に形成した後ゲート絶
縁膜5、チャンネル領域(例えばa−81層)4、不純
物添加された薄膜Ni6t−順次形成し、フォトリソ工
程によりパターニングした後電極領域7を選択的に形成
しソース及びドレイン電極を造る方法が一般的である。
Conventionally, as shown in FIG. 2, the basic structure of TPT is that after a gate region 2 is selectively formed on a substrate 1, a gate insulating film 5, a channel region (for example, the A-81 layer) 4, and impurities are added. A common method is to sequentially form Ni6t thin films, pattern them using a photolithography process, and then selectively form electrode regions 7 to form source and drain electrodes.

この際チャンネル領域と′1極領域のオーミンクコンタ
クトを得るためと、例えばNチャンネルTPTの場合ホ
ールミ流の発生を阻止しゲートオフ領域でのオフ電流の
増加を防ぐため、前記不純物添加された薄膜層6は不可
欠となる〇 〔発明が解決しようとする問題点〕 しかし、従来のTPTでは前記不純物添加された薄膜6
とチャンネル領域4とのエツチング比が普通非常に近い
ため、電極領域形成と同時に前記不純物添加された薄膜
を選択除去する際その制御がむずかしく、チャンネル領
域4の膜厚は直列抵抗を軽減する等特性上から薄く形成
する方が望ましいにもかかわらず、前記不純物添加され
た薄膜層の厚みとの兼ねおいで比較的厚く形成しなけれ
ばならない制限がおった。
At this time, in order to obtain an ohmink contact between the channel region and the '1-pole region, and to prevent the generation of hole current in the case of an N-channel TPT and to prevent an increase in off-current in the gate-off region, the impurity-doped thin film layer is 6 becomes indispensable〇 [Problem to be solved by the invention] However, in conventional TPT, the impurity-doped thin film 6 becomes indispensable.
Since the etching ratio between the etching layer and the channel region 4 is usually very close, it is difficult to control when selectively removing the impurity-doped thin film at the same time as forming the electrode region, and the thickness of the channel region 4 has characteristics such as reducing series resistance. Although it is desirable to form the film thinly from above, there is a restriction that the film must be formed relatively thick due to the thickness of the impurity-doped thin film layer.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記問題点を解決するために、この発明は、前記不純物
添加された薄膜層を設ける代わシに、電極領域に、%融
点全域もしくはケイ素化金属?用いることによシ、電極
領域に直接不純物添加を可能とし電極領域形成後の適当
な熱処理によって不純物をチャンネル領域へ拡散させ、
チャンネル領域と電極領域の良好なオーミックコンタク
トを得るのが不可能となった。
In order to solve the above-mentioned problems, the present invention provides that instead of providing the impurity-doped thin film layer, the electrode region has a % melting point or silicided metal layer. By using this method, impurities can be added directly to the electrode region, and the impurity can be diffused into the channel region by appropriate heat treatment after the electrode region is formed.
It became impossible to obtain good ohmic contact between the channel region and the electrode region.

〔作用〕[Effect]

陥融点金kA (例えばOr、 Mo、 Ti、 Ta
、 W )もしくはケイ素化全組(例えば、Ti5B 
、 WSi、 MO81など)にインプラやQVD法に
よって添加された不純物(例えばリン)は電極金属とは
合金を作らず、チャンネル領域と接触している部分から
の拡散も比較的低温で起こすことができる。前記不純物
添°加された電極領域からチャンネル領域へ拡散した不
純物は、その部分の比抵抗を下は電極領域とチャンネル
領域のオーミックコンタクトを与えるとともに、例えば
Nチャ゛ンネル型TFTの場合ホール電流の発生の抑制
の効果もあシON10 F F比を劣化させることはな
い。
Falling point gold kA (e.g. Or, Mo, Ti, Ta
, W ) or all siliconized groups (e.g. Ti5B
, WSi, MO81, etc.) by implantation or QVD method does not form an alloy with the electrode metal, and diffusion from the part in contact with the channel region can occur at a relatively low temperature. . The impurity diffused from the impurity-doped electrode region to the channel region lowers the specific resistance of that region, provides ohmic contact between the electrode region and the channel region, and also increases the hole current in the case of an N-channel TFT, for example. The effect of suppressing the occurrence does not deteriorate the ON10 FF ratio.

〔実施例〕〔Example〕

以下にこの発明の実施例を図面にもとづいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明にかかるところのTF−Tの縦断面一
を表わす、絶縁基板1の上に選択的に形成されたゲート
領域、さらに−その上へゲート絶縁膜3、チャンネル領
域4、不純物添加された金属薄膜5を堆積させ選択除却
を行なった後適当な熱処理をほど、こして、不純物tチ
ャンネル領域へ拡散させオーミックコンタクトを得る、
金属薄膜5のエツチングに社チャンネル領域4とのエツ
チングレート比を充分とれる方法が用いることができる
ので無理な時間割イWなどによるプロセスの難易度が緩
和され、また加えてチャンネル領域の膜厚などに制限が
与えられないため、特性上良い条件を任意に選択するこ
とができる。
FIG. 1 shows a longitudinal cross section of a TF-T according to the present invention, which shows a gate region selectively formed on an insulating substrate 1, a gate insulating film 3, a channel region 4, and a gate region selectively formed on an insulating substrate 1. After depositing and selectively removing the impurity-doped metal thin film 5, an appropriate heat treatment is performed, and the impurity is diffused into the t-channel region to obtain an ohmic contact.
Since the metal thin film 5 can be etched using a method that provides a sufficient etching rate ratio with that of the channel region 4, the difficulty of the process due to unreasonable time schedules can be alleviated, and in addition, the process can be made more easily with respect to the film thickness of the channel region. Since no restrictions are given, conditions with good characteristics can be arbitrarily selected.

第3図は、本発明にかかるところの他の実施例における
TIFTの縦断面図であり、絶縁基板1側にソース、ド
レイン用の不純物添加のほどこされた金属薄膜5が作り
込まれた、逆スタガ構造となっている、この様に本発明
によるところの実施例は多種のバリエーションが考えら
れ、広く応用することができる。
FIG. 3 is a vertical cross-sectional view of a TIFT according to another embodiment of the present invention, in which a metal thin film 5 doped with impurities for sources and drains is formed on the insulating substrate 1 side. The staggered structure of the embodiment according to the present invention can have many variations and can be widely applied.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、適当な材料における電
極領域に不純物を添付しTPT形成後適当な熱処理を加
えることにより、チャンネル領域と′Ct極領域の良好
なオーミンクコンタクトが得うれ、かつプロセス上制御
の困難な箇所がなくなシ工程簡略化された形で良好な特
性のTPTを得る仁とができる。
As explained above, this invention makes it possible to obtain good ohmink contact between the channel region and the 'Ct electrode region by adding impurities to the electrode region of a suitable material and applying appropriate heat treatment after forming the TPT. Since there are no difficult-to-control parts, it is possible to obtain TPT with good characteristics in a simplified process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明におけるTPTの縦断面図、第2図
は、従来の構造におけるTPTの縦断面図であり、第3
図は、この)へ明における1”FTの他の実施例の綾吟
f面図である。 1・・・基板      2・・・ゲート領域3・・・
ゲート絶縁膜  4・・・チャンネル領域5・・・不純
物添加された金絹薄膜 6・・・不純物添加された薄膜層 7・・・1d鞄領域 以上
FIG. 1 is a vertical cross-sectional view of the TPT in the present invention, FIG. 2 is a vertical cross-sectional view of the TPT in a conventional structure, and FIG.
The figure is a cross-sectional view of another embodiment of the 1" FT in this). 1...Substrate 2...Gate region 3...
Gate insulating film 4... Channel region 5... Impurity-doped gold silk thin film 6... Impurity-doped thin film layer 7... 1d bag region or more

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁基板上に設けられたゲート領域、ゲート絶縁
膜、チャンネル領域、電極領域を有する薄膜素子におい
て、該電極領域に不純物が添加されていることを特徴と
する薄膜トランジスタ。
(1) A thin film transistor comprising a gate region, a gate insulating film, a channel region, and an electrode region provided on an insulating substrate, the electrode region being doped with an impurity.
(2)該電極領域が不純物添加された高融点金属もしく
はそのケイ素化金属であることを特徴とする特許請求の
範囲第1項記載の薄膜トランジスタ。
(2) The thin film transistor according to claim 1, wherein the electrode region is made of an impurity-doped high-melting point metal or a silicided metal thereof.
(3)該チャンネル領域が水素化アモルファスシリコン
薄膜であることを特徴とする特許請求の範囲第2項記載
の薄膜トランジスタ。
(3) The thin film transistor according to claim 2, wherein the channel region is a hydrogenated amorphous silicon thin film.
JP2502785A 1985-02-12 1985-02-12 Thin film transistor Pending JPS61184882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2502785A JPS61184882A (en) 1985-02-12 1985-02-12 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2502785A JPS61184882A (en) 1985-02-12 1985-02-12 Thin film transistor

Publications (1)

Publication Number Publication Date
JPS61184882A true JPS61184882A (en) 1986-08-18

Family

ID=12154427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2502785A Pending JPS61184882A (en) 1985-02-12 1985-02-12 Thin film transistor

Country Status (1)

Country Link
JP (1) JPS61184882A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115868A (en) * 1985-11-15 1987-05-27 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH02188928A (en) * 1989-01-17 1990-07-25 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPH03297172A (en) * 1990-04-17 1991-12-27 Nec Corp Thin film transistor and manufacture thereof
KR20010094962A (en) * 2000-03-31 2001-11-03 포만 제프리 엘 Method of forming ohmic contacts using a self doping layer for thin-film transistors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181064A (en) * 1983-03-31 1984-10-15 Toshiba Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181064A (en) * 1983-03-31 1984-10-15 Toshiba Corp Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115868A (en) * 1985-11-15 1987-05-27 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH02188928A (en) * 1989-01-17 1990-07-25 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPH03297172A (en) * 1990-04-17 1991-12-27 Nec Corp Thin film transistor and manufacture thereof
KR20010094962A (en) * 2000-03-31 2001-11-03 포만 제프리 엘 Method of forming ohmic contacts using a self doping layer for thin-film transistors

Similar Documents

Publication Publication Date Title
JPH1197701A (en) Thin film transistor, manufacture of the same, and liquid crystal display
JPS61184882A (en) Thin film transistor
JPH06232160A (en) Manufacture of thin film transistor
JPH04279064A (en) Display device
JP2570179B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0546106B2 (en)
JP3239448B2 (en) Method for manufacturing semiconductor device
JPS62235784A (en) Thin film transistor
JPS6370576A (en) Thin-film transistor and manufacture thereof
JPH11274505A (en) Thin film transistor structure and its manufacture
JPH0738113A (en) Manufacture of thin film transistor
JP3196241B2 (en) Method for manufacturing semiconductor device
JPS62172761A (en) Amorphous silicon thin film transistor and manufacture thereof
JPS63284865A (en) Thin film semiconductor element
JP2761496B2 (en) Thin film insulated gate semiconductor device and method of manufacturing the same
JPS61150278A (en) Thin film transistor
KR100299373B1 (en) Mos transistor of low doping drain structure and method for fabricating the same
KR960026968A (en) Thin film transistor with double gate and manufacturing method
JP2675076B2 (en) Method for manufacturing semiconductor device
JP2817633B2 (en) Method of manufacturing thin film transistor panel
JPS62137870A (en) Manufacture of mis transistor
JPS63300566A (en) Manufacture of thin film transistor
JPH0669507A (en) Power mosfet
JPH0341774A (en) Thin film transistor
JPH05283696A (en) Thin film transistor